1
|
Lewis AM, Fallon T, Dittemore GA, Sheppard K. Evolution and variation in amide aminoacyl-tRNA synthesis. IUBMB Life 2024. [PMID: 38391119 DOI: 10.1002/iub.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
Collapse
Affiliation(s)
- Alexander M Lewis
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | - Trevor Fallon
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| | | | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, USA
| |
Collapse
|
2
|
Silva MM, Campos TA, Cavalcanti IMF, Oliveira IS, Pérez CD, Silva RADA, Wanderley MSO, Santos NPS. Proteomic characterization and biological activities of the mucus produced by the zoanthid Palythoa caribaeorum (Duchassaing & Michelotti, 1860). AN ACAD BRAS CIENC 2023; 95:e20200325. [PMID: 38055606 DOI: 10.1590/0001-3765202320200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/22/2020] [Indexed: 12/08/2023] Open
Abstract
Mucus, produced by Palythoa caribaeorum has been popularly reported due to healing, anti-inflammatory, and analgesic effects. However, biochemical and pharmacological properties of this mucus remains unexplored. Therefore, the present study aimed to study its proteome profile by 2DE electrophoresis and MALDI-TOF. Furthermore, it was evaluated the cytotoxic, antibacterial, and antioxidant activities of the mucus and from its protein extract (PE). Proteomics study identified14 proteins including proteins involved in the process of tissue regeneration and death of tumor cells. The PE exhibited cell viability below 50% in the MCF-7 and S-180 strains. It showed IC50 of 6.9 μg/mL for the J774 lineage, and also, favored the cellular growth of fibroblasts. Furthermore, PE revealed activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Staphylococcus epidermidis (MIC of 250 μg/mL). These findings revealed the mucus produced by Palythoa caribaeorum with biological activities, offering alternative therapies for the treatment of cancer and as a potential antibacterial agent.
Collapse
Affiliation(s)
- Marllyn M Silva
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Thiers A Campos
- Centro Tecnológico do Nordeste, Av. Prof. Luís Freire, 1, Cidade Universitária, 50740-545 Recife, PE, Brazil
| | - Isabella M F Cavalcanti
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
- Universidade Federal de Pernambuco, Instituto Keizo-Asami (iLIKA), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Idjane S Oliveira
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Carlos Daniel Pérez
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Roberto Afonso DA Silva
- Universidade Federal de Pernambuco, Instituto Keizo-Asami (iLIKA), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Marcela S O Wanderley
- Universidade de Pernambuco, Campus Santo Amaro, Instituto de Ciências Biológicas, Arnóbio Marques, 310, Santo Amaro, 50100-130 Recife, PE, Brazil
| | - Noemia P S Santos
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Núcleo de Biologia, Rua Alto do Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
| |
Collapse
|
3
|
Cui Z, Jiang Z, Zhang J, Zheng H, Jiang X, Gong K, Liang Q, Wang Q, Qi Q. Stable and Efficient Biosynthesis of 5-Aminolevulinic Acid Using Plasmid-Free Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1478-1483. [PMID: 30644739 DOI: 10.1021/acs.jafc.8b06496] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
5-Aminolevulinic acid (5-ALA) is a key metabolic intermediate of the heme biosynthesis pathway, which has broad application prospects in agriculture and medicine. However, segregational instability of plasmid-based expression systems and low yield have hampered large-scale manufacture of 5-ALA. In this study, two important genes of the 5-ALA C5 biosynthesis pathway, hemA and hemL, were integrated into Escherichia coli MG1655 for chemically induced chromosomal evolution (CIChE). The highest hemA and hemL copy-number, 98 per genome, was obtained in CIChE strain MG136. The 5-ALA titer of this strain reached 2724 mg/L in optimized condition. Then, after undergoing adaptative evolution and the deletion of recA, strain MG136a ΔrecA::FRT could stably produce 4550 mg/L 5-ALA from glucose, 450 times the amount produced by hemA- hemL single copy strain MG1655-hemAL. This study constructed a plasmid-free E. coli strain for 5-ALA production, which will provide the basis for further manipulation of metabolic regulation and optimization of fermentation.
Collapse
Affiliation(s)
- Zhiyong Cui
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Zhennan Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Jinhong Zhang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Huihui Zheng
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Xin Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Kai Gong
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , P. R. China
| |
Collapse
|
4
|
Chakraborty S, Ganguli S, Chowdhury A, Ibba M, Banerjee R. Reversible inactivation of yeast mitochondrial phenylalanyl-tRNA synthetase under oxidative stress. Biochim Biophys Acta Gen Subj 2018; 1862:1801-1809. [DOI: 10.1016/j.bbagen.2018.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 12/28/2022]
|
5
|
Katz A, Elgamal S, Rajkovic A, Ibba M. Non-canonical roles of tRNAs and tRNA mimics in bacterial cell biology. Mol Microbiol 2016; 101:545-58. [PMID: 27169680 DOI: 10.1111/mmi.13419] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/27/2022]
Abstract
Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl-tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl-tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non-canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.
Collapse
Affiliation(s)
- Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Andrei Rajkovic
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|