1
|
Exosomes derived from induced pluripotent stem cells suppresses M2-type macrophages during pulmonary fibrosis via miR-302a-3p/TET1 axis. Int Immunopharmacol 2021; 99:108075. [PMID: 34435585 DOI: 10.1016/j.intimp.2021.108075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (PF) is a type of chronic lung disease. Here, we investigated the effect of induced pluripotent stem cell (iPSC)-derived exosomes (iPSC-exosomes) on M2-type macrophages which play a critical role in pulmonary fibrosis. Exosomes were purified from the conditioned medium of iPSCs. Mice models of pulmonary fibrosis were established by intratracheal instillation with 5 mg/kg bleomycin. Thereafter, the histopathological changes and collagen deposition were detected by HE and masson staining. Meanwhile the level of M2-type macrophages was elevated by immunofluorescence staining with F4/80 and Arg-1. Luciferase reporter assay was conducted to verify the binding of miR-302a-3p to ten-eleven translocation 1 (TET1). Our results showed that, after treatment with iPSC-exosomes, the pulmonary fibrosis induced by bleomycin was relieved, with less collagen deposition. In addition, the increased M2-type macrophages in PF mice were reduced upon treatment with iPSC-exosomes. Moreover, we found that the iPSC-exosomes showed higher level of miR-302a-3p. Interestingly, the level of miR-302a-3p in the lungs of PF mice was increased upon treatment with iPSC-exosomes. Furthermore, we verified that TET1 was a direct target of miR-302a-3p. Up-regulation of miR-302a-3p or TET1 silencing repressed M2-type macrophages. Down-regulation of miR-302a-3p abolished the beneficial effects of iPSC-exosomes on pulmonary fibrosis. Collectively, our study revealed that iPSC-exosomes delivered miR-302a-3p to suppress the M2-type macrophages via targeting TET1, thus mitigating pulmonary fibrosis. This study indicates that iPSC-exosomes may become a potential therapeutic agent for pulmonary fibrosis.
Collapse
|
2
|
Hart DA. What Molecular Recognition Systems Do Mesenchymal Stem Cells/Medicinal Signaling Cells (MSC) Use to Facilitate Cell-Cell and Cell Matrix Interactions? A Review of Evidence and Options. Int J Mol Sci 2021; 22:ijms22168637. [PMID: 34445341 PMCID: PMC8395489 DOI: 10.3390/ijms22168637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells, also called medicinal signaling cells (MSC), have been studied regarding their potential to facilitate tissue repair for >30 years. Such cells, derived from multiple tissues and species, are capable of differentiation to a number of lineages (chondrocytes, adipocytes, bone cells). However, MSC are believed to be quite heterogeneous with regard to several characteristics, and the large number of studies performed thus far have met with limited or restricted success. Thus, there is more to understand about these cells, including the molecular recognition systems that are used by these cells to perform their functions, to enhance the realization of their potential to effect tissue repair. This perspective article reviews what is known regarding the recognition systems available to MSC, the possible systems that could be looked for, and alternatives to enhance their localization to specific injury sites and increase their subsequent facilitation of tissue repair. MSC are reported to express recognition molecules of the integrin family. However, there are a number of other recognition molecules that also could be involved such as lectins, inducible lectins, or even a MSC-specific family of molecules unique to these cells. Finally, it may be possible to engineer expression of recognition molecules on the surface of MSC to enhance their function in vivo artificially. Thus, improved understanding of recognition molecules on MSC could further their success in fostering tissue repair.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada;
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Health Services Bone & Joint Health Strategic Clinical Network, Edmonton, AB T5H 3E4, Canada
- Centre for Hip Health & Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
3
|
Hamad S, Derichsweiler D, Papadopoulos S, Nguemo F, Šarić T, Sachinidis A, Brockmeier K, Hescheler J, Boukens BJ, Pfannkuche K. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 2019; 9:7222-7238. [PMID: 31695764 PMCID: PMC6831300 DOI: 10.7150/thno.32058] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are promising candidates to treat myocardial infarction and other cardiac diseases. Such treatments require pure cardiomyocytes (CMs) in large quantities. Methods: In the present study we describe an improved protocol for production of hiPSC-CMs in which hiPSCs are first converted into mesodermal cells by stimulation of wingless (Wnt) signaling using CHIR99021, which are then further differentiated into CM progenitors by simultaneous inhibition of porcupine and tankyrase pathways using IWP2 and XAV939 under continuous supplementation of ascorbate during the entire differentiation procedure. Results: The protocol resulted in reproducible generation of >90% cardiac troponin T (TNNT2)-positive cells containing highly organized sarcomeres. In 2D monolayer cultures CM yields amounted to 0.5 million cells per cm2 growth area, and on average 72 million cells per 100 mL bioreactor suspension culture without continuous perfusion. The differentiation efficiency was hardly affected by the initial seeding density of undifferentiated hiPSCs. Furthermore, batch-to-batch variations were reduced by combinatorial use of ascorbate, IWP2, and XAV939. Conclusion: Combined inhibition of porcupine and tankyrase sub-pathways of Wnt signaling and continuous ascorbate supplementation, enable robust and efficient production of hiPSC-CMs.
Collapse
Affiliation(s)
- Sarkawt Hamad
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
- Biology Department, Faculty of Science, Soran University, Soran, Kurdistan region-Iraq
| | - Daniel Derichsweiler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Symeon Papadopoulos
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Filomain Nguemo
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Agapios Sachinidis
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Konrad Brockmeier
- Department of Pediatric Cardiology, University Clinics of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kurt Pfannkuche
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Pediatric Cardiology, University Clinics of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Sacco AM, Belviso I, Romano V, Carfora A, Schonauer F, Nurzynska D, Montagnani S, Di Meglio F, Castaldo C. Diversity of dermal fibroblasts as major determinant of variability in cell reprogramming. J Cell Mol Med 2019; 23:4256-4268. [PMID: 30980516 PMCID: PMC6533477 DOI: 10.1111/jcmm.14316] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are adult somatic cells genetically reprogrammed to an embryonic stem cell-like state. Notwithstanding their autologous origin and their potential to differentiate towards cells of all three germ layers, iPSC reprogramming is still affected by low efficiency. As dermal fibroblast is the most used human cell for reprogramming, we hypothesize that the variability in reprogramming is, at least partially, because of the skin fibroblasts used. Human dermal fibroblasts harvested from five different anatomical sites (neck, breast, arm, abdomen and thigh) were cultured and their morphology, proliferation, apoptotic rate, ability to migrate, expression of mesenchymal or epithelial markers, differentiation potential and production of growth factors were evaluated in vitro. Additionally, gene expression analysis was performed by real-time PCR including genes typically expressed by mesenchymal cells. Finally, fibroblasts isolated from different anatomic sites were reprogrammed to iPSCs by integration-free method. Intriguingly, while the morphology of fibroblasts derived from different anatomic sites differed only slightly, other features, known to affect cell reprogramming, varied greatly and in accordance with anatomic site of origin. Accordingly, difference also emerged in fibroblasts readiness to respond to reprogramming and ability to form colonies. Therefore, as fibroblasts derived from different anatomic sites preserve positional memory, it is of great importance to accurately evaluate and select dermal fibroblast population prior to induce reprogramming.
Collapse
Affiliation(s)
- Anna Maria Sacco
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Veronica Romano
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonia Carfora
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Fabrizio Schonauer
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Daria Nurzynska
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Franca Di Meglio
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Yoshida K, Okada M, Nagasaka R, Sasaki H, Okada M, Kanie K, Kato R. Time-course colony tracking analysis for evaluating induced pluripotent stem cell culture processes. J Biosci Bioeng 2019; 128:209-217. [PMID: 30738731 DOI: 10.1016/j.jbiosc.2019.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/15/2023]
Abstract
Increasing the yield and maintaining a high quality of induced pluripotent stem cells (iPSCs) is necessary for manufacturing iPSCs at the industrial scale. However, because iPSCs are delicate, it is important to evaluate their quality during processing. To examine the status of cultured iPSCs non-invasively, morphology-based iPSC colony evaluation may be an efficient technology for cellular status monitoring and analysis. In this study, we examined the effectiveness of time-course colony tracking analysis for evaluating the iPSC culture process. Particularly, we obtained detailed time-course data to evaluate the effect of the pipetting technique on cell dissociation before seeding. Although the pipetting process causes severe shear stress to cells, which affects their quality, these effects have not been quantitatively analyzed because of their complex and uncontrollable parameters. By analyzing the heterogeneity and time-course responses of individual colonies, our colony tracking analysis revealed a critically damaged population caused by pipetting stress which could not be detected in conventional bulk analysis. Moreover, by comprehensively analyzing colony tracking data, which links the time-course morphology and marker staining results with each colony, we found that colony morphology is only highly correlated with the undifferentiated marker in the final stage, with a lower correlation in the early stages. Thus, colony tracking analysis provides a way to quantify cellular morphological information when evaluating complex iPSC manufacturing processes.
Collapse
Affiliation(s)
- Kei Yoshida
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mika Okada
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Risako Nagasaka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroto Sasaki
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mai Okada
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan; Stem Cell Evaluation Technology Research Association (SCA), Hacho-bori, Chuou-ku, Tokyo 104-0032, Japan; Institute of Nano-Life-Systems, Institute of Innovation for Future Society, Nagoya University, Division of Micro-Nano Mechatronics, Furocho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
6
|
Ryder OA, Onuma M. Viable Cell Culture Banking for Biodiversity Characterization and Conservation. Annu Rev Anim Biosci 2018; 6:83-98. [DOI: 10.1146/annurev-animal-030117-014556] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because living cells can be saved for indefinite periods, unprecedented opportunities for characterizing, cataloging, and conserving biological diversity have emerged as advanced cellular and genetic technologies portend new options for preventing species extinction. Crucial to realizing the potential impacts of stem cells and assisted reproductive technologies on biodiversity conservation is the cryobanking of viable cell cultures from diverse species, especially those identified as vulnerable to extinction in the near future. The advent of in vitro cell culture and cryobanking is reviewed here in the context of biodiversity collections of viable cell cultures that represent the progress and limitations of current efforts. The prospects for incorporating collections of frozen viable cell cultures into efforts to characterize the genetic changes that have produced the diversity of species on Earth and contribute to new initiatives in conservation argue strongly for a global network of facilities for establishing and cryobanking collections of viable cells.
Collapse
Affiliation(s)
- Oliver A. Ryder
- San Diego Institute for Conservation Research, San Diego Zoo Global, Escondido, California 92027-7000, USA
| | - Manabu Onuma
- Ecological Risk Assessment and Control Section, Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
7
|
Imbrici P, Nicolotti O, Leonetti F, Conte D, Liantonio A. Ion Channels in Drug Discovery and Safety Pharmacology. Methods Mol Biol 2018; 1800:313-326. [PMID: 29934900 DOI: 10.1007/978-1-4939-7899-1_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ion channels are membrane proteins involved in almost all physiological processes, including neurotransmission, muscle contraction, pace-making activity, secretion, electrolyte and water balance, immune response, and cell proliferation. Due to their broad distribution in human body and physiological roles, ion channels are attractive targets for drug discovery and safety pharmacology. Over the years ion channels have been associated to many genetic diseases ("channelopathies"). For most of these diseases the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a number of patients. The search for the development of new and more specific therapeutic approaches is therefore strongly pursued. At the same time acquired channelopathies or dangerous side effects (such as proarrhythmic risk) can develop as a consequence of drugs unexpectedly targeting ion channels. Several noncardiovascular drugs are known to block cardiac ion channels, leading to potentially fatal delayed ventricular repolarization. Thus, the search of reliable preclinical cardiac safety testing in early stage of drug discovery is mandatory. To fulfill these needs, both ion channels drug discovery and toxicology strategies are evolving toward comprehensive research approaches integrating ad hoc designed in silico predictions and experimental studies for a more reliable and quick translation of results to the clinic side.Here we discuss two examples of how the combination of in silico methods and patch clamp experiments can help addressing drug discovery and safety issues regarding ion channels.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesco Leonetti
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
8
|
Effects of short-term exposure to sevoflurane on the survival, proliferation, apoptosis, and differentiation of neural precursor cells derived from human embryonic stem cells. J Anesth 2017; 31:821-828. [DOI: 10.1007/s00540-017-2408-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022]
|
9
|
Clément F, Grockowiak E, Zylbersztejn F, Fossard G, Gobert S, Maguer-Satta V. Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investig 2017; 4:67. [PMID: 28815178 DOI: 10.21037/sci.2017.07.03] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
Stem cells (SCs) have been extensively studied in the context of regenerative medicine. Human hematopoietic stem cell (HSC)-based therapies have been applied to treat leukemic patients for decades. Handling of mesenchymal stem cells (MSCs) has also raised hopes and concerns in the field of tissue engineering. Lately, discovery of cell reprogramming by Yamanaka's team has profoundly modified research strategies and approaches in this domain. As we gain further insight into cell fate mechanisms and identification of key actors and parameters, this also raises issues as to the manipulation of SCs. These include the engraftment of manipulated cells and the potential predisposition of those cells to develop cancer. As a unique and pioneer model, the use of HSCs to provide new perspectives in the field of regenerative and curative medicine will be reviewed. We will also discuss the potential use of various SCs from embryonic to adult stem cells (ASCs), including induced pluripotent stem cells (iPSCs) as well as MSCs. Furthermore, to sensitize clinicians and researchers to unresolved issues in these new therapeutic approaches, we will highlight the risks associated with the manipulation of human SCs from embryonic or adult origins for each strategy presented.
Collapse
Affiliation(s)
- Flora Clément
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Elodie Grockowiak
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Florence Zylbersztejn
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Gaëlle Fossard
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France.,Centre Hospitalier Lyon Sud, Hematology Department, Tours, France
| | - Stéphanie Gobert
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Véronique Maguer-Satta
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| |
Collapse
|
10
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|