1
|
Damiati S, Schuster B. Electrochemical Biosensors Based on S-Layer Proteins. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1721. [PMID: 32204503 PMCID: PMC7147708 DOI: 10.3390/s20061721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 01/29/2023]
Abstract
Designing and development of electrochemical biosensors enable molecule sensing and quantification of biochemical compositions with multitudinous benefits such as monitoring, detection, and feedback for medical and biotechnological applications. Integrating bioinspired materials and electrochemical techniques promote specific, rapid, sensitive, and inexpensive biosensing platforms for (e.g., point-of-care testing). The selection of biomaterials to decorate a biosensor surface is a critical issue as it strongly affects selectivity and sensitivity. In this context, smart biomaterials with the intrinsic self-assemble capability like bacterial surface (S-) layer proteins are of paramount importance. Indeed, by forming a crystalline two-dimensional protein lattice on many sensors surfaces and interfaces, the S-layer lattice constitutes an immobilization matrix for small biomolecules and lipid membranes and a patterning structure with unsurpassed spatial distribution for sensing elements and bioreceptors. This review aims to highlight on exploiting S-layer proteins in biosensor technology for various applications ranging from detection of metal ions over small organic compounds to cells. Furthermore, enzymes immobilized on the S-layer proteins allow specific detection of several vital biomolecules. The special features of the S-layer protein lattice as part of the sensor architecture enhances surface functionalization and thus may feature an innovative class of electrochemical biosensors.
Collapse
Affiliation(s)
- Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
- Current address: Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 171 21 Solna, Stockholm, Sweden
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
2
|
Czernohlavek C, Schuster B. Formation and characteristics of mixed lipid/polymer membranes on a crystalline surface-layer protein lattice. Biointerphases 2020; 15:011002. [PMID: 31948239 PMCID: PMC7116081 DOI: 10.1116/1.5132390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The implementation of self-assembled biomolecules on solid materials, in particular, sensor and electrode surfaces, gains increasing importance for the design of stable functional platforms, bioinspired materials, and biosensors. The present study reports on the formation of a planar hybrid lipid/polymer membrane on a crystalline surface layer protein (SLP) lattice. The latter acts as a connecting layer linking the biomolecules to the inorganic base plate. In this approach, chemically bound lipids provided hydrophobic anchoring moieties for the hybrid lipid/polymer membrane on the recrystallized SLP lattice. The rapid solvent exchange technique was the method of choice to generate the planar hybrid lipid/polymer membrane on the SLP lattice. The formation process and completeness of the latter were investigated by quartz crystal microbalance with dissipation monitoring and by an enzymatic assay using the protease subtilisin A, respectively. The present data provide evidence for the formation of a hybrid lipid/polymer membrane on an S-layer lattice with a diblock copolymer content of 30%. The hybrid lipid/polymer showed a higher stiffness compared to the pure lipid bilayer. Most interestingly, both the pure and hybrid membrane prevented the proteolytic degradation of the underlying S-layer protein by the action of subtilisin A. Hence, these results provide evidence for the formation of defect-free membranes anchored to the S-layer lattice.
Collapse
Affiliation(s)
- Christian Czernohlavek
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
3
|
Abstract
Cells are the basic units of life, and can be mimicked to create artificial analogs enabling the investigation of cellular mechanisms under controlled conditions. Building biomimetic systems ranging from proto-cells to cell-like objects such as compartment membranes can be achieved by collecting biobricks that self-assemble to build simplified models performing specific functions. Hence, scientists can develop and optimize new synthetic cells with biological functions by taking inspiration from nature and exploiting the advantages of synthetic biology. However, the bottom-down approach is not restricted to the basic principles of biological cells, and new mimicry systems can be designed starting with a combination of living and non-living simple molecules to focus on a cellular machinery function. In recent years, microfluidic devices have been well established to engineer bioarchitecture models resembling cell-like structures involving vesicles, compartmentalization, synthetic membranes, and the chip itself as a synthetic cell. This review aims to highlight the role of biological cells and their impact on inspiring the development of biomimetic models. The combination of the principles of synthetic biology with microfluidic technology represents the newly-introduced field of synthetic cells and synthetic membranes that can be further exploited in diagnostic and therapeutic applications.
Collapse
|
4
|
Luo G, Yang Q, Yao B, Tian Y, Hou R, Shao A, Li M, Feng Z, Wang W. Slp-coated liposomes for drug delivery and biomedical applications: potential and challenges. Int J Nanomedicine 2019; 14:1359-1383. [PMID: 30863066 PMCID: PMC6388732 DOI: 10.2147/ijn.s189935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Slp forms a crystalline array of proteins on the outermost envelope of bacteria and archaea with a molecular weight of 40-200 kDa. Slp can self-assemble on the surface of liposomes in a proper environment via electrostatic interactions, which could be employed to functionalize liposomes by forming Slp-coated liposomes for various applications. Among the molecular characteristics, the stability, adhesion, and immobilization of biomacromolecules are regarded as the most meaningful. Compared to plain liposomes, Slp-coated liposomes show excellent physicochemical and biological stabilities. Recently, Slp-coated liposomes were shown to specifically adhere to the gastrointestinal tract, which was attributed to the "ligand-receptor interaction" effect. Furthermore, Slp as a "bridge" can immobilize functional biomacromol-ecules on the surface of liposomes via protein fusion technology or intermolecular forces, endowing liposomes with beneficial functions. In view of these favorable features, Slp-coated liposomes are highly likely to be an ideal platform for drug delivery and biomedical uses. This review aims to provide a general framework for the structure and characteristics of Slp and the interactions between Slp and liposomes, to highlight the unique properties and drug delivery as well as the biomedical applications of the Slp-coated liposomes, and to discuss the ongoing challenges and perspectives.
Collapse
Affiliation(s)
- Gan Luo
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingliang Yang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Bingpeng Yao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Green Pharmaceutics, Jianxing Honors College, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yangfan Tian
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruixia Hou
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Anna Shao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Mengting Li
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Zilin Feng
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Wenxi Wang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| |
Collapse
|
5
|
Karaballi RA, Merchant S, Power SR, Brosseau CL. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) study of the interaction between protein aggregates and biomimetic membranes. Phys Chem Chem Phys 2018; 20:4513-4526. [DOI: 10.1039/c7cp06838g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
EC-SERS is used for the first time to characterize protein aggregate–biomembrane interactions.
Collapse
Affiliation(s)
| | | | - Sasha R. Power
- Department of Chemistry
- Saint Mary's University
- Halifax
- Canada
| | | |
Collapse
|
6
|
Damiati S, Küpcü S, Peacock M, Eilenberger C, Zamzami M, Qadri I, Choudhry H, Sleytr UB, Schuster B. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens Bioelectron 2017; 94:500-506. [DOI: 10.1016/j.bios.2017.03.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 01/19/2023]
|
7
|
Moreno-Cencerrado A, Iturri J, Pum D, Sleytr UB, Toca-Herrera JL. Influencing bacterial S-layer protein recrystallization on polymer brushes through surface charge and accessible volume: A combined AFM and QCMD analysis. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Silin V, Kasianowicz JJ, Michelman-Ribeiro A, Panchal RG, Bavari S, Robertson JWF. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins. MEMBRANES 2016; 6:E36. [PMID: 27348008 PMCID: PMC5041027 DOI: 10.3390/membranes6030036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/18/2023]
Abstract
Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects.
Collapse
Affiliation(s)
- Vitalii Silin
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20899, USA.
| | - John J Kasianowicz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
| | - Ariel Michelman-Ribeiro
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
| | - Rekha G Panchal
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Sina Bavari
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | - Joseph W F Robertson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8120, USA.
| |
Collapse
|
9
|
Damiati S, Zayni S, Schrems A, Kiene E, Sleytr UB, Chopineau J, Schuster B, Sinner EK. Inspired and stabilized by nature: ribosomal synthesis of the human voltage gated ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomater Sci 2015; 3:1406-13. [DOI: 10.1039/c5bm00097a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scheme of the cell-free, ribosomal synthesis of a VDAC protein in the presence of an S-layer supported lipid membrane. The VDAC protein is adapted from S. Hiller et al., Science, 2008, 321, 1206–1210.
Collapse
Affiliation(s)
- Samar Damiati
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Sonja Zayni
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Angelika Schrems
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Elisabeth Kiene
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Uwe B. Sleytr
- Institute for Biophysics
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Joël Chopineau
- Institute Charles Gerhardt
- UMR 5253 CNRS/ENSCM/UM2/UM1
- Montpellier
- France
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Eva-Kathrin Sinner
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| |
Collapse
|