1
|
Jeyapriya MS, Kumar SM, Nirmal MR. Lysosome-Associated Membrane Protein-3 (LAMP3) Expression in Oral Squamous Cell Carcinoma and Its Relationship With Clinicopathological Parameters: A Cross-Sectional Study. Cureus 2024; 16:e69790. [PMID: 39429383 PMCID: PMC11491047 DOI: 10.7759/cureus.69790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) accounts for the majority of oral cancers globally. It is characterized by metastasis, poor prognosis, high recurrence rate, and poor five-year survival rate due to late detection or diagnosis at an advanced stage. Novel biomarkers that can predict the prognosis of patients with OSCC are needed to improve survival. Lysosome-associated membrane protein-3 (LAMP3) glycoprotein, a member of the LAMP protein family, is a molecular marker for mature dendritic cells. LAMP3 expression has been correlated with unfavorable prognosis in patients with various cancers. Few studies have examined the relationship between LAMP3 and clinicopathological parameters in OSCC. This study aims to analyze the immunohistochemical expression of LAMP3 in OSCC and its relationship with clinicopathological characteristics. Methodology In this study, 75 formalin-fixed, paraffin-embedded samples of cases diagnosed with primary OSCC were obtained and immunostained with LAMP3 antibody. Its expression was compared with clinicopathological parameters such as age, sex, tobacco and alcohol consumption habits, differentiation, TNM staging, tumor location, lymph node metastasis, lymphovascular invasion, perineural invasion, and pattern of invasion. Results Higher LAMP3 expression was highly significantly associated with the TNM stage (p = 0.001). High expression of LAMP3 was significantly associated with T stage (p = 0.002) and lymph node metastasis (p = 0.002). All poorly differentiated OSCC cases (n = 2, 100%) showed a high expression of LAMP3. Conclusions High LAMP3 expression and its significant association with TNM stage, T stage, and lymph node metastasis suggest a potential role for LAMP3 in OSCC carcinogenesis. High LAMP3 expression in poorly differentiated OSCC might indicate that it plays a pivotal role in oncogenic cell transformation. Our results indicate that LAMP3 may be a predictive marker for poor prognosis in OSCC.
Collapse
Affiliation(s)
- Marytresa S Jeyapriya
- Oral Pathology and Microbiology, Karpaga Vinayaga Institute of Dental Sciences, Chengalpet, IND
| | - Sathish M Kumar
- Oral Pathology and Microbiology, Karpaga Vinayaga Institute of Dental Sciences, Chengalpet, IND
| | - Madhavan R Nirmal
- Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Chidambaram, IND
| |
Collapse
|
2
|
Wei H, Li X, Liu F, Li Y, Luo B, Huang X, Chen H, Wen B, Ma P. Curcumin inhibits the development of colorectal cancer via regulating the USP4/LAMP3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1749-1762. [PMID: 37728623 DOI: 10.1007/s00210-023-02721-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
In this study, we aimed to explore the effects of curcumin on the progression of colorectal cancer and its underlying mechanisms involved. Cell proliferation, apoptosis and invasion were determined through CCK-8 assay, colony formation assay, EdU assay, flow cytometry, and transwell invasion assay, respectively. The protein expression of Bax, MMP2, USP4 and LAMP3 was measured using western blot. Pearson correlation coefficient was used to evaluate the relationship between USP4 and LAMP3. Co-IP was also conducted to determine the interaction between USP4 and LAMP3. Xenograft tumor model was established to explore the role of curcumin in colorectal cancer in vivo. IHC was utilized to measure the expression of Bax, MMP2, USP4 and LAMP3 in tumor tissues from mice. Curcumin significantly accelerated cell apoptosis, and inhibited cell proliferation and invasion in LoVo and HCT-116 cells. LAMP3 was augmented in colorectal cancer tissues and cells, and curcumin could reduce the expression of LAMP3. Curcumin decreased LAMP3 expression to exhibit the inhibition role in the progression of colorectal cancer. USP4 interacted with LAMP3, and positively regulated LAMP3 expression in colorectal cancer cells. LAMP3 overexpression could reverse the suppressive effects of USP4 knockdown on the development of colorectal cancer. Curcumin downregulated USP4 to impeded the progression of colorectal cancer via repressing LAMP3 expression. In addition, curcumin obviously restrained tumor growth in mice through downregulating USP4 and LAMP3 expression. These data indicated that curcumin exert the anti-tumor effects on the development of colorectal cancer through modulating the USP4/LAMP3 pathway.
Collapse
Affiliation(s)
- Hai Wei
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Xianzhe Li
- Department of General Surgery, Nanshi Hospital, Nanyang, 473065, China
| | - Fu Liu
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Yuan Li
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Bin Luo
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Xin Huang
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Hang Chen
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Bo Wen
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Pei Ma
- Department of Gastrointestinal Surgery, Nanyang First People's Hospital, Nanyang, 473000, China.
| |
Collapse
|
3
|
Fu B, Zhou M, Geng X, Jiang Y, Zeng H, Zhou X, Yu Z, Pan J, Zhu Y, Zheng H, Huang S, Gong Y, Huang D, Zhong Y. LAMP3 is a potent uterine corpus endometrial carcinoma prognostic biomarker associated with immune behavior. Aging (Albany NY) 2024; 16:714-745. [PMID: 38217544 PMCID: PMC10817406 DOI: 10.18632/aging.205414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/21/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecological malignancies and its incidence and mortality continue apace. Lysosome-associated membrane protein 3 (LAMP3) is the third member of the LAMP family and its overexpression has been described to be involved in the progression of breast, ovarian and cervical cancers, but there has been an absence of research focusing on its role in UCEC. METHODS WGCNA, TIMER, LinkedOmics, GSEA, Cytoscape, Kaplan-Meier plotter, GDC, GeneMANIA, cBioPortal, PDB, RNAinter, miRNet were applied in this research. RESULTS Our study uncovers that LAMP3 possesses higher expression levels in UCEC compared to normal tissues, and this differential expression profile is tightly aligned with clinical and pathological features, and patients demonstrating high LAMP3 expression tend to have a shorter survival expectancy. The high expression of LAMP3 is modulated by the designated ceRNA network. LAMP3 is engaged in UCEC progression by functioning in a variety of biological roles of relevance to immunity. Furthermore, we predicted several prospering drugs based on drug sensitivity. Finally, we also constructed possible docking patterns of LAMP3 with ABCA3, RAB9A, and SGTB. CONCLUSIONS LAMP3 is a formidable biomarker for UCEC and could be a prospective candidate for the diagnosis, treatment and prognostic assessment of UCEC.
Collapse
Affiliation(s)
- Bidong Fu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanying Zhong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Kang J, Kim M, Yoon DY, Kim WS, Choi SJ, Kwon YN, Kim WS, Park SH, Sung JJ, Park M, Lee JS, Park JE, Kim SM. AXL +SIGLEC6 + dendritic cells in cerebrospinal fluid and brain tissues of patients with autoimmune inflammatory demyelinating disease of CNS. Clin Immunol 2023; 253:109686. [PMID: 37414380 DOI: 10.1016/j.clim.2023.109686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Inflammatory demyelinating disease of the CNS (IDD) is a heterogeneous group of autoimmune diseases, and multiple sclerosis is the most common type. Dendritic cells (DCs), major antigen-presenting cells, have been proposed to play a central role in the pathogenesis of IDD. The AXL+SIGLEC6+ DC (ASDC) has been only recently identified in humans and has a high capability of T cell activation. Nevertheless, its contribution to CNS autoimmunity remains still obscure. Here, we aimed to identify the ASDC in diverse sample types from IDD patients and experimental autoimmune encephalomyelitis (EAE). A detailed analysis of DC subpopulations using single-cell transcriptomics for the paired cerebrospinal fluid (CSF) and blood samples of IDD patients (total n = 9) revealed that three subtypes of DCs (ASDCs, ACY3+ DCs, and LAMP3+ DCs) were overrepresented in CSF compared with their paired blood. Among these DCs, ASDCs were also more abundant in CSF of IDD patients than in controls, manifesting poly-adhesional and stimulatory characteristics. In the brain biopsied tissues of IDD patients, obtained at the acute attack of disease, ASDC were also frequently found in close contact with T cells. Lastly, the frequency of ASDC was found to be temporally more abundant in acute attack of disease both in CSF samples of IDD patients and in tissues of EAE, an animal model for CNS autoimmunity. Our analysis suggests that the ASDC might be involved in the pathogenesis of CNS autoimmunity.
Collapse
Affiliation(s)
- Junho Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Moonhang Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Da-Young Yoon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo-Seok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Young-Nam Kwon
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Won-Seok Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea
| | - Myungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jung Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Sung-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Zhu J, Long T, Gao L, Zhong Y, Wang P, Wang X, Li Z, Hu Z. RPL21 interacts with LAMP3 to promote colorectal cancer invasion and metastasis by regulating focal adhesion formation. Cell Mol Biol Lett 2023; 28:31. [PMID: 37062845 PMCID: PMC10108486 DOI: 10.1186/s11658-023-00443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Metastasis is the leading cause of death among patients with colorectal cancer (CRC). Therefore, it is important to explore the molecular mechanisms of metastasis to develop effective therapeutic targets for CRC. In the present study, ribosomal protein L21 (RPL21) was considered as being involved in promoting CRC metastasis, yet the underlying mechanism requires further investigation. METHODS Immunohistochemistry, western blotting, and quantitative reverse transcription polymerase chain reaction were performed to measure the expression of RPL21 and lysosome-associated membrane protein 3 (LAMP3) in CRC tissues and cells. Wound healing, transwell migration, and invasion assays were performed to study the migration and invasion of cultured CRC cells. An orthotopic CRC mouse model was developed to investigate the metastatic ability of CRC. Transcriptome sequencing was conducted to identify the genes related to RPL21. The dual-luciferase reporter gene assay was performed to determine the transcriptional activity of transcription factor EB (TFEB). The GST/His pull-down assay was performed to investigate the specific binding sites of RPL21 and LAMP3. The cell adhesion assay was performed to determine the adhesion ability of CRC cells. Immunofluorescence staining was performed to observe focal adhesions (FAs). RESULTS RPL21 was highly expressed in CRC, contributing to tumor invasiveness and poor patient prognosis. Functionally, RPL21 promoted the migration and invasion of CRC cells in vitro and tumor metastasis in vivo. Moreover, LAMP3 was identified as being highly related to RPL21 and was essential in promoting the migration and invasion of CRC cells. Mechanistically, RPL21 activated the transcriptional function of TFEB to upregulate LAMP3 expression. RPL21 directly bound to the aa 341-416 domain of LAMP3 via its aa 1-40 and aa 111-160 segments. The combination of RPL21 and LAMP3 enhanced the stability of the RPL21 protein by suppressing the degradation of the ubiquitin-proteasome system. Furthermore, RPL21 and LAMP3 promoted the formation of immature FAs by activating the FAK/paxillin/ERK signaling pathway. CONCLUSIONS RPL21 promoted invasion and metastasis by regulating FA formation in a LAMP3-dependent manner during CRC progression. The interaction between RPL21 and LAMP3 may function as a potential therapeutic target against CRC.
Collapse
Affiliation(s)
- Jiaxian Zhu
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ting Long
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
| | - Lingfang Gao
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
| | - Yan Zhong
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
| | - Ping Wang
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaoyan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Key Laboratory of Molecular Tumour Pathology of Guangdong Province, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zuguo Li
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Tumour Pathology of Guangdong Province, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Zhiyan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Tumour Pathology of Guangdong Province, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Mohajertehran F, Mohtasham N, Ahmadi M, Shahabinejad M, Mohammadi M. RT-qPCR Analysis of LAMP3 (CD208) Gene Expression in Oral Lichen Planus and Oral Squamous Cell Carcinoma. Rep Biochem Mol Biol 2023; 12:36-41. [PMID: 37724152 PMCID: PMC10505466 DOI: 10.52547/rbmb.12.1.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/04/2023] [Indexed: 09/20/2023]
Abstract
Background Many new studies have been conducted on cellular proteins to use them as prognostic markers or in target therapy through determining the increase or decrease in their expression in the lichen planus and OSCC. LAMP3 protein is one of these proteins which has been recently considered. Thus, considering the unknown etiology of lichen planus, significance of their early diagnosis and treatment and lack of a suitable and final treatment for this disease and oral cancers, and preventing the progression of lichen planus, which can turn into OSCC, we decided to investigate the level of expression of this gene and its effect on the progression, study the connection between these two conditions and the probable factors contributing to their etiopathogenesis. Methods In this study, ninety-four paraffin blocks tissue samples of patients were obtained together with their demographic documents. LAMP3 expression was measured RT-qPCR method. Results The results show that there is not any significant difference between age and sex population of our study. in squamous cell carcinoma the amount of expression of LAMP3 was higher than lichen planus and healthy margin. Average LAMP3 Gene expression in grade III was higher than group grade I & II in which considering significant level of 5%, it is statistically significant. Conclusions According to the findings of this study, it can be concluded that the expression of the LAMP3 gene in SCC lesions is higher than in healthy tissue. Hence, LAMP3 gene expression can be used as a diagnostic biomarker.
Collapse
Affiliation(s)
- Farnaz Mohajertehran
- Oral and Maxillofacial Pathology Department, Oral and Maxillofacial Diseases Research Center, Faculty of Dentistry, Mashhad University of Medical Sciences.
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nooshin Mohtasham
- Oral and Maxillofacial Pathology Department, Oral and Maxillofacial Diseases Research Center, Faculty of Dentistry, Mashhad University of Medical Sciences.
| | - Mojtaba Ahmadi
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Shahabinejad
- Oral and Maxillofacial Pathology Department, Oral and Maxillofacial Diseases Research Center, Faculty of Dentistry, Mashhad University of Medical Sciences.
| | - Maryam Mohammadi
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Saddozai UAK, Wang F, Khattak S, Akbar MU, Badar M, Khan NH, Zhang L, Zhu W, Xie L, Li Y, Ji X, Guo X. Define the Two Molecular Subtypes of Epithelioid Malignant Pleural Mesothelioma. Cells 2022; 11:cells11182924. [PMID: 36139498 PMCID: PMC9497219 DOI: 10.3390/cells11182924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a fatal disease of respiratory system. Despite the availability of invasive biomarkers with promising results, there are still significant diagnostic and therapeutic challenges in the treatment of MPM. One of three main mesothelioma cell types, epithelioid mesothelioma makes up approximately 70% of all mesothelioma cases. Different observational findings are under process, but the molecular heterogeneity and pathogenesis of epithelioid malignant pleural mesothelioma (eMPM) are still not well understood. Through molecular analysis, expression profiling data were used to determine the possibility and optimal number of eMPM molecular subtypes. Next, clinicopathological characteristics and different molecular pathways of each subtype were analyzed to prospect the clinical applications and advanced mechanisms of eMPM. In this study, we identified two distinct epithelioid malignant pleural mesothelioma subtypes with distinct gene expression patterns. Subtype I eMPMs were involved in steroid hormone biosynthesis, porphyrin and chlorophyll metabolism, and drug metabolism, while subtype II eMPMs were involved in rational metabolism, tyrosine metabolism, and chemical carcinogenesis pathways. Additionally, we identified potential subtype-specific therapeutic targets, including CCNE1, EPHA3, RNF43, ROS1, and RSPO2 for subtype I and CDKN2A and RET for subtype II. Considering the need for potent diagnostic and therapeutic biomarkers for eMPM, we are anticipating that our findings will help both in exploring underlying mechanisms in the development of eMPM and in designing targeted therapy for eMPM.
Collapse
Affiliation(s)
- Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Nazeer Hussain Khan
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinying Ji
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (X.J.); (X.G.)
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (X.J.); (X.G.)
| |
Collapse
|
8
|
Human Papillomavirus 16 E6 and E7 Oncoproteins Alter the Abundance of Proteins Associated with DNA Damage Response, Immune Signaling and Epidermal Differentiation. Viruses 2022; 14:v14081764. [PMID: 36016386 PMCID: PMC9415472 DOI: 10.3390/v14081764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The high-risk human papillomaviruses are oncogenic viruses associated with almost all cases of cervical carcinomas, and increasing numbers of anal, and oral cancers. Two oncogenic HPV proteins, E6 and E7, are capable of immortalizing keratinocytes and are required for HPV associated cell transformation. Currently, the influence of these oncoproteins on the global regulation of the host proteome is not well defined. Liquid chromatography coupled with quantitative tandem mass spectrometry using isobaric-tagged peptides was used to investigate the effects of the HPV16 oncoproteins E6 and E7 on protein levels in human neonatal keratinocytes (HEKn). Pathway and gene ontology enrichment analyses revealed that the cells expressing the HPV oncoproteins have elevated levels of proteins related to interferon response, inflammation and DNA damage response, while the proteins related to cell organization and epithelial development are downregulated. This study identifies dysregulated pathways and potential biomarkers associated with HPV oncoproteins in primary keratinocytes which may have therapeutic implications. Most notably, DNA damage response pathways, DNA replication, and interferon signaling pathways were affected in cells transduced with HPV16 E6 and E7 lentiviruses. Moreover, proteins associated with cell organization and differentiation were significantly downregulated in keratinocytes expressing HPV16 E6 + E7. High-risk HPV E6 and E7 oncoproteins are necessary for the HPV-associated transformation of keratinocytes. However their influence on the global dysregulation of keratinocyte proteome is not well documented. Here shotgun proteomics using TMT-labeling detected over 2500 significantly dysregulated proteins associated with E6 and E7 expression. Networks of proteins related to interferon response, inflammation and DNA damage repair pathways were altered.
Collapse
|
9
|
Deng ZL, Zhou DZ, Cao SJ, Li Q, Zhang JF, Xie H. Development and Validation of an Inflammatory Response-Related Gene Signature for Predicting the Prognosis of Pancreatic Adenocarcinoma. Inflammation 2022; 45:1732-1751. [PMID: 35322324 DOI: 10.1007/s10753-022-01657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/05/2022]
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly dangerous malignant tumor of the digestive tract, and difficult to diagnose, treat, and predict the prognosis. As we all know, tumor and inflammation can affect each other, and thus the inflammatory response in the microenvironment can be used to affect the prognosis. So far, the prognostic value of inflammatory response-related genes in PAAD is still unclear. Therefore, this study aimed to explore the inflammatory response-related genes for predicting the prognosis of PAAD. In this study, the mRNA expression profiles of PAAD patients and the corresponding clinical characteristics data of PAAD patients were downloaded from the public database. The least absolute shrinkage and selection operator (LASSO) Cox analysis model was used to identify and construct the prognostic gene signature in The Cancer Genome Atlas (TCGA) cohort. The PAAD patients used for verification are from the International Cancer Genome Consortium (ICGC) cohort. The Kaplan-Meier method was used to compare the overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were performed to identify the independent predictors of OS. Gene set enrichment analysis (GSEA) was performed to obtain gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the correlation between gene expression and immune infiltrates was investigated via single sample gene set enrichment analysis (ssGSEA). The GEPIA database was performed to examine prognostic genes in PAAD. LASSO Cox regression analysis was used to construct a model of inflammatory response-related gene signature. Compared with the low-risk group, patients in the high-risk group had significantly lower OS. The receiver operating characteristic curve (ROC) analysis confirmed the signature's predictive capacity. Multivariate Cox analysis showed that risk score is an independent predictor of OS. Functional analysis shows that the immune status between the two risk groups is significantly different, and the cancer-related pathways were abundant in the high-risk group. Moreover, the risk score is significantly related to tumor grade, stage, and immune infiltration types. It was also obtained that the expression level of prognostic genes was significantly correlated with the sensitivity of cancer cells to anti-tumor drugs. In addition, there are significant differences in the expression of PAAD tissues and adjacent non-tumor tissues. The novel signature constructed from five inflammatory response-related genes can be used to predict prognosis and affect the immune status of PAAD. In addition, suppressing these genes may be a treatment option.
Collapse
Affiliation(s)
- Zu-Liang Deng
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Ding-Zhong Zhou
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Su-Juan Cao
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Qing Li
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Jian-Fang Zhang
- Department of Physical Examination, Beihu Centers for Disease Control and Prevention, Chenzhou, 423000, People's Republic of China
| | - Hui Xie
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| |
Collapse
|
10
|
Generation of Human Lung Organoid Cultures from Healthy and Tumor Tissue to Study Infectious Diseases. J Virol 2022; 96:e0009822. [DOI: 10.1128/jvi.00098-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) human lung organoids reflect the native cell composition of the lung as well as its physiological properties. Human 3D lung organoids offer ideal conditions, such as timely availability in large quantities and high physiological relevance for reassessment and prediction of disease outbreaks of respiratory pathogens and pathogens that use the lung as a primary entry portal.
Collapse
|
11
|
Wang Z, Chen X, Jiang Z. Immune infiltration and a ferroptosis-related gene signature for predicting the prognosis of patients with cholangiocarcinoma. Am J Transl Res 2022; 14:1204-1219. [PMID: 35273723 PMCID: PMC8902578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Cholangiocarcinoma (CHOL) is a digestive tract tumor with high malignancy and poor prognosis and is extremely challenging to treat. At present, induced cell death holds great promise in tumor therapy. Ferroptosis is a recently proposed pattern of programmed cell death, and numerous studies have shown that it is intimately involved in tumors. However, the roles of differentially expressed ferroptosis-related genes (DEFRGs) in CHOL have not been investigated. Our study was based on The Cancer Genome Atlas (TCGA) database, and DEFRGs were obtained to construct a prognostic riskScore model of CHOL by univariate and multivariate Cox regression analyses. Subsequently, the model was evaluated by nomogram construction, survival analysis, receiver operating characteristic (ROC) analysis, and exploration of the immune microenvironment. The mRNA and protein expression levels of each gene in the model were validated by the Gene Expression Omnibus (GEO) database, quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC) staining. Our study found that the construction of a nomogram confirmed the predictive value of the model for overall survival (OS), and it was confirmed to have high diagnostic value by ROC analysis. Our experimental results were almost consistent with our bioinformatics results. In conclusion, we found that the prognostic model showed extremely high diagnostic and prognostic value and could predict the possibility of immunotherapy, thus providing a new direction for individualized treatment of patients with CHOL.
Collapse
Affiliation(s)
- Zhijian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Xuenuo Chen
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
12
|
Gong L, Kwong DLW, Dai W, Wu P, Wang Y, Lee AWM, Guan XY. The Stromal and Immune Landscape of Nasopharyngeal Carcinoma and Its Implications for Precision Medicine Targeting the Tumor Microenvironment. Front Oncol 2021; 11:744889. [PMID: 34568077 PMCID: PMC8462296 DOI: 10.3389/fonc.2021.744889] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
The evolution of the tumor microenvironment (TME) is a cancer-dependent and dynamic process. The TME is often a complex ecosystem with immunosuppressive and tumor-promoting functions. Conventional chemotherapy and radiotherapy, primarily focus on inducing tumor apoptosis and hijacking tumor growth, whereas the tumor-protective microenvironment cannot be altered or destructed. Thus, tumor cells can quickly escape from extraneous attack and develop therapeutic resistance, eventually leading to treatment failure. As an Epstein Barr virus (EBV)-associated malignancy, nasopharyngeal carcinoma (NPC) is frequently infiltrated with varied stromal cells, making its microenvironment a highly heterogeneous and suppressive harbor protecting tumor cells from drug penetration, immune attack, and facilitating tumor development. In the last decade, targeted therapy and immunotherapy have emerged as promising options to treat advanced, metastatic, recurrent, and resistant NPC, but lack of understanding of the TME had hindered the therapeutic development and optimization. Single-cell sequencing of NPC-infiltrating cells has recently deciphered stromal composition and functional dynamics in the TME and non-malignant counterpart. In this review, we aim to depict the stromal landscape of NPC in detail based on recent advances, and propose various microenvironment-based approaches for precision therapy.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Pingan Wu
- Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Wang
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
13
|
King R, Hayes C, Donohoe CL, Dunne MR, Davern M, Donlon NE. Hypoxia and its impact on the tumour microenvironment of gastroesophageal cancers. World J Gastrointest Oncol 2021; 13:312-331. [PMID: 34040696 PMCID: PMC8131902 DOI: 10.4251/wjgo.v13.i5.312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The malfeasant role of the hypoxic tumour microenvironment (TME) in cancer progression was recognized decades ago but the exact mechanisms that augment the hallmarks of cancer and promote treatment resistance continue to be elucidated. Gastroesophageal cancers (GOCs) represent a major burden of worldwide disease, responsible for the deaths of over 1 million people annually. Disentangling the impact of hypoxia in GOCs enables a better overall understanding of the disease pathogenesis while shining a light on novel therapeutic strategies and facilitating precision treatment approaches with the ultimate goal of improving outcomes for patients with these diseases. This review discusses the underlying principles and processes of the hypoxic response and the effect of hypoxia in promoting the hallmarks of cancer in the context of GOCs. We focus on its bidirectional influence on inflammation and how it drives angiogenesis, innate and adaptive immune evasion, metastasis, and the reprogramming of cellular bioenergetics. The contribution of the hypoxic GOC TME to treatment resistance is examined and a brief overview of the pharmacodynamics of hypoxia-targeted therapeutics is given. The principal methods that are used in measuring hypoxia and how they may enhance prognostication or provide rationale for individually tailored management in the case of tumours with significant hypoxic regions are also discussed.
Collapse
Affiliation(s)
- Ross King
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Conall Hayes
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Claire L Donohoe
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Margaret R Dunne
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Maria Davern
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Noel E Donlon
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| |
Collapse
|
14
|
Alharbi A, Zhang Y, Parrington J. Deciphering the Role of Ca 2+ Signalling in Cancer Metastasis: From the Bench to the Bedside. Cancers (Basel) 2021; 13:E179. [PMID: 33430230 PMCID: PMC7825727 DOI: 10.3390/cancers13020179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/03/2023] Open
Abstract
Metastatic cancer is one of the major causes of cancer-related mortalities. Metastasis is a complex, multi-process phenomenon, and a hallmark of cancer. Calcium (Ca2+) is a ubiquitous secondary messenger, and it has become evident that Ca2+ signalling plays a vital role in cancer. Ca2+ homeostasis is dysregulated in physiological processes related to tumour metastasis and progression-including cellular adhesion, epithelial-mesenchymal transition, cell migration, motility, and invasion. In this review, we looked at the role of intracellular and extracellular Ca2+ signalling pathways in processes that contribute to metastasis at the local level and also their effects on cancer metastasis globally, as well as at underlying molecular mechanisms and clinical applications. Spatiotemporal Ca2+ homeostasis, in terms of oscillations or waves, is crucial for hindering tumour progression and metastasis. They are a limited number of clinical trials investigating treating patients with advanced stages of various cancer types. Ca2+ signalling may serve as a novel hallmark of cancer due to the versatility of Ca2+ signals in cells, which suggests that the modulation of specific upstream/downstream targets may be a therapeutic approach to treat cancer, particularly in patients with metastatic cancers.
Collapse
Affiliation(s)
- Abeer Alharbi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| |
Collapse
|
15
|
LAMP3 (CD208) Expression in Squamous Cell Carcinoma and Epithelial Dysplasia of the Oral Cavity and Clinicopathological Characteristics of Unfavorable Prognosis. Rep Biochem Mol Biol 2021; 9:379-384. [PMID: 33969129 DOI: 10.52547/rbmb.9.4.373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background This study aimed to evaluate LAMP3 (CD208) gene expression in oral squamous cell carcinoma (OSCC) and dysplastic oral epithelium by quantitative real-time polymerase chain reaction (qPCR) and compare LAMP3 expression in different disease grades and stages. Methods In this study, 60 OSCC and dysplastic oral epithelium samples were obtained from the Mashhad University of Medical Sciences together with their demographic and clinicopathological documents. LAMP3 expression was measured by qPCR. Results LAMP3 expression was significantly greater in OSCC than in dysplasia samples (P=0.001), in grade III OSCC than in grades I and II, and also greater in advanced than in early OSCC disease stage (P=0.001). Conclusion The significantly greater LAMP3 expression in OSCC than in dysplastic epithelium indicates a role for LAMP3 in carcinogenesis in oral mucosa. Our results suggest LAMP3 may be useful as an anticancer target and/or to predict disease pathogenesis in OSCC patient's cells.
Collapse
|
16
|
Han P, Cao P, Hu S, Kong K, Deng Y, Zhao B, Li F. Esophageal Microenvironment: From Precursor Microenvironment to Premetastatic Niche. Cancer Manag Res 2020; 12:5857-5879. [PMID: 32765088 PMCID: PMC7371556 DOI: 10.2147/cmar.s258215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer (EC) is the sixth most deadly cancer, and its incidence is still increasing year by year. Although the researches on the molecular mechanisms of EC have been widely carried out and incremental progress has been made, its overall survival rate is still low. There is cumulative evidence showing that the esophageal microenvironment plays a vital role in the development of EC. In precancerous lesions of the esophagus, high-risk environmental factors can promote the development of precancerous lesions by inducing the production of inflammatory factors and the recruitment of immune cells. In the tumor microenvironment, tumor-promoting cells can inhibit anti-tumor immunity and promote tumor progression through a variety of pathways, such as bone marrow-derived suppressor cells (MDSCs), tumor-associated fibroblasts (CAFs), and regulatory T cells (Tregs). The formation of extracellular hypoxia and acidic microenvironment and the change of extracellular matrix stiffness are also important factors affecting tumor progression and metastasis. Simultaneously, primary tumor-derived cytokines and bone marrow-derived immune cells can also promote the formation of pre-metastasis niche of EC lymph nodes, which are beneficial to EC lymph node metastasis. Further research on the specific mechanism of these processes in the occurrence, development, and metastasis of each EC subtype will support us to grasp the overall pre-cancerous prevention, targeted treatment, and metastatic assessment of EC.
Collapse
Affiliation(s)
- Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
17
|
Huang F, Ma G, Zhou X, Zhu X, Yu X, Ding F, Cao X, Liu Z. Depletion of LAMP3 enhances PKA-mediated VASP phosphorylation to suppress invasion and metastasis in esophageal squamous cell carcinoma. Cancer Lett 2020; 479:100-111. [PMID: 32200035 DOI: 10.1016/j.canlet.2020.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/29/2020] [Accepted: 03/15/2020] [Indexed: 11/26/2022]
Abstract
Metastasis is still a major cause of cancer-related mortality. Lysosome-associated membrane protein 3 (LAMP3) has been implicated in the invasiveness and metastasis of multiple cancer types; however, the underlying mechanisms are unclear. In this study, we found that LAMP3 was overexpressed in esophageal squamous cell carcinoma (ESCC) tissues and that this increased expression positively correlated with lymph node metastasis. Depletion of LAMP3 dramatically suppressed the motility of ESCC cells in vitro and experimental pulmonary and lymph node metastasis in vivo. Importantly, knockdown of LAMP3 increased the level of phosphorylated VASP(Ser239), which attenuated the invasive and metastatic capability of ESCC cells. We identified that cAMP-dependent protein kinase A (PKA) was responsible for the phosphorylation of VASP at Ser239. Consistently, silencing of PKA regulatory subunits diminished Ser239 phosphorylation on VASP and restored the motility capacity of LAMP3-depleted ESCC cells. In conclusion, we uncovered a previously unknown role of LAMP3 in promoting cellular motility and metastasis in ESCC.
Collapse
Affiliation(s)
- Furong Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gang Ma
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xuantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaolin Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Ding
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiufeng Cao
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
18
|
Yang C, Shen S, Zheng X, Ye K, Sun Y, Lu Y, Ge H. Long noncoding RNA HAGLR acts as a microRNA-143-5p sponge to regulate epithelial-mesenchymal transition and metastatic potential in esophageal cancer by regulating LAMP3. FASEB J 2019; 33:10490-10504. [PMID: 31311326 DOI: 10.1096/fj.201802543rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Homeobox D gene cluster antisense growth-associated long noncoding RNA (HAGLR) functions as a crucial regulator in the progression and development of human cancers. We analyzed effects of HAGLR, microRNA (miR)-143-5p and lysosome-associated membrane glycoprotein (LAMP)3 on esophageal cancer (EC) and the related mechanisms. Microarray analysis was used to screen out EC-related genes and the regulation network among HAGLR, miR-143-5p, and LAMP3. The regulatory mechanisms of HAGLR and miR-143-5p in EC were analyzed following the treatment of miR-143-5p mimic, miR-143-5p inhibitor, HAGLR vector, or small interfering RNA against HAGLR in EC cells. The expression of N-cadherin, vimentin, Twist1, Snail1, and E-cadherin as well as the abilities of cell proliferation, invasion, and migration were measured. The effects of the HAGLR/miR-143-5p/LAMP3 axis were determined in vivo by assessing tumor formation in nude mice. The expression of HAGLR and LAMP3 was increased, whereas that of miR-143-5p was diminished in EC tissues and cells. HAGLR could competitively bind to miR-143-5p, and miR-143-5p targeted LAMP3. Down-regulated HAGLR or up-regulated miR-143-5p increased E-cadherin expression and significantly diminished expression of LAMP3, N-cadherin, vimentin, Twist1, and Snail1. Moreover, down-regulated HAGLR inhibited cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and tumor growth. Moreover, down-regulation of HAGLR inhibited LAMP3 expression by sponging miR-143-5p, thereby suppressing the progression of EC. Taken together, our results suggest HAGLR acts as a competing endogenous RNA of miR-143-5p to increase the expression of LAMP3, thus promoting EMT, proliferation, invasion, and migration in EC cells.-Yang, C., Shen, S., Zheng, X., Ye, K., Sun, Y., Lu, Y., Ge, H. Long noncoding RNA HAGLR acts as a microRNA-143-5p sponge to regulate epithelial-mesenchymal transition and metastatic potential in esophageal cancer by regulating LAMP3.
Collapse
Affiliation(s)
- Chengliang Yang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Sining Shen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Ye
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufei Lu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Mishra S, Bernal C, Silvano M, Anand S, Ruiz I Altaba A. The protein secretion modulator TMED9 drives CNIH4/TGFα/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases. Oncogene 2019; 38:5817-5837. [PMID: 31253868 PMCID: PMC6755966 DOI: 10.1038/s41388-019-0845-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
How cells in primary tumors initially become pro-metastatic is not understood. A previous genome-wide RNAi screen uncovered colon cancer metastatic suppressor and WNT promoting functions of TMED3, a member of the p24 ER-to-Golgi protein secretion family. Repression of canonical WNT signaling upon knockdown (kd) of TMED3 might thus be sufficient to drive metastases. However, searching for transcriptional influences on other family members here we find that TMED3 kd leads to enhanced TMED9, that TMED9 acts downstream of TMED3 and that TMED9 kd compromises metastasis. Importantly, TMED9 pro-metastatic function is linked to but distinct from the repression of TMED3-WNT-TCF signaling. Functional rescue of the migratory deficiency of TMED9 kd cells identifies TGFα as a mediator of TMED9 pro-metastatic activity. Moreover, TMED9 kd compromises the biogenesis, and thus function, of TGFα. Analyses in three colon cancer cell types highlight a TMED9-dependent gene set that includes CNIH4, a member of the CORNICHON family of TGFα exporters. Our data indicate that TGFA and CNIH4, which display predictive value for disease-free survival, promote colon cancer cell metastatic behavior, and suggest that TMED9 pro-metastatic function involves the modulation of the secretion of TGFα ligand. Finally, TMED9/TMED3 antagonism impacts WNT-TCF and GLI signaling, where TMED9 primacy over TMED3 leads to the establishment of a positive feedback loop together with CNIH4, TGFα, and GLI1 that enhances metastases. We propose that primary colon cancer cells can transition between two states characterized by secretion-transcription regulatory loops gated by TMED3 and TMED9 that modulate their metastatic proclivities.
Collapse
Affiliation(s)
- Sonakshi Mishra
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Carolina Bernal
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Santosh Anand
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Ariel Ruiz I Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland.
| |
Collapse
|
20
|
Voic H, Li X, Jang JH, Zou C, Sundd P, Alder J, Rojas M, Chandra D, Randell S, Mallampalli RK, Tesfaigzi Y, Ryba T, Nyunoya T. RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia. BMC Genomics 2019; 20:22. [PMID: 30626320 PMCID: PMC6325884 DOI: 10.1186/s12864-018-5409-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aging is affected by genetic and environmental factors, and cigarette smoking is strongly associated with accumulation of senescent cells. In this study, we wanted to identify genes that may potentially be beneficial for cell survival in response to cigarette smoke and thereby may contribute to development of cellular senescence. RESULTS Primary human bronchial epithelial cells from five healthy donors were cultured, treated with or without 1.5% cigarette smoke extract (CSE) for 24 h or were passaged into replicative senescence. Transcriptome changes were monitored using RNA-seq in CSE and non-CSE exposed cells and those passaged into replicative senescence. We found that, among 1534 genes differentially regulated during senescence and 599 after CSE exposure, 243 were altered in both conditions, representing strong enrichment. Pathways and gene sets overrepresented in both conditions belonged to cellular processes that regulate reactive oxygen species, proteasome degradation, and NF-κB signaling. CONCLUSIONS Our results offer insights into gene expression responses during cellular aging and cigarette smoke exposure, and identify potential molecular pathways that are altered by cigarette smoke and may also promote airway epithelial cell senescence.
Collapse
Affiliation(s)
- Hannah Voic
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Xiuying Li
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Jun-Ho Jang
- 0000 0004 0454 5075grid.417046.0Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA USA
| | - Chunbin Zou
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Prithu Sundd
- 0000 0004 1936 9000grid.21925.3dVascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Jonathan Alder
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Mauricio Rojas
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Divay Chandra
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Scott Randell
- 0000 0001 1034 1720grid.410711.2Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC USA
| | - Rama K. Mallampalli
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, COPD program, Albuquerque, NM USA
| | - Tyrone Ryba
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Toru Nyunoya
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| |
Collapse
|
21
|
Bednarczyk M, Zmarzły N, Grabarek B, Mazurek U, Muc-Wierzgoń M. Genes involved in the regulation of different types of autophagy and their participation in cancer pathogenesis. Oncotarget 2018; 9:34413-34428. [PMID: 30344951 PMCID: PMC6188136 DOI: 10.18632/oncotarget.26126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly conserved mechanism of self-digestion that removes damaged organelles and proteins from cells. Depending on the way the protein is delivered to the lysosome, four basic types of autophagy can be distinguished: macroautophagy, selective autophagy, chaperone-mediated autophagy and microautophagy. Macroautophagy involves formation of autophagosomes and is controlled by specific autophagy-related genes. The steps in macroautophagy are initiation, phagophore elongation, autophagosome maturation, autophagosome fusion with the lysosome, and proteolytic degradation of the contents. Selective autophagy is macroautophagy of a specific cellular component. This work focuses on mitophagy (selective autophagy of abnormal and damaged mitochondria), in which the main participating protein is PINK1 (phosphatase and tensin homolog-induced putative kinase 1). In chaperone-mediated autophagy, the substrate is bound to a heat shock protein 70 chaperone before it is delivered to the lysosome. The least characterized type of autophagy is microautophagy, which is the degradation of very small molecules without participation of an autophagosome. Autophagy can promote or inhibit tumor development, depending on the severity of the disease, the type of cancer, and the age of the patient. This paper describes the molecular basis of the different types of autophagy and their importance in cancer pathogenesis.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Internal Diseases, School of Public Health in Bytom, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with The Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with The Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy with The Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Diseases, School of Public Health in Bytom, Medical University of Silesia in Katowice, 40–055 Katowice, Poland
| |
Collapse
|
22
|
Liu S, Yue J, Du W, Han J, Zhang W. LAMP3 plays an oncogenic role in osteosarcoma cells partially by inhibiting TP53. Cell Mol Biol Lett 2018; 23:33. [PMID: 30008754 PMCID: PMC6042264 DOI: 10.1186/s11658-018-0099-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a common malignant tumor that predominantly occurs in adolescents. Its most common metastasis is to the lungs. As shown in our earlier study, lysosome-associated membrane glycoprotein 3 (LAMP3) is highly upregulated in metastatic OS. However, its role in the regulation of OS cell viability and apoptosis remains unknown. METHODS We knocked down and overexpressed LAMP3 in OS cells and assessed the cell viability and apoptosis. Then, we investigated the expression of apoptosis-associated genes to identify the downstream gene(s) of LAMP3. RESULTS Knockdown of LAMP3 significantly inhibited OS cell viability and promoted apoptosis. TP53, which is involved in the apoptosis pathway, was found to be highly upregulated after knockdown of LAMP3. Overexpression of LAMP3 significantly increased cell viability and abrogated apoptosis. Importantly, subsequent knockdown of TP53 partially suppressed the increased OS cell apoptosis induced by the inhibition of LAMP3, suggesting that TP53 is a key functional downstream gene of LAMP3. CONCLUSIONS Our findings suggest that LAMP3 promotes OS cell viability and survival by regulating TP53 expression.
Collapse
Affiliation(s)
- Shaoxian Liu
- Department of Bone Traumatology, Yantaishan Hospital, Yantai, 264000 Shandong Province People’s Republic of China
| | - Junyi Yue
- Department of Bone Traumatology, Yantaishan Hospital, Yantai, 264000 Shandong Province People’s Republic of China
| | - Wei Du
- Department of Spinal Research, Yantaishan Hospital, Yantai, 264000 Shandong Province People’s Republic of China
| | - Jian Han
- Department of Bone Tumor, Yantaishan Hospital, Yantai, 264000, Shandong Province People’s Republic of China
| | - Weidong Zhang
- Department of Bone Traumatology, Yantai Hospital of Traditional Chinese Medicine, Yantai, 264000 Shandong Province People’s Republic of China
| |
Collapse
|
23
|
Differential Expression of TXNIP Isoforms in the Peripheral Leukocytes of Patients with Acute Myocardial Infarction. DISEASE MARKERS 2018; 2018:9051481. [PMID: 30034557 PMCID: PMC6032985 DOI: 10.1155/2018/9051481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/06/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
Background Acute myocardial infarction (AMI) is the most serious type of coronary atherosclerotic heart disease (CAD). The pathological changes are characterized by atherosclerosis. Oxidative stress plays an important role in atherosclerosis. Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor and regulator of thioredoxin, could bind thioredoxin to regulate its expression and antioxidant activity negatively. The NCBI data show that there are two isoforms in TXNIP gene, namely, TXNIP1 and TXNIP2. Our previous studies have shown that TXNIP expression levels in patients with unstable angina pectoris (UAP) were increased compared with controls (CTR). However, no upregulation of TXNIP was detected in AMI patients. Methods The leucocytes were isolated from peripheral venous blood, and total RNA of the leucocytes was extracted. Then, real-time quantitative PCR was performed. Results mRNA levels of TXNIP2 in AMI were significantly increased compared with CTR (P < 0.05). However, the expression of TXNIP1 was downregulated in AMI, but the difference was not statistically significant (P > 0.05). Logistic regression analysis showed that TXNIP2 mRNA levels were significantly associated with AMI (OR = 2.207, P < 0.05). Conclusions The expression of TXNIP2, not TXNIP1, is upregulated in leukocytes of AMI patients, indicating that only TXNIP2 in circulating leucocytes may be involved in the pathogenesis of AMI.
Collapse
|
24
|
Gui Y, Liu WB, Chen H, Ma JL, Li JS. Expression of LAMP3 and its correlation with clinicopathologic characteristics and prognosis in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:367-374. [PMID: 31938120 PMCID: PMC6957939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/10/2017] [Indexed: 06/10/2023]
Abstract
Lysosome-associated membrane protein (LAMP) 3 is one of members of lysosome-associated membrane protein family, which has been reported to play an important role in multiple malignant tumors. However, there is less research about the expression of LAMP3 in hepatocellular carcinoma (HCC). The purpose of this study was to investigate the expression of LAMP3 and explore its roles in HCC.The expression of LAMP3 in 99 cases of HCC tissues was performed by immunohistochemistry. In addition, the expression of LAMP3 in 20 pairs of HCC tissues and pericarcinomatous tissues was determined by quantitative real-time polymerase chain reaction and Western blotting. Immunohistochemical staining showed that LAMP3 was mainly expressed in the cytoplasm. And the expression of LAMP3 in HCC tissues (64/99, 64.6%) was significantly lower than that in pericarcinomatous tissues (23/99, 23.2%). In addition, the expression of LAMP3 mRNA and protein in HCC tissues was also significantly lower than that in pericarcinomatous tissues for 20 pairs of HCC samples. Low expression of LAMP3 was correlated with age, tumor-node-metastasis (TNM) staging, Edmondson grade, alpha-fetoprotein (AFP). Kaplan-Meier analysis showed that patients with low expression of LAMP3 had worse overall survival (OS) and disease-free survival (DFS). Multivariate analysis revealed that low expression of LAMP3 was an independent prognostic factor of OS and DFS for HCC patients.The results suggested that LAMP3 may play an important role in the development and progression of hepatocellular carcinoma, and serve as an independent prognostic predictor for HCC patients after surgical resection.
Collapse
Affiliation(s)
- Yang Gui
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical UniversityHefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefei, Anhui, China
| | - Wen-Bin Liu
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical UniversityHefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefei, Anhui, China
| | - Hao Chen
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical UniversityHefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefei, Anhui, China
| | - Jin-Liang Ma
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical UniversityHefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefei, Anhui, China
| | - Jian-Sheng Li
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical UniversityHefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefei, Anhui, China
| |
Collapse
|
25
|
Minakshi R, Rahman S, Jan AT, Archana A, Kim J. Implications of aging and the endoplasmic reticulum unfolded protein response on the molecular modality of breast cancer. Exp Mol Med 2017; 49:e389. [PMID: 29123254 PMCID: PMC5704197 DOI: 10.1038/emm.2017.215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important subcellular organelle that is involved in numerous activities required to achieve and maintain functional proteins in addition to its role in the biosynthesis of lipids and as a repository of intracellular Ca2+. The inability of the ER to cope with protein folding beyond its capacity causes disturbances that evoke ER stress. Cells possess molecular mechanisms aimed at clearing unwanted cargo from the ER lumen as an adaptive response, but failing to do so navigates the system towards cell death. This systemic approach is called the unfolded protein response. Aging insults cells through various perturbations in homeostasis that involve curtailing ER function by mitigating the expression of its resident chaperones and enzymes. Here the unfolded protein response (UPR) cannot protect the cell due to the weakening of its protective arm, which exacerbates imbalanced homeostasis. Aging predisposed breast malignancy activates the UPR, but tumor cells maneuver the mechanistic details of the UPR, favoring tumorigenesis and thereby eliciting a treacherous condition. Tumor cells exploit UPR pathways via crosstalk involving various signaling cascades that usher tumor cells to immortality. This review aims to present a collection of data that can delineate the missing links of molecular signatures between aging and breast cancer.
Collapse
Affiliation(s)
- Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
26
|
Li Y, Du W, Han J, Ge J. LAMP3 promotes the invasion of osteosarcoma cells via SPP1 signaling. Mol Med Rep 2017; 16:5947-5953. [PMID: 28849219 PMCID: PMC5865773 DOI: 10.3892/mmr.2017.7349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/09/2017] [Indexed: 01/27/2023] Open
Abstract
Osteosarcoma is the most common type of primary bone cancer in children and young adults. The prognosis of osteosarcoma is very poor when it is diagnosed with metastasis. Lysosomal‑associated membrane protein 3 (LAMP3) is a tumor‑specific protein induced by hypoxia, which stimulates invasion and metastasis of various cancer cells via hypoxia‑inducible factor (HIF). A previous study from our group has reported that expression of LAMP3 is significantly increased in lung metastatic osteosarcoma compared with primary osteosarcoma using microarray analysis, suggesting that LAMP3 may be involved in metastatic osteosarcoma. The present study therefore aimed to investigate the role of LAMP3 in osteosarcoma metastasis. Knockdown of LAMP3 decreased the invasion of two osteosarcoma cell lines in vitro. Furthermore, knockdown of LAMP3 increased the expression of secreted phosphoprotein 1 (SPP1), cadherin 1, and keratin 19, while it decreased the expression of matrix metallopeptidase 2, collagen type III α 1, twist family bHLH transcription factor 1 and cadherin 2. Concurrent knockdown of SPP1 and LAMP3 attenuated the changes in gene expression profile induced by LAMP3 knockdown alone. Gene ontology and KEGG analysis demonstrated that SPP1 was involved in cell adhesion, focal adhesion, and extracellular matrix‑receptor interaction. In conclusion, the present results suggest that LAMP3 may be involved in the invasion and metastasis of osteosarcoma via regulating signaling downstream of SPP1. Thus, LAMP3/SPP1 signaling may serve as a potential target in the future to prevent osteosarcoma metastasis.
Collapse
Affiliation(s)
- Yu Li
- Department of Bone Trauma, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Wei Du
- Department of Spine Branch, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Jian Han
- Department of Bone Oncology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Junbo Ge
- Department of Bone Trauma, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
27
|
Huang J, Li L, Liu J, Yu J, Wu X, Xu Y, Ma M, Wang W, Zhang R. Altered expression of lysosomal associated membrane protein 1 in esophageal squamous cell carcinoma. Pathol Res Pract 2017; 213:938-942. [PMID: 28687162 DOI: 10.1016/j.prp.2017.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 04/21/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers. LAMP1, major protein components of lysosome, is primarily located on the lysosomal membrane and rarely expressed on the surface of normal cells, playing an important role in the lysosome-mediated physiological processes. Previous studies confirmed that LAMP1 showed high expression in astrocytoma. The purpose of this study was to investigate the expression levels of LAMP1 and to discuss its roles in ESCC. METHODS We collected 610 tissue samples of ESCC patients to construct tissue microarrays, which were subsequently stained by immunohistochemistry with LAMP1 antibody. RESULTS After immunohistochemical staining, a total of 584 patients, including 453 men and 131 women, were analysed. The positive immunostaining was mainly located at the cytoplasm. The LAMP1 expression levels were significantly different between different T status (P<0.001), TNM stages (P<0.01) and degrees of tumor histological differentiation (P<0.001). Besides, LAMP1 expression levels were positively correlated with TNM stages (P<0.05). The higher the TNM stages, the higher the LAMP1 expression levels. Similar results also appeared in degrees of tumor histological differentiation (P<0.01), but not in ages, genders, tumor size, T status, lymphatic metastasis and tumor locations (P>0.05). CONCLUSION LAMP1 is involved in the TNM stages and histological differentiation of the ESCC. Targeted therapy for LAMP1 may be a promising novel therapeutic strategy against poorly differentiated ESCC.
Collapse
Affiliation(s)
- Jian Huang
- Central Laboratory, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Jianli Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Juan Yu
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Xiaoxiao Wu
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Ying Xu
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Ming Ma
- Thoracic Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China.
| | - Renya Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong 272029, PR China.
| |
Collapse
|
28
|
Alessandrini F, Pezzè L, Ciribilli Y. LAMPs: Shedding light on cancer biology. Semin Oncol 2017; 44:239-253. [PMID: 29526252 DOI: 10.1053/j.seminoncol.2017.10.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 01/09/2023]
Abstract
Lysosomes are important cytoplasmic organelles whose critical functions in cells are increasingly being understood. In particular, despite the long-standing accepted concept about the role of lysosomes as cellular machineries solely assigned to degradation, it has been demonstrated that they play active roles in homeostasis and even in cancer biology. Indeed, it is now well documented that during the process of cellular transformation and cancer progression lysosomes are changing localization, composition, and volume and, through the release of their enzymes, lysosomes can also enhance cancer aggressiveness. LAMPs (lysosome associated membrane proteins) represent a family of glycosylated proteins present predominantly on the membrane of lysosomes whose expression can vary among different tissues, suggesting a separation of functions. In this review we focus on the functions and roles of the different LAMP family members, with a particular emphasis on cancer progression and metastatic spread. LAMP proteins are involved in many different aspects of cell biology and can influence cellular processes such as phagocytosis, autophagy, lipid transport, and aging. Interestingly, for all the five members identified so far (LAMP1, LAMP2, LAMP3, CD68/Macrosialin/LAMP4, and BAD-LAMP/LAMP5), a role in cancer has been suggested. While this is well documented for LAMP1 and LAMP2, the involvement of the other three proteins in cancer progression and aggressiveness has recently been proposed and remains to be elucidated. Here we present different examples about how LAMP proteins can influence and support tumor growth and metastatic spread, emphasizing the impact of each single member of the family.
Collapse
Affiliation(s)
- Federica Alessandrini
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy.
| |
Collapse
|
29
|
Lu J, Ma H, Lian S, Huang D, Lian M, Zhang Y, Huang J, Feng X. Clinical Significance and Prognostic Value of the Expression of LAMP3 in Oral Squamous Cell Carcinoma. DISEASE MARKERS 2017; 2017:1218254. [PMID: 28607528 PMCID: PMC5451762 DOI: 10.1155/2017/1218254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/05/2017] [Accepted: 04/30/2017] [Indexed: 01/27/2023]
Abstract
Recent studies demonstrated high expression of lysosome-associated membrane protein 3 (LAMP3) in a variety of malignancies including esophageal squamous cell carcinoma, gastrointestinal cancer, breast cancer, and cervical cancer and its involvement in several biological activities of tumor cells. However, the expression of LAMP3 and its value in oral squamous cell carcinoma (OSCC) remain unclear. In this study, we examined the expression of LAMP3 in OSCC tissue samples and investigated the relationship between LAMP3 and clinical characteristics of patients with OSCC. We examined mRNA and protein levels of LAMP3 in OSCC tissues and neighboring normal tissues using quantitative real-time polymerase chain reaction and immunohistochemistry analyses, respectively. Both the mRNA and protein levels of LAMP3 were significantly higher in OSCC tissues than in adjacent normal tissues. Chi-square analysis showed that the high LAMP3 expression was notably linked to the degree of tumor differentiation and advanced TNM stage. Univariate and multivariate analyses showed that the high LAMP3 expression was an independent prognostic marker in OSCC. Our results suggest that LAMP3 might act as a potential anticancer target and a prognostic marker in patients with OSCC.
Collapse
Affiliation(s)
- Jun Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hengcheng Ma
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shuijin Lian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ye Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
30
|
Lee EJ, Park KS, Jeon IS, Choi JW, Lee SJ, Choy HE, Song KD, Lee HK, Choi JK. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium. Mol Cells 2016; 39:566-72. [PMID: 27329040 PMCID: PMC4959022 DOI: 10.14348/molcells.2016.0112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/27/2022] Open
Abstract
Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.
Collapse
Affiliation(s)
- Eun-Ju Lee
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 28644,
Korea
| | - Kwan-Sik Park
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 28644,
Korea
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896,
Korea
| | - In-Sook Jeon
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 28644,
Korea
| | - Jae-Woon Choi
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju 28644,
Korea
| | - Sang-Jeon Lee
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju 28644,
Korea
| | - Hyun E. Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61186,
Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896,
Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896,
Korea
| | - Joong-Kook Choi
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 28644,
Korea
| |
Collapse
|