1
|
Mishra S, Sannigrahi A, Ruidas S, Chatterjee S, Roy K, Misra D, Maity BK, Paul R, Ghosh CK, Saha KD, Bhaumik A, Chattopadhyay K. Conformational Switch of a Peptide Provides a Novel Strategy to Design Peptide Loaded Porous Organic Polymer for Pyroptosis Pathway Mediated Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402953. [PMID: 38923392 DOI: 10.1002/smll.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/24/2024] [Indexed: 06/28/2024]
Abstract
While peptide-based drug development is extensively explored, this strategy has limitations due to rapid excretion from the body (or shorter half-life in the body) and vulnerability to protease-mediated degradation. To overcome these limitations, a novel strategy for the development of a peptide-based anticancer agent is introduced, utilizing the conformation switch property of a chameleon sequence stretch (PEP1) derived from a mycobacterium secretory protein, MPT63. The selected peptide is then loaded into a new porous organic polymer (PG-DFC-POP) synthesized using phloroglucinol and a cresol derivative via a condensation reaction to deliver the peptide selectively to cancer cells. Utilizing ensemble and single-molecule approaches, this peptide undergoes a transition from a disordered to an alpha-helical conformation, triggered by the acidic environment within cancer cells that is demonstrated. This adopted alpha-helical conformation resulted in the formation of proteolysis-resistant oligomers, which showed efficient membrane pore-forming activity selectively for negatively charged phospholipids accumulated in cancer cell membranes. The experimental results demonstrated that the peptide-loaded PG-DFC-POP-PEP1 exhibited significant cytotoxicity in cancer cells, leading to cell death through the Pyroptosis pathway, which is established by monitoring numerous associated events starting from lysosome membrane damage to GSDMD-induced cell membrane demolition. This novel conformational switch-based drug design strategy is believed to have great potential in endogenous environment-responsive cancer therapy and the development of future drug candidates to mitigate cancers.
Collapse
Affiliation(s)
- Snehasis Mishra
- Department of Cell, Developmental, & Integrative Biology, University of Alabama, Birmingham, AL, 35233, USA
| | - Achinta Sannigrahi
- Molecular genetics department, University of Texas Southwestern Medical center, Dallas, TX, 75390, USA
| | - Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sujan Chatterjee
- NIPM and SoLs, University of Nevada Las Vegas, Nevada, NV, 89154, USA
| | - Kamalesh Roy
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Deblina Misra
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Barun Kumar Maity
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rabindranath Paul
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| |
Collapse
|
2
|
Sun D, Zhang Y, Wang D, Zhao X, Han R, Li N, Li X, Li T, Wang P, Jia Q, Tan J, Zheng W, Song L, Meng Z. Experimental study on changes in metabolic mechanism of papillary thyroid carcinoma complicated with Hashimoto's thyroiditis. Heliyon 2023; 9:e20661. [PMID: 37860538 PMCID: PMC10582305 DOI: 10.1016/j.heliyon.2023.e20661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Background Whether the mechanism of thyroid papillary carcinoma (PTC) is the same in patients with a Hashimoto's thyroiditis (HT) background as compared with patients with a normal background remains a highly debated and controversial issue. In this study, we aimed to analyze the differences and similarities of the metabolic mechanism of PTC in normal and HT background, and to explore the relationship between HT and PTC. Methods The ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF/MS) technology was used to analyze 61 PTC patient tissues (31 HT background and 30 normal tissue (NC) background). Potential biomarkers were screened from principal component analysis (PCA) to orthogonal partial least square (OPLS) discriminant analysis. HMDB was searched to identify potential differential metabolites and final metabolic pathway analysis was performed by MetaboAnalyst 5.0. We analyzed the differential metabolites diagnostic accuracy through receiver operating characteristic (ROC) curves analysis. Results Seven different metabolites were screened from HT group and NC group, including arginine, glutamic acid, cysteine, citric acid, malic acid, uracil and taurine. Logistic regression model combined with ROC analysis of these 7 biomarkers had good discriminability for PTC (area under operating characteristic curve of HT group and NC group were 0.867 and 0.973, respectively). The HT group had specific metabolic pathways, including aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism. Conclusions The metabolic profiles of the NC and HT groups had important similarities and differences in PTC. The correlation of PTC with HT may be related to aminoacyl-tRNA biosynthesis, serine and threonine metabolism.
Collapse
Affiliation(s)
- Danyang Sun
- Department of Nuclear Medicine, Tianjin Medical University General Hospital Airport Site, Tianjin, China
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pathology, Tianjin First Central Hospital, Tianjin, China
| | - Dan Wang
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Zhao
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Han
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Tingwei Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Wang
- Tianjin Shangmei Cosmetics Co., Ltd, Tianjin, China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Zheng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lili Song
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Uppuladinne MVN, Achalere A, Sonavane U, Joshi R. Probing the structure of human tRNA 3Lys in the presence of ligands using docking, MD simulations and MSM analysis. RSC Adv 2023; 13:25778-25796. [PMID: 37655355 PMCID: PMC10467029 DOI: 10.1039/d3ra03694d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
The tRNA3Lys, which acts as a primer for human immunodeficiency virus type 1 (HIV-1) reverse transcription, undergoes structural changes required for the formation of a primer-template complex. Small molecules have been targeted against tRNA3Lys to inhibit the primer-template complex formation. The present study aims to understand the kinetics of the conformational landscape spanned by tRNA3Lys in apo form using molecular dynamics simulations and Markov state modeling. The study is taken further to investigate the effect of small molecules like 1,4T and 1,5T on structural conformations and kinetics of tRNA3Lys, and comparative analysis is presented. Markov state modeling of tRNA3Lys apo resulted in three metastable states where the conformations have shown the non-canonical structures of the anticodon loop. Based on analyses of ligand-tRNA3Lys interactions, crucial ion and water mediated H-bonds and free energy calculations, it was observed that the 1,4-triazole more strongly binds to the tRNA3Lys compared to 1,5-triazole. However, the MSM analysis suggest that the 1,5-triazole binding to tRNA3Lys has brought rigidity not only in the binding pocket (TΨC arm, D-TΨC loop) but also in the whole structure of tRNA3Lys. This may affect the easy opening of primer tRNA3Lys required for HIV-1 reverse transcription.
Collapse
Affiliation(s)
- Mallikarjunachari V N Uppuladinne
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Archana Achalere
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Uddhavesh Sonavane
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Rajendra Joshi
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| |
Collapse
|
4
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
5
|
Vishvakarma VK, Pal S, Singh P, Bahadur I. Interactions between main protease of SARS-CoV-2 and testosterone or progesterone using computational approach. J Mol Struct 2021; 1251:131965. [PMID: 34840349 PMCID: PMC8604630 DOI: 10.1016/j.molstruc.2021.131965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 is drastically spread across the globe in a short period of time and affects the lives of billions. There is a need to find the promising drugs like candidates against the inhibition of novel corona virus or SARS-CoV-2. Herein, the interaction on sex hormones (testosterone and progesterone) with Mpro of SARS-CoV-2 was investigated with the help of molecular docking. The binding energy for the formation complex between the progesterone and testosterone with main protease of SARS-CoV-2 are -86.05 and -91.84 kcal/mol, respectively. From this, it can be understood that testosterone showed better binding affinity with Mpro of nCoV and thus, more inhibition of the main protease. Then, the binding was further studied using molecular dynamics simulations at different temperatures (300, 310 and 325) K. It has been observed that the formations of complex between the Mpro of nCoV with testosterone/ progesterone is better at 300 K than 310 and 325 K. Further, it is found that the more effective binding of testosterone with Mpro of nCoV is observed than the progesterone based on the RMSD, RMSF and H-bond trajectories. Results indicate the promising nature of testosterone towards the inhibition of Mpro of nCoV.
Collapse
Affiliation(s)
- Vijay Kumar Vishvakarma
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Shweta Pal
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Indra Bahadur
- Chemistry Department, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
6
|
Levintov L, Vashisth H. Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides. Biophys J 2021; 120:5060-5073. [PMID: 34710377 PMCID: PMC8633718 DOI: 10.1016/j.bpj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions between RNA molecules and proteins are critical to many cellular processes and are implicated in various diseases. The RNA-peptide complexes are good model systems to probe the recognition mechanism of RNA by proteins. In this work, we report studies on the binding-unbinding process of a helical peptide from a viral RNA element using nonequilibrium molecular dynamics simulations. We explored the existence of various dissociation pathways with distinct free-energy profiles that reveal metastable states and distinct barriers to peptide dissociation. We also report the free-energy differences for each of the four pathways to be 96.47 ± 12.63, 96.1 ± 10.95, 91.83 ± 9.81, and 92 ± 11.32 kcal/mol. Based on the free-energy analysis, we further propose the preferred pathway and the mechanism of peptide dissociation. The preferred pathway is characterized by the formation of sequential hydrogen-bonding and salt-bridging interactions between several key arginine amino acids and the viral RNA nucleotides. Specifically, we identified one arginine amino acid (R8) of the peptide to play a significant role in the recognition mechanism of the peptide by the viral RNA molecule.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire.
| |
Collapse
|
7
|
Datt M. Interplay of substrate polymorphism and conformational plasticity of Plasmodium tyrosyl-tRNA synthetase. Comput Biol Chem 2021; 95:107582. [PMID: 34571426 DOI: 10.1016/j.compbiolchem.2021.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetases are an indispensable component of ribosomal protein translational machinery and Plasmodium Tyrosyl-tRNA synthetase (PfTyrRS) is a validated drug target. This manuscript illustrates the dynamic conformational landscape of PfTyrRS in the context of substrate binding. Molecular dynamics simulations of PfTyrRS in the presence and absence of ligand show conformational heterogeneity for both the protein and the bound ligand. Diverse conformations for the evolutionarily conserved ATP binding motif (KMSKS) have been observed in both apo- and holo PfTyrRS. Further, the presented attributes of the tyrosyl-adenylate conformational sub-states in situ along with their implications on the strength of intermolecular interactions would be a pertinent benchmark for molecular design studies. In addition, an analysis of the ligand hydration pattern foregrounds the structurally conserved water-mediated inter-molecular interactions. The quantitative assessment of the conformational landscape, based on the fluctuations of the distance between the ligand binding pockets, of apo-PfTyrRS and holo-PfTyrRS highlights the nature of diversity in conformational sampling for the two cases. Evidently, the holo-PfTyrRS adopts a rather compact conformation compared to the apo-PfTyrRS. An intriguing asymmetry in the dynamics of the two monomers is contextualized with the functional asymmetry of the symmetrically dimeric PfTyrRS. Importantly, the network of non-bonded contacts in the apo- and holo- simulated ensembles has been analyzed. The graph-theoretic analysis-based novel insights concerning the nature of information flow as a function of ligation state would prove valuable in understanding PfTyrRS functions. The results presented here contend that understanding allostery in PfTyrRS is essential to astutely design structure-based inhibitors.
Collapse
Affiliation(s)
- Manish Datt
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat - 380009, India.
| |
Collapse
|
8
|
Abstract
In this chapter we consider the catalytic approaches used by aminoacyl-tRNA synthetase (AARS) enzymes to synthesize aminoacyl-tRNA from cognate amino acid and tRNA. This ligase reaction proceeds through an activated aminoacyl-adenylate (aa-AMP). Common themes among AARSs include use of induced fit to drive catalysis and transition state stabilization by class-conserved sequence and structure motifs. Active site metal ions contribute to the amino acid activation step, while amino acid transfer to tRNA is generally a substrate-assisted concerted mechanism. A distinction between classes is the rate-limiting step for aminoacylation. We present some examples for each aspect of aminoacylation catalysis, including the experimental approaches developed to address questions of AARS chemistry.
Collapse
|
9
|
TMEM158 May Serve as a Diagnostic Biomarker for Anaplastic Thyroid Carcinoma: An Integrated Bioinformatic Analysis. Curr Med Sci 2021; 40:1137-1147. [PMID: 33428142 DOI: 10.1007/s11596-020-2296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare but extremely lethal malignancy. However, little is known about the pathogenesis of ATC. Given its high mortality, it is critical to improve our understanding of ATC pathogenesis and to find new diagnostic biomarkers. In the present study, two gene microarray profiles (GSE53072 and GSE65144), which included 17 ATC and 17 adjacent non-tumorous tissues, were obtained. Bioinformatic analyses were then performed. Immunohistochemistry (IHC) and receiver operating characteristic (ROC) curves were then used to detect transmembrane protein 158 (TMEM158) expression and to assess diagnostic sensitivity. A total of 372 differentially expressed genes (DEGs) were identified. Through protein-protein interaction (PPI) analysis, we identified a significant module with 37 upregulated genes. Most of the genes in this module were related to cell-cycle processes. After co-expression analysis, 132 hub genes were selected for further study. Nine genes were identified as both DEGs and genes of interest in the weighted gene co-expression network analysis (WGCNA). IHC and ROC curves confirmed that TMEM158 was overexpressed in ATC tissue as compared with other types of thyroid cancer and normal tissue samples. We identified 8 KEGG pathways that were associated with high expression of TMEM158, including aminoacyl-tRNA biosynthesis and DNA replication. Our results suggest that TMEM158 may be a potential oncogene and serve as a diagnostic indicator for ATC.
Collapse
|
10
|
Farshadfar C, Mollica A, Rafii F, Noorbakhsh A, Nikzad M, Seyedi SH, Abdi F, Verki SA, Mirzaie S. Novel potential inhibitor discovery against tyrosyl-tRNA synthetase from Staphylococcus aureus by virtual screening, molecular dynamics, MMPBSA and QMMM simulations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1726911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chiako Farshadfar
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research Jefferson, Jefferson, AR, USA
| | - Akbar Noorbakhsh
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Mozhgan Nikzad
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Seyed Hamid Seyedi
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Fatemeh Abdi
- Department of Medicine and Paramedical, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | | | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
11
|
Srivastava A, Yesudhas D, Ramakrishnan C, Ahmad S, Gromiha MM. Role of disordered regions in transferring tyrosine to its cognate tRNA. Int J Biol Macromol 2020; 150:705-713. [PMID: 32057853 DOI: 10.1016/j.ijbiomac.2020.02.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
Aminoacyl tRNA synthetase (AARS) plays an important role in transferring each amino acid to its cognate tRNA. Specifically, tyrosyl tRNA synthetase (TyrRS) is involved in various functions including protection from DNA damage due to oxidative stress, protein synthesis and cell signaling and can be an attractive target for controlling the pathogens by early inhibition of translation. TyrRS has two disordered regions, which lack a stable 3D structure in solution, and are involved in tRNA synthetase catalysis and stability. One of the disordered regions undergoes disorder-to-order transition (DOT) upon complex formation with tRNA whereas the other remains disordered (DR). In this work, we have explored the importance of these disordered regions using molecular dynamics simulations of both free and RNA-complexed states. We observed that the DOT and DR regions of the first subunit acts as a flap and interact with the acceptor arm of the tRNA. The DOT-DR flap closes when tyrosine (TyrRSTyr) is present at the active site of the complex and opens in the presence of tyrosine monophosphate (TyrRSYMP). The DOT and DR regions of the second subunit interact with the anticodon stem as well as D-loop of the tRNA, which might be involved in stabilizing the complex. The anticodon loop of the tRNA binds to the structured region present in the C-terminal of the protein, which is observed to be flexible during simulations. Detailed energy calculations also show that TyrRSTyr complex has stronger binding energy between tRNA and protein compared to TyrRSYMP; on the contrary, the anticodon is strongly bound in TyrRSYMP. The results obtained in the present study provide additional insights for understanding catalysis and the involvement of disordered regions in Tyr transfer to cognate tRNA.
Collapse
Affiliation(s)
- Ambuj Srivastava
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Dhanusha Yesudhas
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
12
|
Ramakrishnan C, Nagarajan R, Sekijima M, Michael Gromiha M. Molecular dynamics simulations of cognate and non-cognate AspRS-tRNA Asp complexes. J Biomol Struct Dyn 2020; 39:493-501. [PMID: 31900102 DOI: 10.1080/07391102.2019.1711188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aspartyl tRNA synthetase (AspRS), one of the 20 aminoacyl-tRNA synthetases, plays an important role in protein synthesis by catalyzing the aminoacylation reaction and synthesises Aspartyl-tRNA (tRNAAsp). A typical three-dimensional structure of AspRS comprises three distinct domains for the recognition of cognate tRNA and catalysis, namely, anti-codon binding domain/N-terminal domain, hinge domain and catalytic domain through their interactions with anti-codon loop, D-stem and acceptor arm of cognate tRNA, respectively. In this work, we have studied the structural characteristics of each domain of AspRS to understand the recognition mechanism of tRNAAsp using molecular dynamics simulations. The dynamics of AspRS-tRNAAsp complexes from E.coli (cognate and non-cognate), S.cerevisiae (cognate) and T.thermophilus (non-cognate) were compared to understand the differences in recognition of cognate and non-cognate tRNAs. Our results explain that the conformational changes associated with the recognition of tRNA occur only in the cognate complexes. Among the cognate complexes, the conformational changes in yeast AspRS are highly controlled during tRNAAsp recognition than that of in the E. coli AspRS. Moreover, the functional motions required for the tRNA recognition are observed only in the cognate complexes, and the conformational changes in AspRS and their recognition of tRNAAsp are organism specific.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- C Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - R Nagarajan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M Sekijima
- Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, Yokohama, Japan
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,Advanced Computational Drug Discovery Unit, Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
13
|
Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis. BMC Genomics 2018; 19:685. [PMID: 30227847 PMCID: PMC6145125 DOI: 10.1186/s12864-018-5056-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background In the present study, we sequenced the complete genomes of three novel bacteriophages v_B-Bak1, v_B-Bak6, v_B-Bak10 previously isolated from historical anthrax burial sites in the South Caucasus country of Georgia. We report here major trends in the molecular evolution of these phages, which we designate as “Basilisk-Like-Phages” (BLPs), and illustrate patterns in their evolution, genomic plasticity and core genome architecture. Results Comparative whole genome sequence analysis revealed a close evolutionary relationship between our phages and two unclassified Bacillus cereus group phages, phage Basilisk, a broad host range phage (Grose JH et al., J Vir. 2014;88(20):11846-11860) and phage PBC4, a highly host-restricted phage and close relative of Basilisk (Na H. et al. FEMS Microbiol. letters. 2016;363(12)). Genome comparisons of phages v_B-Bak1, v_B-Bak6, and v_B-Bak10 revealed significant similarity in sequence, gene content, and synteny with both Basilisk and PBC4. Transmission electron microscopy (TEM) confirmed the three phages belong to the Siphoviridae family. In contrast to the broad host range of phage Basilisk and the single-strain specificity of PBC4, our three phages displayed host specificity for Bacillus anthracis. Bacillus species including Bacillus cereus, Bacillus subtilis, Bacillus anthracoides, and Bacillus megaterium were refractory to infection. Conclusions Data reported here provide further insight into the shared genomic architecture, host range specificity, and molecular evolution of these rare B. cereus group phages. To date, the three phages represent the only known close relatives of the Basilisk and PBC4 phages and their shared genetic attributes and unique host specificity for B. anthracis provides additional insight into candidate host range determinants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5056-4) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Wang W, Qin B, Wojdyla JA, Wang M, Gao X, Cui S. Structural characterization of free-state and product-state Mycobacterium tuberculosis methionyl-tRNA synthetase reveals an induced-fit ligand-recognition mechanism. IUCRJ 2018; 5:478-490. [PMID: 30002848 PMCID: PMC6038951 DOI: 10.1107/s2052252518008217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Mycobacterium tuberculosis (MTB) caused 10.4 million cases of tuberculosis and 1.7 million deaths in 2016. The incidence of multidrug-resistant and extensively drug-resistant MTB is becoming an increasing threat to public health and the development of novel anti-MTB drugs is urgently needed. Methionyl-tRNA synthetase (MetRS) is considered to be a valuable drug target. However, structural characterization of M. tuberculosis MetRS (MtMetRS) was lacking for decades, thus hampering drug design. Here, two high-resolution crystal structures of MtMetRS are reported: the free-state structure (apo form; 1.9 Å resolution) and a structure with the intermediate product methionyl-adenylate (Met-AMP) bound (2.4 Å resolution). It was found that free-state MtMetRS adopts a previously unseen conformation that has never been observed in other MetRS homologues. The pockets for methionine and AMP are not formed in free-state MtMetRS, suggesting that it is in a nonproductive conformation. Combining these findings suggests that MtMetRS employs an induced-fit mechanism in ligand binding. By comparison with the structure of human cytosolic MetRS, additional pockets specific to MtMetRS that could be used for anti-MTB drug design were located.
Collapse
Affiliation(s)
- Wei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Science, No. 9 Dong Dan San Tiao, Dong Cheng Qu, Beijing 100730, People’s Republic of China
| | - Bo Qin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Science, No. 9 Dong Dan San Tiao, Dong Cheng Qu, Beijing 100730, People’s Republic of China
| | | | - Meitian Wang
- Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen, Switzerland
| | - Xiaopan Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Science, No. 9 Dong Dan San Tiao, Dong Cheng Qu, Beijing 100730, People’s Republic of China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Science, No. 9 Dong Dan San Tiao, Dong Cheng Qu, Beijing 100730, People’s Republic of China
| |
Collapse
|
15
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
16
|
Branciamore S, Gogoshin G, Di Giulio M, Rodin AS. Intrinsic Properties of tRNA Molecules as Deciphered via Bayesian Network and Distribution Divergence Analysis. Life (Basel) 2018; 8:life8010005. [PMID: 29419741 PMCID: PMC5871937 DOI: 10.3390/life8010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/27/2022] Open
Abstract
The identity/recognition of tRNAs, in the context of aminoacyl tRNA synthetases (and other molecules), is a complex phenomenon that has major implications ranging from the origins and evolution of translation machinery and genetic code to the evolution and speciation of tRNAs themselves to human mitochondrial diseases to artificial genetic code engineering. Deciphering it via laboratory experiments, however, is difficult and necessarily time- and resource-consuming. In this study, we propose a mathematically rigorous two-pronged in silico approach to identifying and classifying tRNA positions important for tRNA identity/recognition, rooted in machine learning and information-theoretic methodology. We apply Bayesian Network modeling to elucidate the structure of intra-tRNA-molecule relationships, and distribution divergence analysis to identify meaningful inter-molecule differences between various tRNA subclasses. We illustrate the complementary application of these two approaches using tRNA examples across the three domains of life, and identify and discuss important (informative) positions therein. In summary, we deliver to the tRNA research community a novel, comprehensive methodology for identifying the specific elements of interest in various tRNA molecules, which can be followed up by the corresponding experimental work and/or high-resolution position-specific statistical analyses.
Collapse
Affiliation(s)
- Sergio Branciamore
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, 91010 CA, USA.
| | - Grigoriy Gogoshin
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, 91010 CA, USA.
| | - Massimo Di Giulio
- Early Evolution of Life Laboratory, Institute of Biosciences and Bioresources, CNR, 80131 Naples, Italy.
| | - Andrei S Rodin
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, 91010 CA, USA.
| |
Collapse
|
17
|
Devine PWA, Fisher HC, Calabrese AN, Whelan F, Higazi DR, Potts JR, Lowe DC, Radford SE, Ashcroft AE. Investigating the Structural Compaction of Biomolecules Upon Transition to the Gas-Phase Using ESI-TWIMS-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1855-1862. [PMID: 28484973 PMCID: PMC5556138 DOI: 10.1007/s13361-017-1689-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 05/11/2023]
Abstract
Collision cross-section (CCS) measurements obtained from ion mobility spectrometry-mass spectrometry (IMS-MS) analyses often provide useful information concerning a protein's size and shape and can be complemented by modeling procedures. However, there have been some concerns about the extent to which certain proteins maintain a native-like conformation during the gas-phase analysis, especially proteins with dynamic or extended regions. Here we have measured the CCSs of a range of biomolecules including non-globular proteins and RNAs of different sequence, size, and stability. Using traveling wave IMS-MS, we show that for the proteins studied, the measured CCS deviates significantly from predicted CCS values based upon currently available structures. The results presented indicate that these proteins collapse to different extents varying on their elongated structures upon transition into the gas-phase. Comparing two RNAs of similar mass but different solution structures, we show that these biomolecules may also be susceptible to gas-phase compaction. Together, the results suggest that caution is needed when predicting structural models based on CCS data for RNAs as well as proteins with non-globular folds. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Paul W A Devine
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Henry C Fisher
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fiona Whelan
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Daniel R Higazi
- Ipsen Ltd. UK, Wrexham Industrial Estate, 9 Ash Road North, Wrexham, LL13 9UF, UK
| | | | - David C Lowe
- MedImmune, Sir Aaron Klug Building, Granta Science Park, Cambridge, CB21 6GH, UK
| | - Sheena E Radford
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison E Ashcroft
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
18
|
Mutations in RARS cause a hypomyelination disorder akin to Pelizaeus-Merzbacher disease. Eur J Hum Genet 2017; 25:1134-1141. [PMID: 28905880 DOI: 10.1038/ejhg.2017.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/18/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a rare Mendelian disorder characterised by central nervous system hypomyelination. PMD typically manifests in infancy or early childhood and is caused by mutations in proteolipid protein-1 (PLP1). However, variants in several other genes including gap junction protein gamma 2 (GJC2) can also cause a similar phenotype and are referred to PMD-like disease (PMLD). Whole-exome sequencing in two siblings presenting with clinical symptoms of PMD revealed a homozygous variant in the arginyl-tRNA synthetase (RARS) gene: NM_002887.3: c.[5A>G] p.(Asp2Gly). Subsequent screening of a PMD cohort without a genetic diagnosis identified an unrelated individual with novel compound heterozygous variants including a missense variant c.[1367C>T] p.(Ser456Leu) and a de novo deletion c.[1846_1847delTA] p.(Tyr616Leufs*6). Protein levels of RARS and the multi-tRNA synthetase complex into which it assembles were found to be significantly reduced by 80 and 90% by western blotting and Blue native-PAGE respectively using patient fibroblast extracts. As RARS is involved in protein synthesis whereby it attaches arginine to its cognate tRNA, patient cells were studied to determine their ability to proliferate with limiting amounts of this essential amino acid. Patient fibroblasts cultured in medium with limited arginine at 30 °C and 40 °C, showed a significant decrease in fibroblast proliferation (P<0.001) compared to control cells, suggestive of inefficiency of protein synthesis in the patient cells. Our functional studies provide further evidence that RARS is a PMD-causing gene.
Collapse
|
19
|
Nafisinia M, Riley LG, Gold WA, Bhattacharya K, Broderick CR, Thorburn DR, Simons C, Christodoulou J. Compound heterozygous mutations in glycyl-tRNA synthetase (GARS) cause mitochondrial respiratory chain dysfunction. PLoS One 2017; 12:e0178125. [PMID: 28594869 PMCID: PMC5464557 DOI: 10.1371/journal.pone.0178125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/07/2017] [Indexed: 01/13/2023] Open
Abstract
Glycyl-tRNA synthetase (GARS; OMIM 600287) is one of thirty-seven tRNA-synthetase genes that catalyses the synthesis of glycyl-tRNA, which is required to insert glycine into proteins within the cytosol and mitochondria. To date, eighteen mutations in GARS have been reported in patients with autosomal-dominant Charcot-Marie-Tooth disease type 2D (CMT2D; OMIM 601472), and/or distal spinal muscular atrophy type V (dSMA-V; OMIM 600794). In this study, we report a patient with clinical and biochemical features suggestive of a mitochondrial respiratory chain (MRC) disorder including mild left ventricular posterior wall hypertrophy, exercise intolerance, and lactic acidosis. Using whole exome sequencing we identified compound heterozygous novel variants, c.803C>T; p.(Thr268Ile) and c.1234C>T; p.(Arg412Cys), in GARS in the proband. Spectrophotometric evaluation of the MRC complexes showed reduced activity of Complex I, III and IV in patient skeletal muscle and reduced Complex I and IV activity in the patient liver, with Complex IV being the most severely affected in both tissues. Immunoblot analysis of GARS protein and subunits of the MRC enzyme complexes in patient fibroblast extracts showed significant reduction in GARS protein levels and Complex IV. Together these studies provide evidence that the identified compound heterozygous GARS variants may be the cause of the mitochondrial dysfunction in our patient.
Collapse
Affiliation(s)
- Michael Nafisinia
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Lisa G. Riley
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Wendy A. Gold
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Kaustuv Bhattacharya
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Carolyn R. Broderick
- Children’s Hospital Institute of Sports Medicine, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- School of Medical Sciences, UNSW, Sydney, New South Wales, Australia
| | - David R. Thorburn
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children’s Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Genetic Metabolic Disorders Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children’s Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
20
|
Dutta S, Kundu S, Saha A, Nandi N. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases. J Biomol Struct Dyn 2017; 36:878-892. [PMID: 28317434 DOI: 10.1080/07391102.2017.1301272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (mkSerRS) and histidyl tRNA synthetases from Thermus thermophilus (ttHisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.
Collapse
Affiliation(s)
- Saheb Dutta
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| | - Soumya Kundu
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| | - Amrita Saha
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| | - Nilashis Nandi
- a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| |
Collapse
|
21
|
Sun RN, Gong H. Simulating the Activation of Voltage Sensing Domain for a Voltage-Gated Sodium Channel Using Polarizable Force Field. J Phys Chem Lett 2017; 8:901-908. [PMID: 28171721 DOI: 10.1021/acs.jpclett.7b00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Voltage-gated sodium (NaV) channels play vital roles in the signal transduction of excitable cells. Upon activation of a NaV channel, the change of transmembrane voltage triggers conformational change of the voltage sensing domain, which then elicits opening of the pore domain and thus allows an influx of Na+ ions. Description of this process with atomistic details is in urgent demand. In this work, we simulated the partial activation process of the voltage sensing domain of a prokaryotic NaV channel using a polarizable force field. We not only observed the conformational change of the voltage sensing domain from resting to preactive state, but also rigorously estimated the free energy profile along the identified reaction pathway. Comparison with the control simulation using an additive force field indicates that voltage-gating thermodynamics of NaV channels may be inaccurately described without considering the electrostatic polarization effect.
Collapse
Affiliation(s)
- Rui-Ning Sun
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University , Beijing 100084, China
| |
Collapse
|
22
|
Abrahão JS, Araújo R, Colson P, La Scola B. The analysis of translation-related gene set boosts debates around origin and evolution of mimiviruses. PLoS Genet 2017; 13:e1006532. [PMID: 28207761 PMCID: PMC5313130 DOI: 10.1371/journal.pgen.1006532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The giant mimiviruses challenged the well-established concept of viruses, blurring the roots of the tree of life, mainly due to their genetic content. Along with other nucleo-cytoplasmic large DNA viruses, they compose a new proposed order-named Megavirales-whose origin and evolution generate heated debate in the scientific community. The presence of an arsenal of genes not widespread in the virosphere related to important steps of the translational process, including transfer RNAs, aminoacyl-tRNA synthetases, and translation factors for peptide synthesis, constitutes an important element of this debate. In this review, we highlight the main findings to date about the translational machinery of the mimiviruses and compare their distribution along the distinct members of the family Mimiviridae. Furthermore, we discuss how the presence and/or absence of the translation-related genes among mimiviruses raises important insights to boost the debate on their origin and evolutionary history.
Collapse
Affiliation(s)
- Jônatas Santos Abrahão
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, Marseille, France.,Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Araújo
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, Marseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, Marseille, France
| |
Collapse
|
23
|
Carter CW. Coding of Class I and II Aminoacyl-tRNA Synthetases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:103-148. [PMID: 28828732 PMCID: PMC5927602 DOI: 10.1007/5584_2017_93] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels-protozymes and Urzymes-associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric-middle base-pairing frequencies in sense/antisense alignments-that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically-active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260, USA.
| |
Collapse
|
24
|
Kravchuk VO, Savytskyi OV, Odynets KO, Mykuliak VV, Kornelyuk AI. Computational modeling and molecular dynamics simulations of mammalian cytoplasmic tyrosyl-tRNA synthetase and its complexes with substrates. J Biomol Struct Dyn 2016; 35:2772-2788. [PMID: 27615678 DOI: 10.1080/07391102.2016.1235512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytoplasmic tyrosyl-tRNA synthetase (TyrRS) is one of the key enzymes of protein biosynthesis. TyrRSs of pathogenic organisms have gained attention as potential targets for drug development. Identifying structural differences between various TyrRSs will facilitate the development of specific inhibitors for the TyrRSs of pathogenic organisms. However, there is a deficiency in structural data for mammalian cytoplasmic TyrRS in complexes with substrates. In this work, we constructed spatial structure of full-length Bos taurus TyrRS (BtTyrRS) and its complexes with substrates using the set of computational modeling techniques. Special attention was paid to BtTyrRS complexes with substrates [L-tyrosine, K+ and ATP:Mg2+] and intermediate products [tyrosyl-adenylate (Tyr-AMP), K+ and PPi:Mg2+] with the different catalytic loop conformations. In order to analyze their dynamical properties, we performed 100 ns of molecular dynamics (MD) simulations. MD simulations revealed new structural data concerning the tyrosine activation reaction in mammalian TyrRS. Formation of strong interaction between Lys154 and γ-phosphate suggests the additional role of CP1 insertion as an important factor for ATP binding. The presence of a potassium-binding pocket within the active site of mammalian TyrRS compensates the absence of the second lysine in the KMSKS motif. Our data provide new details concerning a role of K+ ions at different stages of the first step of the tyrosylation reaction, including the coordination of substrates and involvement in the PPi releasing. The results of this work suggest that differences between ATP-binding sites of mammalian and bacterial TyrRSs are meaningful and could be exploited in the drug design.
Collapse
Affiliation(s)
- Vladyslav O Kravchuk
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine.,b Department of Biotechnology , National Aviation University , 1, Kosmonavta Komarova Str., Kyiv , 03058 , Ukraine
| | - Oleksandr V Savytskyi
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine
| | - Konstantin O Odynets
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine
| | - Vasyl V Mykuliak
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine.,c Institute of High Technologies , Taras Shevchenko National University of Kyiv , 64, Volodymyrs'ka Str., Kyiv , 01601 , Ukraine
| | - Alexander I Kornelyuk
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine.,c Institute of High Technologies , Taras Shevchenko National University of Kyiv , 64, Volodymyrs'ka Str., Kyiv , 01601 , Ukraine
| |
Collapse
|
25
|
Li M, Wen F, Zhao S, Wang P, Li S, Zhang Y, Zheng N, Wang J. Exploring the Molecular Basis for Binding of Inhibitors by Threonyl-tRNA Synthetase from Brucella abortus: A Virtual Screening Study. Int J Mol Sci 2016; 17:E1078. [PMID: 27447614 PMCID: PMC4964454 DOI: 10.3390/ijms17071078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/19/2016] [Accepted: 06/29/2016] [Indexed: 01/18/2023] Open
Abstract
Targeting threonyl-tRNA synthetase (ThrRS) of Brucella abortus is a promising approach to developing small-molecule drugs against bovine brucellosis. Using the BLASTp algorithm, we identified ThrRS from Escherichia coli (EThrRS, PDB ID 1QF6), which is 51% identical to ThrRS from Brucella abortus (BaThrRS) at the amino acid sequence level. EThrRS was used as the template to construct a BaThrRS homology model which was optimized using molecular dynamics simulations. To determine the residues important for substrate ATP binding, we identified the ATP-binding regions of BaThrRS, docked ATP to the protein, and identified the residues whose side chains surrounded bound ATP. We then used the binding site of ATP to virtually screen for BaThrRS inhibitors and got seven leads. We further characterized the BaThrRS-binding site of the compound with the highest predicted inhibitory activity. Our results should facilitate future experimental effects to find novel drugs for use against bovine brucellosis.
Collapse
Affiliation(s)
- Ming Li
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Fang Wen
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Shengguo Zhao
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Pengpeng Wang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Songli Li
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Yangdong Zhang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
| | - Nan Zheng
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaqi Wang
- Ministry of Agriculture Laboratory of Quality & Safety Risk Assessment for Dairy Products (Beijing), Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Ministry of Agriculture-Milk and Dairy Product Inspection Center (Beijing), Beijing 100193, China.
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Storkebaum E. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation. Bioessays 2016; 38:818-29. [PMID: 27352040 PMCID: PMC5094542 DOI: 10.1002/bies.201600052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot‐Marie‐Tooth (CMT) peripheral neuropathy, characterized by length‐dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic‐gain‐of‐function mechanism underlies CMT‐aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT‐aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT‐mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases.
Collapse
Affiliation(s)
- Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
27
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|