1
|
Schalamun M, Molin EM, Schmoll M. RGS4 impacts carbohydrate and siderophore metabolism in Trichoderma reesei. BMC Genomics 2023; 24:372. [PMID: 37400774 PMCID: PMC10316542 DOI: 10.1186/s12864-023-09467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Adaptation to complex, rapidly changing environments is crucial for evolutionary success of fungi. The heterotrimeric G-protein pathway belongs to the most important signaling cascades applied for this task. In Trichoderma reesei, enzyme production, growth and secondary metabolism are among the physiological traits influenced by the G-protein pathway in a light dependent manner. RESULTS Here, we investigated the function of the SNX/H-type regulator of G-protein signaling (RGS) protein RGS4 of T. reesei. We show that RGS4 is involved in regulation of cellulase production, growth, asexual development and oxidative stress response in darkness as well as in osmotic stress response in the presence of sodium chloride, particularly in light. Transcriptome analysis revealed regulation of several ribosomal genes, six genes mutated in RutC30 as well as several genes encoding transcription factors and transporters. Importantly, RGS4 positively regulates the siderophore cluster responsible for fusarinine C biosynthesis in light. The respective deletion mutant shows altered growth on nutrient sources related to siderophore production such as ornithine or proline in a BIOLOG phenotype microarray assay. Additionally, growth on storage carbohydrates as well as several intermediates of the D-galactose and D-arabinose catabolic pathway is decreased, predominantly in light. CONCLUSIONS We conclude that RGS4 mainly operates in light and targets plant cell wall degradation, siderophore production and storage compound metabolism in T. reesei.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Eva Maria Molin
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
- Division of Terrestrial Ecosystem Research, Centre of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
| |
Collapse
|
2
|
Camponeschi I, Montanari A, Mazzoni C, Bianchi MM. Light Stress in Yeasts: Signaling and Responses in Creatures of the Night. Int J Mol Sci 2023; 24:ijms24086929. [PMID: 37108091 PMCID: PMC10139380 DOI: 10.3390/ijms24086929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Living organisms on the surface biosphere are periodically yet consistently exposed to light. The adaptive or protective evolution caused by this source of energy has led to the biological systems present in a large variety of organisms, including fungi. Among fungi, yeasts have developed essential protective responses against the deleterious effects of light. Stress generated by light exposure is propagated through the synthesis of hydrogen peroxide and mediated by regulatory factors that are also involved in the response to other stressors. These have included Msn2/4, Crz1, Yap1, and Mga2, thus suggesting that light stress is a common factor in the yeast environmental response.
Collapse
Affiliation(s)
- Ilaria Camponeschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina Mazzoni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Michele Maria Bianchi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Liang M, Dong L, Deng YZ. Circadian Redox Rhythm in Plant-Fungal Pathogen Interactions. Antioxid Redox Signal 2022; 37:726-738. [PMID: 35044223 DOI: 10.1089/ars.2021.0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: Circadian-controlled cellular growth, differentiation, and metabolism are mainly achieved by a classical transcriptional-translational feedback loop (TTFL), as revealed by investigations in animals, plants, and fungi. Recent Advances: Recently, reactive oxygen species (ROS) have been reported as part of a cellular network synchronizing nontranscriptional oscillators with established TTFL components, adding complexity to regulatory mechanisms of circadian rhythm. Both circadian rhythm and ROS homeostasis have a great impact on plant immunity as well as fungal pathogenicity, therefore interconnections of these two factors are implicit in plant-fungus interactions. Critical Issues: In this review, we aim to summarize the recent advances in circadian-controlled ROS homeostasis, or ROS-modulated circadian clock, in plant-fungus pathosystems, particularly using the rice (Oryza sativa) blast fungus (Magnaporthe oryzae) pathosystem as an example. Understanding of such bidirectional interaction between the circadian timekeeping machinery and ROS homeostasis/signaling would provide a theoretical basis for developing disease control strategies for important plants/crops. Future Directions: Questions remain unanswered about the detailed mechanisms underlying circadian regulation of redox homeostasis in M. oryzae, and the consequent fungal differentiation and death in a time-of-day manner. We believe that the rice-M. oryzae pathobiosystem would provide an excellent platform for investigating such issues in circadian-ROS interconnections in a plant-fungus interaction context. Antioxid. Redox Signal. 37, 726-738.
Collapse
Affiliation(s)
- Meiling Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lihong Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Etier A, Dumetz F, Chéreau S, Ponts N. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins (Basel) 2022; 14:toxins14050317. [PMID: 35622565 PMCID: PMC9145779 DOI: 10.3390/toxins14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.
Collapse
|
5
|
Brenna A, Ripperger JA, Saro G, Glauser DA, Yang Z, Albrecht U. PER2 mediates CREB-dependent light induction of the clock gene Per1. Sci Rep 2021; 11:21766. [PMID: 34741086 PMCID: PMC8571357 DOI: 10.1038/s41598-021-01178-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
Light affects many physiological processes in mammals such as entrainment of the circadian clock, regulation of mood, and relaxation of blood vessels. At the molecular level, a stimulus such as light initiates a cascade of kinases that phosphorylate CREB at various sites, including serine 133 (S133). This modification leads CREB to recruit the co-factor CRCT1 and the histone acetyltransferase CBP to stimulate the transcription of genes containing a CRE element in their promoters, such as Period 1 (Per1). However, the details of this pathway are poorly understood. Here we provide evidence that PER2 acts as a co-factor of CREB to facilitate the formation of a transactivation complex on the CRE element of the Per1 gene regulatory region in response to light or forskolin. Using in vitro and in vivo approaches, we show that PER2 modulates the interaction between CREB and its co-regulator CRTC1 to support complex formation only after a light or forskolin stimulus. Furthermore, the absence of PER2 abolished the interaction between the histone acetyltransferase CBP and CREB. This process was accompanied by a reduction of histone H3 acetylation and decreased recruitment of RNA Pol II to the Per1 gene. Collectively, our data show that PER2 supports the stimulus-dependent induction of the Per1 gene via modulation of the CREB/CRTC1/CBP complex.
Collapse
Affiliation(s)
- Andrea Brenna
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gabriella Saro
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Dominique A Glauser
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Zhihong Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
6
|
Approaches to Identify Protein Ubiquitination Sites in Plants. Methods Mol Biol 2019. [PMID: 31317404 DOI: 10.1007/978-1-4939-9612-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Identification of protein ubiquitination sites is very important for the functional analysis of a targeted protein. Sample preparation before LC-MS/MS assay is essential for this experimental process. Here, we describe two efficient methods for preparing samples for identifying ubiquitination sites in plant proteins by LC-MS/MS.
Collapse
|
7
|
Zhu Q, Ramakrishnan M, Park J, Belden WJ. Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci. BMC Genomics 2019; 20:350. [PMID: 31068130 PMCID: PMC6505117 DOI: 10.1186/s12864-019-5729-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Background Histone H3 lysine 4 tri-methylation (H3K4me3) and histone H3 lysine 9 tri-methylation (H3K9me3) are widely perceived to be opposing and often mutually exclusive chromatin modifications. However, both are needed for certain light-activated genes in Neurospora crassa (Neurospora), including frequency (frq) and vivid (vvd). Except for these 2 loci, little is known about how H3K4me3 and H3K9me3 impact and contribute to light-regulated gene expression. Results In this report, we performed a multi-dimensional genomic analysis to understand the role of H3K4me3 and H3K9me3 using the Neurospora light response as the system. RNA-seq on strains lacking H3 lysine 4 methyltransferase (KMT2/SET-1) and histone H3 lysine 9 methyltransferase (KMT1/DIM-5) revealed some light-activated genes had altered expression, but the light response was largely intact. Comparing these 2 mutants to wild-type (WT), we found that roughly equal numbers of genes showed elevated and reduced expression in the dark and the light making the environmental stimulus somewhat ancillary to the genome-wide effects. ChIP-seq experiments revealed H3K4me3 and H3K9me3 had only minor changes in response to light in WT, but there were notable alterations in H3K4me3 in Δkmt1/Δdim-5 and H3K9me3 in Δkmt2/Δset-1 indicating crosstalk and redistribution between the modifications. Integrated analysis of the RNA-seq and ChIP-seq highlighted context-dependent roles for KMT2/SET1 and KMT1/DIM-5 as either co-activators or co-repressors with some overlap as co-regulators. At a small subset of loci, H3K4 methylation is required for H3K9me3-mediated facultative heterochromatin including, the central clock gene frequency (frq). Finally, we used sequential ChIP (re-ChIP) experiment to confirm Neurospora contains K4/K9 bivalent domains. Conclusions Collectively, these data indicate there are obfuscated regulatory roles for H3K4 methylation and H3K9 methylation depending on genome location with some minor overlap and co-dependency. Electronic supplementary material The online version of this article (10.1186/s12864-019-5729-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiaoqiao Zhu
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Mukund Ramakrishnan
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Current Address: Department of Biological Sciences, IISER Berhampur, Berhampur, Ganjam, Odisha, 760010, India
| | - Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William J Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
8
|
Schmoll M. Regulation of plant cell wall degradation by light in Trichoderma. Fungal Biol Biotechnol 2018; 5:10. [PMID: 29713489 PMCID: PMC5913809 DOI: 10.1186/s40694-018-0052-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Trichoderma reesei (syn. Hypocrea jecorina) is the model organism for industrial production of plant cell wall degradating enzymes. The integration of light and nutrient signals for adaptation of enzyme production in T. reesei emerged as an important regulatory mechanism to be tackled for strain improvement. Gene regulation specific for cellulase inducing conditions is different in light and darkness with substantial regulation by photoreceptors. Genes regulated by light are clustered in the genome, with several of the clusters overlapping with CAZyme clusters. Major cellulase transcription factor genes and at least 75% of glycoside hydrolase encoding genes show the potential of light dependent regulation. Accordingly, light dependent protein complex formation occurs within the promoters of cellulases and their regulators. Additionally growth on diverse carbon sources is different between light and darkness and dependent on the presence of photoreceptors in several cases. Thereby, also light intensity plays a regulatory role, with cellulase levels dropping at higher light intensities dependent in the strain background. The heterotrimeric G-protein pathway is the most important nutrient signaling pathway in the connection with light response and triggers posttranscriptional regulation of cellulase expression. All G-protein alpha subunits impact cellulase regulation in a light dependent manner. The downstream cAMP pathway is involved in light dependent regulation as well. Connections between the regulatory pathways are mainly established via the photoreceptor ENV1. The effect of photoreceptors on plant cell wall degradation also occurs in the model filamentous fungus Neurospora crassa. In the currently proposed model, T. reesei senses the presence of plant biomass in its environment by detection of building blocks of cellulose and hemicellulose. Interpretation of the respective signals is subsequently adjusted to the requirements in light and darkness (or on the surface versus within the substrate) by an interconnection of nutrient signaling with light response. This review provides an overview on the importance of light, photoreceptors and related signaling pathways for formation of plant cell wall degrading enzymes in T. reesei. Additionally, the relevance of light dependent gene regulation for industrial fermentations with Trichoderma as well as strategies for exploitation of the observed effects are discussed.
Collapse
Affiliation(s)
- Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| |
Collapse
|
9
|
Light-Irradiation Wavelength and Intensity Changes Influence Aflatoxin Synthesis in Fungi. Toxins (Basel) 2018; 10:toxins10010031. [PMID: 29304012 PMCID: PMC5793118 DOI: 10.3390/toxins10010031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 01/10/2023] Open
Abstract
Fungi respond to light irradiation by forming conidia and occasionally synthesizing mycotoxins. Several light wavelengths, such as blue and red, affect the latter. However, the relationship between light irradiation and mycotoxin synthesis varies depending on the fungal species or strain. This study focused on aflatoxin (AF), which is a mycotoxin, and the types of light irradiation that increase AF synthesis. Light-irradiation tests using the visible region indicated that blue wavelengths in the lower 500 nm region promoted AF synthesis. In contrast, red wavelengths of 660 nm resulted in limited significant changes compared with dark conditions. Irradiation tests with different intensity levels indicated that a low light intensity increased AF synthesis. For one fungal strain, light irradiation decreased the AF synthesis under all wavelength conditions. However, the decrease was mitigated by 525 nm low intensity irradiation. Thus, blue-green low intensity irradiation may increase AF synthesis in fungi.
Collapse
|
10
|
Larrondo LF, Canessa P. The Clock Keeps on Ticking: Emerging Roles for Circadian Regulation in the Control of Fungal Physiology and Pathogenesis. Curr Top Microbiol Immunol 2018; 422:121-156. [PMID: 30255278 DOI: 10.1007/82_2018_143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tic-tac, tic-tac, the sound of time is familiar to us, yet, it also silently shapes daily biological processes conferring 24-hour rhythms in, among others, cellular and systemic signaling, gene expression, and metabolism. Indeed, circadian clocks are molecular machines that permit temporal control of a variety of processes in individuals, with a close to 24-hour period, optimizing cellular dynamics in synchrony with daily environmental cycles. For over three decades, the molecular bases of these clocks have been extensively described in the filamentous fungus Neurospora crassa, yet, there have been few molecular studies in fungi other than Neurospora, despite evidence of rhythmic phenomena in many fungal species, including pathogenic ones. This chapter will revise the mechanisms underlying clock regulation in the model fungus N. crassa, as well as recent findings obtained in several fungi. In particular, this chapter will review the effect of circadian regulation of virulence and organismal interactions, focusing on the phytopathogen Botrytis cinerea, as well as several entomopathogenic fungi, including the behavior-manipulating species Ophiocordyceps kimflemingiae and Entomophthora muscae. Finally, this review will comment current efforts in the study of mammalian pathogenic fungi, while highlighting recent circadian lessons from parasites such as Trypanosoma and Plasmodium. The clock keeps on ticking, whether we can hear it or not.
Collapse
Affiliation(s)
- Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile. .,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Paulo Canessa
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Facultad de Ciencias de la Vida, Centro de Biotecnologia Vegetal, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
11
|
Wang L, Huang X, Chai Y, Zou L, Chedrawe M, Ding Y. Octreotide inhibits the proliferation of gastric cancer cells through P300-HAT activity and the interaction of ZAC and P300. Oncol Rep 2017; 37:2041-2048. [PMID: 28260048 DOI: 10.3892/or.2017.5451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/28/2016] [Indexed: 11/06/2022] Open
Abstract
Somatostatin (SST) exhibits a wide range of physiological functions, including the regulation of tumor cell growth. Octreotide (OCT) is a synthetic analogue of SST that can be used to slow gastrointestinal bleeding, inhibit the release of growth hormone and impede gastrointestinal tumor growth. The aim of the present study was to investigate the molecular mechanism of OCT underlying the inhibition of gastric cancer cell proliferation. Proteins of interest were detected using western blotting, and the zinc finger protein (ZAC)-P300 complex was quantified using co-immunoprecipitation. P300-histone acetyltransferase (P300-HAT) activity was determined spectrophotometrically. The results showed that OCT decreased the phosphorylation of Akt which caused the level of ZAC to increase. In turn, the interaction between ZAC and P300 increased the activity of P300-HAT; ultimately, the phosphorylation of serine 10 in histone H3 (pS10-H3) was decreased and the acetylation of lysine 14 in histone H3 (acK14-H3) was increased. These results suggest that OCT attenuates SGC-7901 cell proliferation by enhancing P300-HAT activity through the interaction of ZAC and P300, causing a reduction in pS10-H3 and an increase in acK14-H3. These findings provide insight for future research on OCT and further demonstrate the potential of OCT to be used as a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Liping Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xin Huang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yurong Chai
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liyang Zou
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Matthew Chedrawe
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yi Ding
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
12
|
Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:152. [PMID: 28616076 PMCID: PMC5468973 DOI: 10.1186/s13068-017-0841-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/05/2023]
Abstract
Fungi play a major role in the global carbon cycle because of their ability to utilize plant biomass (polysaccharides, proteins, and lignin) as carbon source. Due to the complexity and heterogenic composition of plant biomass, fungi need to produce a broad range of degrading enzymes, matching the composition of (part of) the prevalent substrate. This process is dependent on a network of regulators that not only control the extracellular enzymes that degrade the biomass, but also the metabolic pathways needed to metabolize the resulting monomers. This review will summarize the current knowledge on regulation of plant biomass utilization in fungi and compare the differences between fungal species, focusing in particular on the presence or absence of the regulators involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, 1060 Vienna, Austria
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
13
|
Yu F, Wu Y, Xie Q. Ubiquitin-Proteasome System in ABA Signaling: From Perception to Action. MOLECULAR PLANT 2016; 9:21-33. [PMID: 26455462 DOI: 10.1016/j.molp.2015.09.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 05/18/2023]
Abstract
Protein post-translational modification (PTM) by ubiquitination has been observed during many aspects of plant growth, development, and stress responses. The ubiquitin-proteasome system precisely regulates phytohormone signaling by affecting protein activity, localization, assembly, and interaction ability. Abscisic acid (ABA) is a major phytohormone, and plays important roles in plants under normal or stressed growth conditions. The ABA signaling pathway is composed of phosphatases, kinases, transcription factors, and membrane ion channels. It has been reported that multiple ABA signaling transducers are subjected to the regulations by ubiquitination. In particular, recent studies have identified different types of E3 ligases that mediate ubiquitination of ABA receptors in different cell compartments. This review focuses on modulation of these components by monoubiquitination or polyubiquitination that occurs in the plasma membrane, endomembranes, and from the cytosol to the nucleus; this implies the existence of retrograde and trafficking processes that are regulated by ubiquitination in ABA signaling. A number of single-unit E3 ligases, components of multi-subunit E3 ligases, E2s, and specific subunits of the 26S proteasome involved in ABA signal regulation are discussed. Dissecting the precise functions of ubiquitination in the ABA pathway may help us understand key factors in the signaling of other phytohormones regulated by ubiquitination and other types of PTMs.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
14
|
Montenegro-Montero A, Canessa P, Larrondo LF. Around the Fungal Clock. ADVANCES IN GENETICS 2015; 92:107-84. [DOI: 10.1016/bs.adgen.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|