1
|
El-Emam NA, El-Ashmawy MB, Mohamed AAB, Habib ESE, Thamotharan S, Abdelbaky MSM, Garcia-Granda S, Moustafa MAA. Thiophene-Linked 1,2,4-Triazoles: Synthesis, Structural Insights and Antimicrobial and Chemotherapeutic Profiles. Pharmaceuticals (Basel) 2024; 17:1123. [PMID: 39338288 PMCID: PMC11435084 DOI: 10.3390/ph17091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The reaction of thiophene-2-carbohydrazide 1 or 5-bromothiophene-2-carbohydrazide 2 with various haloaryl isothiocyanates and subsequent cyclization by heating in aqueous sodium hydroxide yielded the corresponding 4-haloaryl-5-(thiophen-2-yl or 5-bromothiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 5a-e. The triazole derivatives 5a and 5b were reacted with different secondary amines and formaldehyde solution to yield the corresponding 2-aminomethyl-4-haloaryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones 6a-e, 7a-e, 8, 9, 10a and 10b in good yields. The in vitro antimicrobial activity of compounds 5a-e, 6a-e, 7a-d, 8, 9, 10a and 10b was evaluated against a panel of standard pathogenic bacterial and fungal strains. Compounds 5a, 5b, 5e, 5f, 6a-e, 7a-d, 8, 9, 10a and 10b showed marked activity, particularly against the tested Gram-positive bacteria and the Gram-negative bacteria Escherichia coli, and all the tested compounds were almost inactive against all the tested fungal strains. In addition, compounds 5e, 6a-e, 7a-d and 10a exhibited potent anti-proliferative activity, particularly against HepG-2 and MCF-7 cancer cell lines (IC50 < 25 μM). A detailed structural insight study based on the single crystals of compounds 5a, 5b, 6a, 6d and 10a is also reported. Molecular docking studies of the highly active antibacterial compounds 5e, 6b, 6d, 7a and 7d showed a high affinity for DNA gyrase. Meanwhile, the potent anti-proliferative activity of compounds 6d, 6e and 7d may be attributed to their high affinity for cyclin-dependent kinase 2 (CDK2).
Collapse
Affiliation(s)
- Nada A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud B El-Ashmawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - El-Sayed E Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory and DBT-Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Mohammed S M Abdelbaky
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
| | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo-CINN (CSIC), 33006 Oviedo, Spain
| | - Mohamed A A Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Jaros SW, Florek M, Bażanów B, Panek J, Krogul-Sobczak A, Oliveira MC, Król J, Śliwińska-Hill U, Nesterov DS, Kirillov AM, Smoleński P. Silver Coordination Polymers Driven by Adamantoid Blocks for Advanced Antiviral and Antibacterial Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13411-13421. [PMID: 38456838 PMCID: PMC10958451 DOI: 10.1021/acsami.3c15606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
The development of sustainable biomaterials and surfaces to prevent the accumulation and proliferation of viruses and bacteria is highly demanded in healthcare areas. This study describes the assembly and full characterization of two new bioactive silver(I) coordination polymers (CPs) formulated as [Ag(aca)(μ-PTA)]n·5nH2O (1) and [Ag2(μ-ada)(μ3-PTA)2]n·4nH2O (2). These products were generated by exploiting a heteroleptic approach based on the use of two different adamantoid building blocks, namely 1,3,5-triaza-7-phosphaadamantane (PTA) and 1-adamantanecarboxylic (Haca) or 1,3-adamantanedicarboxylic (H2ada) acids, resulting in the assembly of 1D (1) and 3D (2). Antiviral, antibacterial, and antifungal properties of the obtained compounds were investigated in detail, followed by their incorporation as bioactive dopants (1 wt %) into hybrid biopolymers based on acid-hydrolyzed starch polymer (AHSP). The resulting materials, formulated as 1@AHSP and 2@AHSP, also featured (i) an exceptional antiviral activity against herpes simplex virus type 1 and human adenovirus (HAd-5) and (ii) a remarkable antibacterial activity against Gram-negative bacteria. Docking experiments, interaction with human serum albumin, mass spectrometry, and antioxidation studies provided insights into the mechanism of antimicrobial action. By reporting these new silver CPs driven by adamantoid building blocks and the derived starch-based materials, this study endows a facile approach to access biopolymers and interfaces capable of preventing and reducing the proliferation of a broad spectrum of different microorganisms, including bacteria, fungi, and viruses.
Collapse
Affiliation(s)
- Sabina W. Jaros
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Magdalena Florek
- Department
of Veterinary Microbiology, Wrocław
University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Barbara Bażanów
- Department
of Veterinary Microbiology, Wrocław
University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Jarosław Panek
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - M. Conceição Oliveira
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jarosław Król
- Department
of Veterinary Microbiology, Wrocław
University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Urszula Śliwińska-Hill
- Faculty
of Pharmacy, Department of Basic Chemical Sciences, Wrocław Medical University, Borowska 211, 50-566 Wrocław, Poland
| | - Dmytro S. Nesterov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Piotr Smoleński
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
3
|
Ragshaniya A, Kumar V, Tittal RK, Lal K. Nascent pharmacological advancement in adamantane derivatives. Arch Pharm (Weinheim) 2024; 357:e2300595. [PMID: 38128028 DOI: 10.1002/ardp.202300595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
The adamantane moiety has attracted significant attention since its discovery in 1933 due to its remarkable structural, chemical, and medicinal properties. This molecule has a notable impact in the therapeutic field because of its "add-on" lipophilicity to any pharmacophoric moieties. As in the case of molecular hybridization, in which one pharmacophore is attached to another one(s) with a probability of increasing the biological activity, adding an adamantane unit improves the absorption distribution, metabolism and excretion properties of the resultant hybrid molecule. This review summarizes various reports highlighting the biological activities of adamantane-based synthetic compounds and their structure-activity relationship study. The information presented in this review may open up possible dimensions for adamantane-based drug development and discovery in the pharmaceutical industry after proper structural modifications.
Collapse
Affiliation(s)
- Aman Ragshaniya
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| |
Collapse
|
4
|
Mathur V, Alam O, Siddiqui N, Jha M, Manaithiya A, Bawa S, Sharma N, Alshehri S, Alam P, Shakeel F. Insight into Structure Activity Relationship of DPP-4 Inhibitors for Development of Antidiabetic Agents. Molecules 2023; 28:5860. [PMID: 37570832 PMCID: PMC10420935 DOI: 10.3390/molecules28155860] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
This article sheds light on the various scaffolds that can be used in the designing and development of novel synthetic compounds to create DPP-4 inhibitors for the treatment of type 2 diabetes mellitus (T2DM). This review highlights a variety of scaffolds with high DPP-4 inhibition activity, such as pyrazolopyrimidine, tetrahydro pyridopyrimidine, uracil-based benzoic acid and esters, triazole-based, fluorophenyl-based, glycinamide, glycolamide, β-carbonyl 1,2,4-triazole, and quinazoline motifs. The article further explains that the potential of the compounds can be increased by substituting atoms such as fluorine, chlorine, and bromine. Docking of existing drugs like sitagliptin, saxagliptin, and vildagliptin was done using Maestro 12.5, and the interaction with specific residues was studied to gain a better understanding of the active sites of DPP-4. The structural activities of the various scaffolds against DPP-4 were further illustrated by their inhibitory concentration (IC50) values. Additionally, various synthesis schemes were developed to make several commercially available DPP4 inhibitors such as vildagliptin, sitagliptin and omarigliptin. In conclusion, the use of halogenated scaffolds for the development of DPP-4 inhibitors is likely to be an area of increasing interest in the future.
Collapse
Affiliation(s)
- Vishal Mathur
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Mukund Jha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Sandhya Bawa
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Naveen Sharma
- Division of Bioinformatics, Indian Council of Medical Research, New Delhi 110029, India;
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
5
|
Al-Wahaibi LH, Ghabbour HA, Al-Omary FAM, Tiekink ERT, El-Emam AA. Crystal structure of 5-(adamantan-1-yl)-3-[(4-trifluoromethylanilino)methyl]-2,3-dihydro-1,3,4-oxadiazole-2-thione, C 20H 22F 3N 3OS. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C20H22F3N3OS, triclinic, P1 (no. 1), a = 6.9678(8) Å, b = 10.7614(14) Å, c = 13.0503(14) Å, α = 76.870(3)°, β = 88.004(4)°, γ = 87.275(4)°, V = 951.60(19) Å3, Z = 2, R
gt
(F) = 0.0629, wR
ref
(F
2) = 0.1626, T = 100 K.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry , College of Sciences, Princess Nourah bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry , Faculty of Pharmacy, Mansoura University , Mansoura 35516 , Egypt
| | - Fatmah A. M. Al-Omary
- Department of Pharmaceutical Chemistry , College of Pharmacy, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University , 47500 Bandar Sunway , Selangor Darul Ehsan , Malaysia
| | - Ali A. El-Emam
- Department of Medicinal Chemistry , Faculty of Pharmacy, Mansoura University , Mansoura 35516 , Egypt
| |
Collapse
|
6
|
Osman DA, Macías MA, Al-Wahaibi LH, Al-Shaalan NH, Zondagh LS, Joubert J, Garcia-Granda S, El-Emam AA. Structural Insights and Docking Analysis of Adamantane-Linked 1,2,4-Triazole Derivatives as Potential 11β-HSD1 Inhibitors. Molecules 2021; 26:5335. [PMID: 34500764 PMCID: PMC8433897 DOI: 10.3390/molecules26175335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
The solid-state structural analysis and docking studies of three adamantane-linked 1,2,4-triazole derivatives are presented. Crystal structure analyses revealed that compound 2 crystallizes in the triclinic P-1 space group, while compounds 1 and 3 crystallize in the same monoclinic P21/c space group. Since the only difference between them is the para substitution on the aryl group, the electronic nature of these NO2 and halogen groups seems to have no influence over the formation of the solid. However, a probable correlation with the size of the groups is not discarded due to the similar intermolecular disposition between the NO2/Cl substituted molecules. Despite the similarities, CE-B3LYP energy model calculations show that pairwise interaction energies vary between them, and therefore the total packing energy is affected. HOMO-LUMO calculated energies show that the NO2 group influences the reactivity properties characterizing the molecule as soft and with the best disposition to accept electrons. Further, in silico studies predicted that the compounds might be able to inhibit the 11β-HSD1 enzyme, which is implicated in obesity and diabetes. Self- and cross-docking experiments revealed that a number of non-native 11β-HSD1 inhibitors were able to accurately dock within the 11β-HSD1 X-ray structure 4C7J. The molecular docking of the adamantane-linked 1,2,4-triazoles have similar predicted binding affinity scores compared to the 4C7J native ligand 4YQ. However, they were unable to form interactions with key active site residues. Based on these docking results, a series of potentially improved compounds were designed using computer aided drug design tools. The docking results of the new compounds showed similar predicted 11β-HSD1 binding affinity scores as well as interactions to a known potent 11β-HSD1 inhibitor.
Collapse
Affiliation(s)
- Doaa A. Osman
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, 33006 Oviedo, Spain; (D.A.O.); (S.G.-G.)
| | - Mario A. Macías
- Crystallography and Chemistry of Materials, CrisQuimMat, Department of Chemistry, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia;
| | - Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Nora H. Al-Shaalan
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Luke S. Zondagh
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (L.S.Z.); (J.J.)
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (L.S.Z.); (J.J.)
| | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, 33006 Oviedo, Spain; (D.A.O.); (S.G.-G.)
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
7
|
Boy S, Türkan F, Beytur M, Aras A, Akyıldırım O, Karaman HS, Yüksek H. Synthesis, design, and assessment of novel morpholine-derived Mannich bases as multifunctional agents for the potential enzyme inhibitory properties including docking study. Bioorg Chem 2020; 107:104524. [PMID: 33317836 DOI: 10.1016/j.bioorg.2020.104524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
The synthesized Schiff Bases were reacted with formaldehyde and secondary amine such as 2,6-dimethylmorpholine to afford N-Mannich bases through the Mannich reaction. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4) were treated with 2,6-dimethylmorpholine in the presence of formaldehyde to synthesize eight new 1-(2,6-dimethylmorpholino-4-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4a-h). The structures of the synthesized eight new compounds were characterized using IR, 1H NMR, 13C NMR, and HR-MS spectroscopic methods. Synthesized compounds inhibitory activity determined against the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione S-transferase (GST) enzymes with Ki values in the range 25.23-42.19 µM for AChE, 19.37-34.22 µM for BChE, and 21.84-41.14 µM for GST, respectively. Binding scores of most active inhibitors against AChE, BChE, and GST enzymes were detected as -10.294 kcal/mol, -9.562 kcal/mol, and -7.112 kcal/mol, respectively. The hydroxybenzylidene moiety of the most active inhibitors caused to inhibition of the enzymes through hydrophobic interaction and hydrogen bond.
Collapse
Affiliation(s)
- Songül Boy
- Atatürk Vocational College of Health Service, Kafkas University, Kars 36100, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Iğdır University, Iğdır 76000, Turkey
| | - Murat Beytur
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars 36100, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır 76100, Turkey.
| | - Onur Akyıldırım
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars 36000, Turkey
| | - Halide Sedef Karaman
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars 36100, Turkey
| |
Collapse
|
8
|
Al-Omary FAM, Chowdary Gude N, Al-Rasheed LS, Alkahtani HN, Hassan HM, Al-Abdullah ES, El-Emam AA, Percino MJ, Thamotharan S. X-ray and theoretical investigation of ( Z)-3-(adamantan-1-yl)-1-(phenyl or 3-chlorophenyl)- S-(4-bromobenzyl)isothioureas: an exploration involving weak non-covalent interactions, chemotherapeutic activities and QM/MM binding energy. J Biomol Struct Dyn 2020; 40:2530-2545. [PMID: 33150854 DOI: 10.1080/07391102.2020.1840443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A detailed exploration of crystal packing of two adamantane-isothiourea hybrid derivatives along with a known closely related structure has been performed to delineate the effect of halogen substituents and the role of weak intermolecular interactions in their supramolecular architectures. The adamantane-isothiourea hybrid derivatives used in the present study are (Z)-3-(Adamantan-1-yl)-S-(4-bromobenzyl)-1-phenylisothiourea (1), C24H27BrN2S and (Z)-3-(Adamantan-1-yl)-S-(4-bromobenzyl)-1-(3-chlorophenyl)isothiourea (2), C24H26BrClN2S, characterized by X-ray crystallography. The X-ray structures revealed that the molecular conformation of 1 and 2 are different and stabilized by intramolecular C-H···N interactions. In addition, a short intramolecular H···H contact is formed in 2. The Hirshfeld surface analysis was used to delineate the nature of different intermolecular interactions and their contributions toward crystal packing. The quantitative analysis of strengths of molecular dimers existed in 1 and 2 has been performed using the PIXEL method. The electrostatic potential map clearly revealed nature and strength of σ-holes at Br and Cl atoms. The topological analysis was used to characterize the nature and the strength of various intermolecular interactions including the type I Br···Br contact. Interestingly, all the H-H bonding observed in 1 and 2 show closed-shell in nature. Further, an in-vitro antimicrobial activity studies suggest that the title compounds exhibited potent antibacterial activity against all the tested Gram-positive bacterial strains and Gram-negative Escherichia coli. Compound 2 showed marked anti-proliferative activity against MCF-7 and HeLa cell lines.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatmah A M Al-Omary
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nikhila Chowdary Gude
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Lamees S Al-Rasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad N Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, College of Pharmacy, Delta University for Science and Technology, Mansoura, Dakahliya, Egypt
| | - Ebtehal S Al-Abdullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - M Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, San Pedro Zacachimalpa, Puebla-C.P, Mexico
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
9
|
Marinescu M, Cinteză LO, Marton GI, Chifiriuc MC, Popa M, Stănculescu I, Zălaru CM, Stavarache CE. Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases. BMC Chem 2020; 14:45. [PMID: 32724899 PMCID: PMC7382033 DOI: 10.1186/s13065-020-00697-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
The tri-component synthesis of novel chiral benzimidazole Mannich bases, by reaction between benzimidazole, aqueous 30% formaldehyde and an amine, the biological evaluation and DFT studies of the new compounds are reported here. The 1H-NMR, 13C-NMR, FTIR spectra and elemental analysis confirm the structures of the new compounds. All synthesized compounds were screened by qualitative and quantitative methods for their in vitro antibacterial activity against 4 bacterial strains. DFT studies were accomplished using GAMESS 2012 software and HOMO-LUMO analysis allowed the calculation of electronic and structural parameters of the chiral Mannich bases. The geometry of 1-methylpiperazine, the cumulated Mullikan atomic charges of the two heteroatoms and of the methyl, and the value of the global electrophilicity index (ω = 0.0527) of the M-1 molecule is correlated with its good antimicrobial activity. It was found that the presence of saturated heterocycles from the amine molecule, 1-methyl piperazine and morpholine, respectively, contributes to an increased biological activity, compared to aromatic amino analogs, diphenylamino-, 4-nitroamino- and 4-aminobenzoic acid. The planarity of the molecules, specific bond lengths and localization of HOMO-LUMO orbitals is responsible for the best biological activities of the compounds.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Ludmila Otilia Cinteză
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - George Iuliu Marton
- Faculty of Applied Chemistry and Materials Science, University "Politehnica" of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Marcela Popa
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Ioana Stănculescu
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - Christina-Marie Zălaru
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Cristina-Elena Stavarache
- Institute of Organic Chemistry "C.D. Nenitzescu" of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| |
Collapse
|
10
|
Crystal structure, Hirshfeld surface analysis and DFT studies of 5-(adamantan-1-yl)-3-[(4-chlorobenzyl)sulfanyl]-4-methyl-4H-1,2,4-triazole, a potential 11β-HSD1 inhibitor. Sci Rep 2019; 9:19745. [PMID: 31875009 PMCID: PMC6930263 DOI: 10.1038/s41598-019-56331-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
5-(Adamantan-1-yl)-3-[(4-chlorobenzyl)sulfanyl]-4-methyl-4H-1,2,4-triazole (4) was identified as a potential 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor and this paper describes the in-depth structural analysis thereof. Compound 4 was synthesized in a 92% yield and its 3D-structure confirmed by single-crystal X-ray diffraction. Hirshfeld surface analysis indicated that H…H, C-H…C, C-H…Cl and especially C-H…N hydrogen bond interactions are the primary contributors to the intermolecular stabilisation in the crystal. In order to explore the properties of 4, free from the influence of the crystal field, density functional theory (DFT) calculations were conducted. Results indicated that the DFT optimized geometry of 4 produced a conformer (4a) that is significantly different from the crystal structure. Further experiments confirmed that the crystal structure is not the absolute minimum conformation. This indicated that the crystal packing forces has significantly influenced the conformation thereof. Frontier molecular orbital energies and net atomic charges were also calculated to elucidate the electronic properties of 4a. These results provided insight into areas of the molecule that may present with the ability to form binding interactions at the 11β-HSD1 active site. Molecular docking experiments revealed important intermolecular interactions between 4a and 11β-HSD1. These results indicate that 4 may be considered for further drug design endeavors.
Collapse
|
11
|
Al-Wahaibi LH, Sert Y, Ucun F, Al-Shaalan NH, Alsfouk A, El-Emam AA, Karakaya M. Theoretical and experimental spectroscopic studies, XPS analysis, dimer interaction energies and molecular docking study of 5-(adamantan-1-yl)-N-methyl-1,3,4-thiadiazol-2-amine. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 2019. [DOI: 10.1016/j.jpcs.2019.109091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Synthesis, ADME, docking studies and in vivo anti-hyperglycaemic potential estimation of novel Schiff base derivatives from octadec-9-enoic acid. Bioorg Chem 2019; 84:478-492. [DOI: 10.1016/j.bioorg.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 11/22/2022]
|
13
|
Al-Wahaibi LH, Hassan HM, Abo-Kamar AM, Ghabbour HA, El-Emam AA. Adamantane-Isothiourea Hybrid Derivatives: Synthesis, Characterization, In Vitro Antimicrobial, and In Vivo Hypoglycemic Activities. Molecules 2017; 22:molecules22050710. [PMID: 28468231 PMCID: PMC6154638 DOI: 10.3390/molecules22050710] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/31/2022] Open
Abstract
A new series of adamantane-isothiourea hybrid derivatives, namely 4-arylmethyl (Z)-N'-(adamantan-1-yl)-morpholine-4-carbothioimidates 7a-e and 4-arylmethyl (Z)-N'-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioimidates 8a-e were prepared via the reaction of N-(adamantan-1-yl)morpholine-4-carbothioamide 5 and N-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioamide 6 with benzyl or substituted benzyl bromides, in acetone, in the presence of anhydrous potassium carbonate. The structures of the synthesized compounds were confirmed by ¹H-NMR, 13C-NMR, electrospray ionization mass spectral (ESI-MS) data, and X-ray crystallographic data. The in vitro antimicrobial activity of the new compounds was determined against certain standard strains of pathogenic bacteria and the yeast-like pathogenic fungus Candida albicans. Compounds 7b, 7d and 7e displayed potent broad-spectrum antibacterial activity, while compounds 7a, 7c, 8b, 8d and 8e were active against the tested Gram-positive bacteria. The in vivo oral hypoglycemic activity of the new compounds was carried on streptozotocin (STZ)-induced diabetic rats. Compounds 7a, 8ab, and 8b produced potent dose-independent reduction of serum glucose levels, compared to the potent hypoglycemic drug gliclazide.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Hanan M Hassan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Amal M Abo-Kamar
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Hazem A Ghabbour
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11671, Saudi Arabia.
| | - Ali A El-Emam
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
14
|
Al-Abdullah ES, Al-Tuwaijri HM, Hassan HM, Al-Alshaikh MA, Habib EE, El-Emam AA. Synthesis, Antimicrobial and Hypoglycemic Activities of Novel N-(1-Adamantyl)carbothioamide Derivatives. Molecules 2015; 20:8125-43. [PMID: 25955889 PMCID: PMC6272754 DOI: 10.3390/molecules20058125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 12/26/2022] Open
Abstract
The reaction of 1-adamantyl isothiocyanate 4 with the various cyclic secondary amines yielded the corresponding N-(1-adamantyl)carbothioamides 5a–e, 6, 7, 8a–c and 9. Similarly, the reaction of 4 with piperazine and trans-2,5-dimethylpiperazine in 2:1 molar ratio yielded the corresponding N,N'-bis(1-adamantyl)piperazine-1,4-dicarbothioamides 10a and 10b, respectively. The reaction of N-(1-adamantyl)-4-ethoxycarbonylpiperidine-1-carbothioamide 8c with excess hydrazine hydrate yielded the target carbohydrazide 11, in addition to 4-(1-adamantyl)thiosemicarbazide 12 as a minor product. The reaction of the carbohydrazide 11 with methyl or phenyl isothiocyanate followed by heating in aqueous sodium hydroxide yielded the 1,2,4-triazole analogues 14a and 14b. The reaction of the carbohydrazide 11 with various aromatic aldehydes yielded the corresponding N'-arylideneamino derivatives 15a–g. The compounds 5a–e, 6, 7, 8a–c, 9, 10a, 10b, 14a, 14b and 15a–g were tested for in vitro antimicrobial activity against certain strains of pathogenic Gram-positive and Gram-negative bacteria and the yeast-like fungus Candida albicans. The compounds 5c, 5d, 5e, 6, 7, 10a, 10b, 15a, 15f and 15g showed potent antibacterial activity against one or more of the tested microorganisms. The oral hypoglycemic activity of compounds 5c, 6, 8b, 9, 14a and 15b was determined in streptozotocin (STZ)-induced diabetic rats. Compound 5c produced significant reduction of serum glucose levels, compared to gliclazide.
Collapse
Affiliation(s)
- Ebtehal S Al-Abdullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanaa M Al-Tuwaijri
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanan M Hassan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Monirah A Al-Alshaikh
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Elsayed E Habib
- Department of Microbiology, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
- Department of Pharmaceutics and Pharmaceutical Technology (Microbiology), College of Pharmacy, Taibah University, Almadinah Almunawwarah 11344, Saudi Arabia.
| | - Ali A El-Emam
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|