1
|
Meza C, Stefan C, Staines WR, Feinstein A. A preliminary investigation of sex differences in cognitive and fMRI changes following 28 days of cannabis abstinence. Mult Scler Relat Disord 2024; 89:105759. [PMID: 39024968 DOI: 10.1016/j.msard.2024.105759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Previous studies have investigated the influence of cannabis on cognition among people with MS (pwMS), yet the influence of sex in the context of cannabis use remains unexplored. We aim to fill this gap by investigating cannabis-sex related differences in verbal learning, memory and processing speed in association with fMRI (resting state, and task-based) metrics. METHOD Our sample consisted of 19 long-term, frequent cannabis users (8 males, 11 females). Assessments were conducted at baseline and after 28 days of cannabis abstinence. The tests included measures of verbal memory (Selective Reminding Test (SRT)), working memory (n-back), information processing speed (Symbol Digit Modalities Test (SDMT)) and the resting state DMN. To evaluate the effects of cannabis abstinence, we performed a group x time interaction analysis using repeated measures ANCOVA. This analysis controlled for several covariates, including the level of disability (EDSS), baseline cannabis THC metabolite levels, and cannabis withdrawal symptoms. By controlling for these variables, we aimed to isolate the impact of cannabis abstinence on cognitive performance over time. Statistical significance was set at p < 0.05. RESULTS There were no baseline cognitive differences between the sexes. After 28 days of cannabis abstinence, females performed better on the Selective Reminding Test (SRT) (p = 0.04), with a large effect size (η² = 0.286). The mean correct response improved over time for females, but there was no statistically significant group x time interaction on the Symbol Digit Modalities Test (SDMT) and the n-back task. Resting state default mode network data showed overall increased activation in females relative to males at day 28, which meshed with lower brain activation during task-based fMRI paradigms. CONCLUSION Cannabis negated sex-based cognitive differences. Functional MRI task-based paradigms revealed less cerebral activation in females compared to males, which was associated with comparable or better cognitive performance in females, particularly after cannabis abstinence.
Collapse
Affiliation(s)
- Cecilia Meza
- Sunnybrook Research Institute, Division of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Cristiana Stefan
- Clinical Laboratory and Diagnostic Services, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - W Richard Staines
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Anthony Feinstein
- Sunnybrook Research Institute, Division of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Reyes-Méndez C, Gómez-Bautista D, Yáñez-Téllez G, Rodríguez-Chávez E, Moreno-Villagómez J. Neuropsychological profile of a patient with multiple sclerosis and psychiatric symptoms that masked and delayed the diagnosis. A case report using teleneuropsychology. Clin Neuropsychol 2024:1-23. [PMID: 38914594 DOI: 10.1080/13854046.2024.2370963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Objective: Multiple sclerosis (MS) may include not only severe neurological signs and symptoms, but also cognitive and psychiatric disturbances. When psychiatric symptoms precede or are comorbid with MS, it poses a clinical challenge, because it may lead to a mistaken diagnosis of MS as a psychiatric disorder, delaying proper treatment. We describe the neuropsychological profile of a female patient with MS whose diagnosis was delayed due to neuropsychiatric symptoms. Method: A comprehensive analysis of the medical history and the results of a teleneuropsychological assessment of a 36-year-old Mexican woman with a diagnosis of relapsing--remitting MS (RRMS) was performed. Results: The patient indicates a long history of psychotic, anxious, and depressive features years before the first neurological symptom that led to MS going unnoticed for several years. Language, attentional, perceptual, motor, and learning skills were found to be preserved. Short-term memory and spatial orientation problems were identified, with decreased processing speed and executive dysfunction, including working memory and planning deficits. Conclusions: The patient has a non-typical presentation of neuropsychological alterations with cognitive and behavioral symptoms that resemble dorsolateral frontal lobe syndrome. This case study highlights the importance of considering MS in differential diagnosis of patients with psychiatric symptoms, even in the absence of obvious neurological signs.
Collapse
Affiliation(s)
- Carolina Reyes-Méndez
- Clinical Neuropsychology Residency Program, Research and Postgraduate Division, Interdisciplinary Investigation Unit in Health and Education Sciences. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Denise Gómez-Bautista
- Clinical Neuropsychology Residency Program, Research and Postgraduate Division, Interdisciplinary Investigation Unit in Health and Education Sciences. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Guillermina Yáñez-Téllez
- Clinical Neuropsychology Residency Program, Research and Postgraduate Division, Interdisciplinary Investigation Unit in Health and Education Sciences. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Emmanuel Rodríguez-Chávez
- Neurology Department, Hospital de Especialidades Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Julieta Moreno-Villagómez
- Clinical Neuropsychology Residency Program, Research and Postgraduate Division, Interdisciplinary Investigation Unit in Health and Education Sciences. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
3
|
Maxwell DL, Orian JM. Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions. J Cent Nerv Syst Dis 2023; 15:11795735231211508. [PMID: 37942276 PMCID: PMC10629308 DOI: 10.1177/11795735231211508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Recent decades have witnessed significant progress in understanding mechanisms driving neurodegeneration and disease progression in multiple sclerosis (MS), but with a focus on the cerebrum. In contrast, there have been limited studies of cerebellar disease, despite the common occurrence of cerebellar symptoms in this disorder. These rare studies, however, highlight the early cerebellar involvement in disease development and an association between the early occurrence of cerebellar lesions and risk of worse prognosis. In parallel developments, it has become evident that far from being a region specialized in movement control, the cerebellum plays a crucial role in cognitive function, via circuitry connecting the cerebellum to association areas of the cerebrum. This complexity, coupled with challenges in imaging of the cerebellum have been major obstacles in the appreciation of the spatio-temporal evolution of cerebellar damage in MS and correlation with disability and progression. MS studies based on animal models have relied on an induced neuroinflammatory disease known as experimental autoimmune encephalomyelitis (EAE), in rodents and non-human primates (NHP). EAE has played a critical role in elucidating mechanisms underpinning tissue damage and been validated for the generation of proof-of-concept for cerebellar pathological processes relevant to MS. Additionally, rodent and NHP studies have formed the cornerstone of current knowledge of functional anatomy and cognitive processes. Here, we propose that improved insight into consequences of cerebellar damage in MS at the functional, cellular and molecular levels would be gained by more extensive characterization of EAE cerebellar pathology combined with the power of experimental paradigms in the field of cognition. Such combinatorial approaches would lead to improved potential for the development of MS sensitive markers and evaluation of candidate therapeutics.
Collapse
Affiliation(s)
- Dain L. Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
4
|
Carter SL, Patel R, Fisk JD, Figley CR, Marrie RA, Mazerolle EL, Uddin MN, Wong K, Graff LA, Bolton JM, Marriott JJ, Bernstein CN, Kornelsen J. Differences in resting state functional connectivity relative to multiple sclerosis and impaired information processing speed. Front Neurol 2023; 14:1250894. [PMID: 37928146 PMCID: PMC10625423 DOI: 10.3389/fneur.2023.1250894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Background Fifty-one percent of individuals with multiple sclerosis (MS) develop cognitive impairment (CI) in information processing speed (IPS). Although IPS scores are associated with health and well-being, neural changes that underlie IPS impairments in MS are not understood. Resting state fMRI can provide insight into brain function changes underlying impairment in persons with MS. Objectives We aimed to assess functional connectivity (FC) differences in (i) persons with MS compared to healthy controls (HC), (ii) persons with both MS and CI (MS-CI) compared to HC, (iii) persons with MS that are cognitively preserved (MS-CP) compared to HC, (iv) MS-CI compared to MS-CP, and (v) in relation to cognition within the MS group. Methods We included 107 participants with MS (age 49.5 ± 12.9, 82% women), and 94 controls (age 37.9 ± 15.4, 66% women). Each participant was administered the Symbol Digit Modalities Test (SDMT) and underwent a resting state fMRI scan. The MS-CI group was created by applying a z-score cut-off of ≤ -1.5 to locally normalized SDMT scores. The MS-CP group was created by applying a z-score of ≥0. Control groups (HCMS-CI and HCMS-CP) were based on the nearest age-matched HC participants. A whole-brain ROI-to-ROI analysis was performed followed by specific contrasts and a regression analysis. Results Individuals with MS showed FC differences compared to HC that involved the cerebellum, visual and language-associated brain regions, and the thalamus, hippocampus, and basal ganglia. The MS-CI showed FC differences compared to HCMS-CI that involved the cerebellum, visual and language-associated areas, thalamus, and caudate. SDMT scores were correlated with FC between the cerebellum and lateral occipital cortex in MS. No differences were observed between the MS-CP and HCMS-CP or MS-CI and MS-CP groups. Conclusion Our findings emphasize FC changes of cerebellar, visual, and language-associated areas in persons with MS. These differences were apparent for (i) all MS participants compared to HC, (ii) MS-CI subgroup and their matched controls, and (iii) the association between FC and SDMT scores within the MS group. Our findings strongly suggest that future work that examines the associations between FC and IPS impairments in MS should focus on the involvement of these regions.
Collapse
Affiliation(s)
- Sean L. Carter
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Ronak Patel
- Department of Clinical Health Psychology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John D. Fisk
- Nova Scotia Health and the Departments of Psychiatry, Psychology & Neuroscience, and Medicine, Dalhousie University, Halifax, NS, Canada
| | - Chase R. Figley
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Departments of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Erin L. Mazerolle
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Md Nasir Uddin
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurology, School of Medicine & Dentistry, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, Hajim School of Engineering & Applied Sciences, University of Rochester, Rochester, NY, United States
| | - Kaihim Wong
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lesley A. Graff
- Department of Clinical Health Psychology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James M. Bolton
- Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James J. Marriott
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jennifer Kornelsen
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Departments of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Alharthi HM, Almurdi MM. Association between cognitive impairment and motor dysfunction among patients with multiple sclerosis: a cross-sectional study. Eur J Med Res 2023; 28:110. [PMID: 36864515 PMCID: PMC9979523 DOI: 10.1186/s40001-023-01079-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Previous studies have shown that there is a relationship between cognitive impairment (CI) and motor dysfunction (MD) in neurological diseases, such as Alzheimer's and Parkinson's disease. However, there whether CI and MD are associated in patients with multiple sclerosis (MS) is unknown. Here we studied the association between CI and MD in patients with MS and examined if muscle weakness or incoordination, balance impairment, gait abnormalities, and/or increased fall risk are indicators of CI in patients with MS. METHODS Seventy patients with MS were included in this cross-sectional study. Cognitive impairment was assessed using the Montreal Cognitive Assessment Scale (MoCA), muscle strength using a hand-held dynamometer, and balance, gait, and fall risk assessment using the Tinetti scale. Motor coordination was assessed using the timed rapid alternating movement test for the upper extremity and the timed alternate heel-to-knee test for the lower extremity. RESULTS There was a significant association between CI and motor coordination, balance, gait, and risk of fall (p < 0.005) but not muscle strength. Stepwise multiple linear regression showed that 22.7% of the variance in the MoCA was predicted by the fall risk and incoordination of the upper extremities in the MS population. CONCLUSIONS CI is significantly associated with motor incoordination, balance impairment, gait abnormality, and increased fall risk. Furthermore, the risk of fall and upper extremity incoordination appeared to be best indicators of CI in patients with MS.
Collapse
Affiliation(s)
- Hanadi Matar Alharthi
- Rehabilitation of Health Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Muneera Mohammed Almurdi
- grid.56302.320000 0004 1773 5396Rehabilitation of Health Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Cerebellar Contributions to Motor and Cognitive Control in Multiple Sclerosis ✰✰✰. Arch Phys Med Rehabil 2022; 103:1592-1599. [PMID: 34998712 DOI: 10.1016/j.apmr.2021.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate relationships between specific cerebellar regions and common clinical measures of motor and cognitive function in persons with multiple sclerosis (PwMS). DESIGN Cross-sectional. SETTING Laboratory. PARTICIPANTS Twenty-nine PwMS and 28 age- and sex-matched controls without multiple sclerosis (MS) (N=57). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Both diffusion and lobule magnetic resonance imaging analyses and common clinical measures of motor and cognitive function were used to examine structure-function relationships in the cerebellum. RESULTS PwMS demonstrate significantly worse motor and cognitive function than controls, including weaker strength, slower walking, and poorer performance on the Symbol Digit Modalities Test, but demonstrate no differences in cerebellar volume. However, PwMS demonstrate significantly worse diffusivity (mean diffusivity: P=.0003; axial diffusivity: P=.0015; radial diffusivity: P=.0005; fractional anisotropy: P=.016) of the superior cerebellar peduncle, the primary output of the cerebellum. Increased volume of the motor lobules (I-V, VIII) was significantly related to better motor (P<.022) and cognitive (P=.046) performance, and increased volume of the cognitive lobules (VI-VII) was also related to better motor (P<.032) and cognitive (P=.008) performance, supporting the role of the cerebellum in both motor and cognitive functioning. CONCLUSIONS These data highlight the contributions of the cerebellum to both motor and cognitive function in PwMS. Using novel neuroimaging techniques to examine structure-function relationships in PwMS improves our understanding of individualized differences in this heterogeneous group and may provide an avenue for targeted, individualized rehabilitation aimed at improving cerebellar dysfunction in MS.
Collapse
|
7
|
Boziki M, Bakirtzis C, Sintila SA, Kesidou E, Gounari E, Ioakimidou A, Tsavdaridou V, Skoura L, Fylaktou A, Nikolaidou V, Stangou M, Nikolaidis I, Giantzi V, Karafoulidou E, Theotokis P, Grigoriadis N. Ocrelizumab in Patients with Active Primary Progressive Multiple Sclerosis: Clinical Outcomes and Immune Markers of Treatment Response. Cells 2022; 11:cells11121959. [PMID: 35741088 PMCID: PMC9222195 DOI: 10.3390/cells11121959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Ocrelizumab is a B-cell-depleting monoclonal antibody approved for the treatment of relapsing-remitting multiple sclerosis (RRMS) and active primary progressive MS (aPPMS). This prospective, uncontrolled, open-label, observational study aimed to assess the efficacy of ocrelizumab in patients with aPPMS and to dissect the clinical, radiological and laboratory attributes of treatment response. In total, 22 patients with aPPMS followed for 24 months were included. The primary efficacy outcome was the proportion of patients with optimal response at 24 months, defined as patients free of relapses, free of confirmed disability accumulation (CDA) and free of T1 Gd-enhancing lesions and new/enlarging T2 lesions on the brain and cervical MRI. In total, 14 (63.6%) patients and 13 patients (59.1%) were classified as responders at 12 and 24 months, respectively. Time exhibited a significant effect on mean absolute and normalized gray matter cerebellar volume (F = 4.342, p = 0.23 and F = 4.279, p = 0.024, respectively). Responders at 24 months exhibited reduced peripheral blood ((%) of CD19+ cells) plasmablasts compared to non-responders at the 6-month point estimate (7.69 ± 4.4 vs. 22.66 ± 7.19, respectively, p = 0.043). Response to ocrelizumab was linked to lower total and gray matter cerebellar volume loss over time. Reduced plasmablast depletion was linked for the first time to sub-optimal response to ocrelizumab in aPPMS.
Collapse
Affiliation(s)
- Marina Boziki
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Styliani-Aggeliki Sintila
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evdoxia Gounari
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Aliki Ioakimidou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Vasiliki Tsavdaridou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Lemonia Skoura
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Vasiliki Nikolaidou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Ioannis Nikolaidis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Virginia Giantzi
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Eleni Karafoulidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Paschalis Theotokis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
- Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
8
|
das Neves SP, Serre-Miranda C, Sousa JC, Costa P, Sousa N, Cerqueira JJ, Marques F. Lipocalin-2 does not influence EAE clinical score but it increases inflammation in central nervous system. J Neuroimmunol 2022; 368:577872. [DOI: 10.1016/j.jneuroim.2022.577872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
9
|
Schoonheim MM, Douw L, Broeders TA, Eijlers AJ, Meijer KA, Geurts JJ. The cerebellum and its network: Disrupted static and dynamic functional connectivity patterns and cognitive impairment in multiple sclerosis. Mult Scler 2021; 27:2031-2039. [PMID: 33683158 PMCID: PMC8564243 DOI: 10.1177/1352458521999274] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: The impact of cerebellar damage and (dys)function on cognition remains
understudied in multiple sclerosis. Objective: To assess the cognitive relevance of cerebellar structural damage and
functional connectivity (FC) in relapsing-remitting multiple sclerosis
(RRMS) and secondary progressive multiple sclerosis (SPMS). Methods: This study included 149 patients with early RRMS, 81 late RRMS, 48 SPMS and
82 controls. Cerebellar cortical imaging included fractional anisotropy,
grey matter volume and resting-state functional magnetic resonance imaging
(MRI). Cerebellar FC was assessed with literature-based resting-state
networks, using static connectivity (that is, conventional correlations),
and dynamic connectivity (that is, fluctuations in FC strength). Measures
were compared between groups and related to disability and cognition. Results: Cognitive impairment (CI) and cerebellar damage were worst in SPMS. Only SPMS
showed cerebellar connectivity changes, compared to early RRMS and controls.
Lower static FC was seen in fronto-parietal and default-mode networks.
Higher dynamic FC was seen in dorsal and ventral attention, default-mode and
deep grey matter networks. Cerebellar atrophy and higher dynamic FC together
explained 32% of disability and 24% of cognitive variance. Higher dynamic FC
was related to working and verbal memory and to information processing
speed. Conclusion: Cerebellar damage and cerebellar connectivity changes were most prominent in
SPMS and related to worse CI.
Collapse
Affiliation(s)
- Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tommy Aa Broeders
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anand Jc Eijlers
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kim A Meijer
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Jg Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Lin MW, Liu W, Yang F. Influence of multiple sclerosis on dynamic gait stability. J Biomech 2020; 106:109827. [PMID: 32517976 DOI: 10.1016/j.jbiomech.2020.109827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/10/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
Falls are a serious health threat for people with multiple sclerosis (MS). Dynamic gait stability has been identified as a key risk factor of falls. The development of effective interventions for preventing falls requires a sound understanding of how MS affects dynamic gait stability. The purpose of the study was to compare dynamic gait stability within the framework of Feasible Stability Region between people with and without MS during level walking at a self-selected speed. Twenty adults with MS and 25 age- and sex-matched healthy individuals were recruited. Dynamic gait stability at touchdown and liftoff on both the strong and weak sides was assessed as the primary outcome measurement. Spatiotemporal gait parameters, including step times, step length, step frequency, and foot landing angle, were determined as explanatory variables. People with MS exhibited lower stability at both gait events bilaterally than their healthy counterparts. The lower stability was mainly attributable to the slower gait speed in MS than in the healthy control. To compensate for the dynamic gait stability deficit resulting from the slow gait speed, individuals with MS adopted a short step length to shift the center of mass motion state closer to the feasible stability region. For people with MS, the stability value was higher on the weak side than on the strong side at touchdown, but not liftoff. The findings from this study could provide insight into the impact of MS on the control of dynamic gait stability.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Department of Kinesiology and Health, Georgia State University, Atlanta, USA
| | - Wei Liu
- Division of Osteopathic Rehabilitation, Edward Via College of Osteopathic Medicine, Auburn, USA
| | - Feng Yang
- Department of Kinesiology and Health, Georgia State University, Atlanta, USA.
| |
Collapse
|
11
|
Darwish H, Farran N, Hannoun S, Tadros N, Yamout B, El Ayoubi NK, Khoury SJ. Serum vitamin D level is associated with speed of processing in multiple sclerosis patients. J Steroid Biochem Mol Biol 2020; 200:105628. [PMID: 32061642 DOI: 10.1016/j.jsbmb.2020.105628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 01/01/2023]
Abstract
Multiple Sclerosis (MS) is often associated with low serum 25(OH)D levels, as well as cognitive dysfunctions. The relationship between 25(OH)D and the most commonly affected cognitive domain in MS; processing speed, is poorly explored. The purpose of this study is to: (1) assess the effect of serum 25(OH)D change on processing speed in MS, and (2) explore the relationship between serum 25(OH)D and brain volume changes in MS. A retrospective chart review was conducted, data from 299 patients were extracted (baseline), of whom 163 had follow-up measurements (after at least a 9-month interval). The Symbol Digits Modalities Test (SDMT) was used as a measure of processing speed. MRI data was available from 78 individuals at baseline, and 70 at follow-up. SDMT scores and brain volumes (Cerebellum (total, grey, and white), intracranial, Grey Matter (GM), and White Matter (WM)) were compared based on 25(OH)D levels and their changes towards follow-up. Results indicated that patients with deficient 25(OH)D levels had lower SDMT scores when compared to those with sufficient levels, and SDMT scores improved as a function of 25(OH)D. For MRI measures, only patients with sufficient 25(OH)D levels during both assessment periods had significant changes in intracranial and total cerebellum volumes. We conclude that 25(OH)D levels seem to have an effect on processing speed in MS, thus the importance of clinical monitoring and supplementation in this regard is reinforced.
Collapse
Affiliation(s)
- Hala Darwish
- Hariri School of Nursing, American University of Beirut, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon; Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon.
| | - Natali Farran
- Hariri School of Nursing, American University of Beirut, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon
| | - Natalie Tadros
- Hariri School of Nursing, American University of Beirut, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon
| | - Bassem Yamout
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon; Neurology Department, Faculty of Medicine, American University of Beirut, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon
| | - Nabil K El Ayoubi
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon; Neurology Department, Faculty of Medicine, American University of Beirut, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon; Neurology Department, Faculty of Medicine, American University of Beirut, PO Box 11 0236, Riad El-Solh 1107 2020 Beirut, Lebanon
| |
Collapse
|
12
|
Pasqua G, Tommasin S, Bharti K, Ruggieri S, Petsas N, Piervincenzi C, Pozzilli C, Pantano P. Resting-state functional connectivity of anterior and posterior cerebellar lobes is altered in multiple sclerosis. Mult Scler 2020; 27:539-548. [PMID: 32463319 DOI: 10.1177/1352458520922770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Damage to the cerebellar sensorimotor and cognitive domains may underlie physical and cognitive disability. OBJECTIVE To investigate resting-state functional connectivity (FC) of sensorimotor and cognitive cerebellum, and clinical correlates in multiple sclerosis (MS). METHODS A total of 119 patients with MS and 42 healthy subjects underwent multimodal 3T-magnetic resonance imaging (MRI). Patients were evaluated using the Expanded Disability Status Scale and Multiple Sclerosis Functional Composite Scale. After parcellation of sensorimotor (lobules I-V + VIII) and cognitive cerebellum (lobules VI, VII, IX, X), we calculated cerebellar resting-state FC using a seed-based approach. RESULTS In patients with MS, the sensorimotor cerebellum showed increased FC mainly with cerebellar, thalamic, and cortical (frontal, parietal, temporal) areas and decreased FC with insular areas; the cognitive cerebellum showed increased FC mainly with thalamic and cortical (temporal-occipital) areas, and decreased FC with frontal-insular areas. Both sensorimotor and cognitive cerebellar FC negatively correlated with disability, and positively with cognitive scores. Cerebellar structural damage only partially influenced results. CONCLUSION The two neocerebellar circuits showed altered FC with subcortical and cortical areas. The association between increased sensorimotor and cognitive cerebellar FC and low levels of physical and cognitive disability suggests that altered FC might modulate the effects of cerebellar structural damage on clinical condition.
Collapse
Affiliation(s)
- Gabriele Pasqua
- Medicine and Health Science Department, University of Molise, Campobasso, Italy/Human Neuroscience Department, Sapienza University of Rome, Rome, Italy
| | - Silvia Tommasin
- Human Neuroscience Department, Sapienza University of Rome, Rome, Italy
| | - Komal Bharti
- Human Neuroscience Department, Sapienza University of Rome, Rome, Italy
| | - Serena Ruggieri
- Human Neuroscience Department, Sapienza University of Rome, Rome, Italy
| | | | | | - Carlo Pozzilli
- Human Neuroscience Department, Sapienza University of Rome, Rome, Italy/Multiple Sclerosis Centre, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy/IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
13
|
Svolgaard O, Andersen KW, Bauer C, Madsen KH, Blinkenberg M, Selleberg F, Siebner HR. Cerebellar and premotor activity during a non-fatiguing grip task reflects motor fatigue in relapsing-remitting multiple sclerosis. PLoS One 2018; 13:e0201162. [PMID: 30356315 PMCID: PMC6200185 DOI: 10.1371/journal.pone.0201162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
Fatigue is a common and highly disabling symptom of multiple sclerosis. Patients experience an effort-independent general subjective feeling of fatigue as well as excessive fatigability when engaging in physical or mental activity. Previous research using functional magnetic resonance imaging (fMRI) has revealed heterogeneous findings, but some evidence implicates the motor system. To identify brain correlates of fatigue, 44 mildly impaired patients with relapsing-remitting multiple sclerosis and 25 age- and gender-matched healthy controls underwent functional magnetic resonance imaging at 3 Tesla, while they performed alternating blocks of rest and a non-fatiguing precision grip task. We investigated neural correlates of fatigue using the motor subscore of Fatigue Scale for Motor and Cognitive Functions (FSMCMOTOR) using the bilateral motor cerebellum, putamen, and dorsal premotor cortex as regions of interest. Patients and healthy controls performed the grip force task equally well without being fatigued. In patients, task-related activity in lobule VI of right motor cerebellum changed in proportion with individual FSMCMOTOR scores. In right dorsal premotor cortex, linear increases in activity across consecutive task blocks scaled with individual FSMCMOTOR scores in healthy controls, but not in patients. In premotor and dorsomedial prefrontal areas, patients were impaired at upscaling task-related activity the more they were affected by motor fatigue. The results support the notion that increased sensorimotor processing in the cerebellum contributes to the experience of motor fatigue and fatigability in multiple sclerosis. Additionally, downscaling of motivational input or sensorimotor processing in prefrontal and premotor areas may constitute an additional pathophysiological factor.
Collapse
Affiliation(s)
- Olivia Svolgaard
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- * E-mail: (OS); (HRS)
| | - Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Christian Bauer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Metropolitan University College, Copenhagen, Denmark
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten Blinkenberg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Finn Selleberg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- * E-mail: (OS); (HRS)
| |
Collapse
|
14
|
Bisecco A, Stamenova S, Caiazzo G, d'Ambrosio A, Sacco R, Docimo R, Esposito S, Cirillo M, Esposito F, Bonavita S, Tedeschi G, Gallo A. Attention and processing speed performance in multiple sclerosis is mostly related to thalamic volume. Brain Imaging Behav 2018; 12:20-28. [PMID: 28083844 DOI: 10.1007/s11682-016-9667-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cognitive impairment (CI), mainly involving attention and processing speed (A-PS), is a common and disabling symptom in multiple sclerosis (MS). Symbol Digit Modalities Test (SDMT) is one of the more sensitive and reliable tests to assess A-PS deficits in MS. Structural MRI correlates of A-PS in MS still need to be clarified. This study aimed to investigate, in a large group of MS patients, the relationship between regional gray matter (GM) atrophy and SDMT performance. 125 relapsing remitting MS patients and 52 healthy controls (HC) underwent a 3 T-MRI protocol including high-resolution 3D-T1 imaging. All subjects underwent a neurological evaluation and SDMT. A Voxel Based Morphometry analysis was performed to assess: 1) correlations between regional GM volume and SDMT performance in MS patients; 2) regional differences in GM volume between MS patients and HC. Thalamic, putamen and cerebellar volumes were also calculated using FIRST tool from the FMRIB Software Library. A linear regression analysis was performed to assess the contribution of each one of these structures to A-PS performance. A significant negative correlation was found between regional GM volume and SDMT score at the level of the thalamus, cerebellum, putamen, and occipital cortex in MS patients. Thalamus, cerebellum and putamen also showed significant GM atrophy in MS patients compared to HC. Thalamic atrophy is also an independent and additional contributor to A-PS deficits in MS patients. These findings support the role of thalamus as the most relevant GM structure subtending A-PS performance in MS, as measured by SDMT.
Collapse
Affiliation(s)
- Alvino Bisecco
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", piazza Miraglia, 2, 80138, Naples, Italy.,MRI Center "SUN-FISM", University of Campania "Luigi Vanvitelli" and Institute of Diagnosis and Care "Hermitage-Capodimonte", Naples, Italy
| | - Svetlana Stamenova
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", piazza Miraglia, 2, 80138, Naples, Italy.,Multiprofile Hospital For Active Treatment in Neurology and Psychiatry "St. Naum", Medical Faculty, Medical University, Sofia, Bulgaria
| | - Giuseppina Caiazzo
- MRI Center "SUN-FISM", University of Campania "Luigi Vanvitelli" and Institute of Diagnosis and Care "Hermitage-Capodimonte", Naples, Italy
| | - Alessandro d'Ambrosio
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", piazza Miraglia, 2, 80138, Naples, Italy
| | - Rosaria Sacco
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", piazza Miraglia, 2, 80138, Naples, Italy.,MRI Center "SUN-FISM", University of Campania "Luigi Vanvitelli" and Institute of Diagnosis and Care "Hermitage-Capodimonte", Naples, Italy
| | - Renato Docimo
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", piazza Miraglia, 2, 80138, Naples, Italy
| | - Sabrina Esposito
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", piazza Miraglia, 2, 80138, Naples, Italy
| | - Mario Cirillo
- MRI Center "SUN-FISM", University of Campania "Luigi Vanvitelli" and Institute of Diagnosis and Care "Hermitage-Capodimonte", Naples, Italy.,Neuroradiology Service, Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- MRI Center "SUN-FISM", University of Campania "Luigi Vanvitelli" and Institute of Diagnosis and Care "Hermitage-Capodimonte", Naples, Italy.,Department of Medicine and Surgery, University of Salerno, Salerno, Baronissi, Italy
| | - Simona Bonavita
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", piazza Miraglia, 2, 80138, Naples, Italy.,MRI Center "SUN-FISM", University of Campania "Luigi Vanvitelli" and Institute of Diagnosis and Care "Hermitage-Capodimonte", Naples, Italy
| | - Gioacchino Tedeschi
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", piazza Miraglia, 2, 80138, Naples, Italy.,MRI Center "SUN-FISM", University of Campania "Luigi Vanvitelli" and Institute of Diagnosis and Care "Hermitage-Capodimonte", Naples, Italy
| | - Antonio Gallo
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", piazza Miraglia, 2, 80138, Naples, Italy. .,MRI Center "SUN-FISM", University of Campania "Luigi Vanvitelli" and Institute of Diagnosis and Care "Hermitage-Capodimonte", Naples, Italy.
| |
Collapse
|
15
|
Diffusion tensor imaging findings in the multiple sclerosis patients and their relationships to various aspects of disability. J Neurol Sci 2018; 391:127-133. [DOI: 10.1016/j.jns.2018.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 11/19/2022]
|
16
|
Affiliation(s)
- Vincent M Vacca
- Vincent M. Vacca, Jr., is a clinical nurse educator in the Neuroscience Intensive Care Unit at Brigham & Women's Hospital, Boston, Mass
| |
Collapse
|
17
|
Doussau F, Dupont JL, Neel D, Schneider A, Poulain B, Bossu JL. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opin Drug Discov 2017; 12:1011-1022. [PMID: 28712329 DOI: 10.1080/17460441.2017.1356285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Demyelinating disorders, characterized by a chronic or episodic destruction of the myelin sheath, are a leading cause of neurological disability in young adults in western countries. Studying the complex mechanisms involved in axon myelination, demyelination and remyelination requires an experimental model preserving the neuronal networks and neuro-glial interactions. Organotypic cerebellar slice cultures appear to be the best alternative to in vivo experiments and the most commonly used model for investigating etiology or novel therapeutic strategies in multiple sclerosis. Areas covered: This review gives an overview of slice culture techniques and focuses on the use of organotypic cerebellar slice cultures on semi-permeable membranes for studying many aspects of axon myelination and cerebellar functions. Expert opinion: Cerebellar slice cultures are probably the easiest way to faithfully reproduce all stages of axon myelination/demyelination/remyelination in a three-dimensional neuronal network. However, in the cerebellum, neurological disability in multiple sclerosis also results from channelopathies which induce changes in Purkinje cell excitability. Cerebellar cultures offer easy access to electrophysiological approaches which are largely untapped and we believe that these cultures might be of great interest when studying changes in neuronal excitability, axonal conduction or synaptic properties that likely occur during multiple sclerosis.
Collapse
Affiliation(s)
- Frédéric Doussau
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean-Luc Dupont
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Dorine Neel
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Aline Schneider
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Bernard Poulain
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean Louis Bossu
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
18
|
Sbardella E, Upadhyay N, Tona F, Prosperini L, De Giglio L, Petsas N, Pozzilli C, Pantano P. Dentate nucleus connectivity in adult patients with multiple sclerosis: functional changes at rest and correlation with clinical features. Mult Scler 2016; 23:546-555. [PMID: 27411700 DOI: 10.1177/1352458516657438] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE The dentate nucleus, which is the largest of the cerebellar nuclei, plays a critical role in movement and cognition. The aim of our study was to assess any changes in dentate functional connectivity (FC) in adult relapsing remitting multiple sclerosis (RR-MS) patients and to investigate possible clinical correlates. MATERIALS AND METHODS In all, 54 patients and 24 healthy subjects (HS) underwent multimodal magnetic resonance imaging (MRI), including diffusion tensor imaging (DTI), three-dimensional-T1-weighted and resting state (RS) functional images; they also underwent a cognitive evaluation, that is, attention and information processing speed, by means of the Paced Auditory Serial Addition Test (PASAT). Patients were also scored according to Expanded Disability Status Scale (EDSS). RS-MRI data were analysed using FMRIB Software Library (FSL) tools, with the seed-based method to identify dentate FC. RESULTS When compared with HS, patients exhibited brain atrophy and widespread DTI abnormalities, as well as greater FC between the dentate nucleus and cortical areas, particularly in the frontal and parietal lobes. Within these areas, FC in patients correlated inversely with clinical impairment. Finally, FC correlated inversely with lesion load and microstructural brain damage. CONCLUSION Our findings indicate that dentate FC at rest is altered in MS patients. Whether these functional changes are induced by the disease and play a compensatory role remains to be established.
Collapse
Affiliation(s)
- Emilia Sbardella
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Neeraj Upadhyay
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Francesca Tona
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Luca Prosperini
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Laura De Giglio
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Nikolaos Petsas
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Carlo Pozzilli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy/IRCSS Neuromed, Pozzilli (Isernia), Italy
| |
Collapse
|