1
|
Chekwube AE, George B, Abrahamse H. Phototoxic effectiveness of zinc phthalocyanine tetrasulfonic acid on MCF-7 cells with overexpressed P-glycoprotein. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111811. [PMID: 32028187 DOI: 10.1016/j.jphotobiol.2020.111811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 01/12/2023]
Abstract
The development of multidrug resistance is often associated with the over-expression of P-glycoprotein (P-gp). This protein prevents drug accumulation and extrudes them out of the cell before they reach the intended target. The aim of this study was to develop an in vitro MCF-7 cell line with increased expression of P-gp and test the phototoxicity of a novel photoactivated zinc phthalocyanine tetrasulfonic acid (ZnPcS4) on these cells. The over-expressed P-gp MCF-7 cells (MCF-7/DOX) were developed from wildtype (WT) MCF-7 cells by a stepwise continuous exposure of the WT cells to different concentrations of Doxorubicin (DOX) (0.1 - 1 μM) over a period of 4 months. The P-gp expression was measured using flow cytometry, immunofluorescence and enzyme immunoassay. To verify whether zinc phthalocyanine-mediated photodynamic therapy (ZnPcS4 - PDT) is effective in MCF-7/DOX, we studied the subcellular localization, phototoxicity and nuclear damage. The flow cytometry result showed two distinct peaks of P-gp positive and negative expression in MCF-7/DOX cell population, which correlates with the ELISA-based assay (p˂0.001). The ME16C (Normal breast cells) was used as control. The localization studies showed that ZnPcS4 have greater affinity for lysosome than mitochondria. Phototoxicity results indicated that photoactivated zinc phthalocyanine decreased the cell proliferation and viability as the drug and laser light dosages increased to 16 μM and 20 J/cm2 respectively. PDT-induced cytotoxicity using lactose dehydrogenase (LDH) enzyme leakage as measure did not increase likewise. The ZnPcS4-induced PDT was less effective for MCF-7/DOX cells which could be attributed to decreased retention of ZnPcS4 in major cellular organelles due to the presence of increased drug efflux P-gp. The current findings suggest that, increased P-gp expression, a characteristic of multidrug resistance together with other related intrinsic mechanisms might contribute to render MCF-7/DOX cells less sensitive to ZnPcS4-induced phototoxicity.
Collapse
Affiliation(s)
- Aniogo Eric Chekwube
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
2
|
Almabadi HM, Nagesh PKB, Sahay P, Bhandari S, Eckstein EC, Jaggi M, Chauhan SC, Yallapu MM, Pradhan P. Optical study of chemotherapy efficiency in cancer treatment via intracellular structural disorder analysis using partial wave spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201800056. [PMID: 29869394 DOI: 10.1002/jbio.201800056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
As cancer progresses, macromolecules, such as DNA, RNA or lipids, inside cells undergo spatial structural rearrangements and alterations. Mesoscopic light transport-based optical partial wave spectroscopy (PWS) was recently introduced to quantify changes in the nanoscale structural disorder in biological cells. The PWS measurement is performed using a parameter termed as "disorder strength" (L d ), which represents the degree of nanoscale structural disorder inside the cells. It was shown that cancerous cells have higher disorder strength than normal cells. In this work, we first used the PWS to analyze the hierarchy of different types of prostate cancer cells, namely, C4-2, DU-145 and PC-3, by quantifying their average disorder strengths. Results expectedly showed that L d values increases in accordance with the increasing aggressiveness/tumorigenicity levels of these cells. Using the L d parameter, we then analyzed the chemoresistance properties of these prostate cancer cells to docetaxel drug compared to their chemosensitivity. Results show that chemoresistant cancer cells have increased L d values, that is, higher disorder strength, relative to chemosensitive cancer cells. Thus, use of the L d metric can be effective in determining the efficacy of particular chemotherapy.
Collapse
Affiliation(s)
- Huda M Almabadi
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, Tennessee
- Biomedical Engineering, University of Memphis, Memphis, Tennessee
| | - Prashanth K B Nagesh
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Peeyush Sahay
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, Tennessee
| | - Shiva Bhandari
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, Tennessee
| | | | - Meena Jaggi
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Prabhakar Pradhan
- Department of Physics and Materials Science, BioNanoPhotonics Laboratory, University of Memphis, Memphis, Tennessee
| |
Collapse
|