1
|
Lopes-Caitar VS, Nomura RBG, Hishinuma-Silva SM, de Carvalho MCDCG, Abdelnoor RV, Dias WP, Marcelino-Guimarães FC. Time Course RNA-seq Reveals Soybean Responses against Root-Lesion Nematode and Resistance Players. PLANTS (BASEL, SWITZERLAND) 2022; 11:2983. [PMID: 36365436 PMCID: PMC9655969 DOI: 10.3390/plants11212983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Pratylenchus brachyurus causes serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) Glycine max genotypes. Differential expression analysis revealed two stages of response to RLN infection and a set of differentially expressed genes (DEGs) in the first stage suggested a pattern-triggered immunity (PTI) in both genotypes. The divergent time-point of DEGs between genotypes was observed four days post-infection, which included the activation of mitogen-activated protein kinase (MAPK) and plant-pathogen interaction genes in the BRS, suggesting the occurrence of an effector-triggered immunity response (ETI) in BRS. The co-expression analyses combined with single nucleotide polymorphism (SNP) uncovered a key element, a transcription factor phytochrome-interacting factor (PIF7) that is a potential regulator of moderate resistance to RLN infection. Two genes for resistance-related leucine-rich repeat (LRR) proteins were found as BRS-specific expressed genes. In addition, alternative splicing analysis revealed an intron retention in a myo-inositol oxygenase (MIOX) transcript, a gene related to susceptibility, may cause a loss of function in BRS.
Collapse
Affiliation(s)
- Valéria Stefania Lopes-Caitar
- Department of Biological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | - Rafael Bruno Guayato Nomura
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Suellen Mika Hishinuma-Silva
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | | | | | - Waldir Pereira Dias
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | | |
Collapse
|
2
|
Wang T, Ji H, Yu Y, Wang X, Cheng Y, Li Z, Chen J, Guo L, Xu J, Gao C. Development of a Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Phytopythium vexans. Front Microbiol 2021; 12:720485. [PMID: 34552572 PMCID: PMC8450588 DOI: 10.3389/fmicb.2021.720485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Brown root rot caused by Phytopythium vexans is a new destructive root disease on many plants such as Gingko, Citrus, kiwifruit, and ramie. The establishment of loop-mediated isothermal amplification (LAMP) technology for detecting P. vexans can help monitor and control brown root rot quickly, efficiently, and accurately. LAMP technology is known for its simplicity, sensitivity, and speed; and it does not require any specialized equipment – a water bath or a thermoblock is sufficient for isothermal amplifications. LAMP products can be visualized by using hydroxy naphthol blue (HNB) dye or agarose gel electrophoresis. In this study, by searching and comparing the internal transcribed spacer (ITS) sequences of P. vexans and the related species in oomycete genera Pythium, Phytopythium, and Phytophthora, we designed specific primers targeting the ITS gene region of P. vexans. Using HNB dye, we established a LAMP technique for rapid detection of P. vexans by visible color change. In addition, we optimized the protocol to enhance both sensitivity and specificity for P. vexans detection. Under the optimized condition, our protocol based on LAMP technology could detect as low as 24 copies of the P. vexans genomic DNA, which is ∼100 times more sensitive than conventional PCR. This method can successfully detect P. vexans using cell suspensions from P. vexans – infected ramie root tissues.
Collapse
Affiliation(s)
- Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Haojun Ji
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yongting Yu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
3
|
Yu Y, Zhang G, Chen Y, Bai Q, Gao C, Zeng L, Li Z, Cheng Y, Chen J, Sun X, Guo L, Xu J, Yan Z. Selection of Reference Genes for qPCR Analyses of Gene Expression in Ramie Leaves and Roots across Eleven Abiotic/Biotic Treatments. Sci Rep 2019; 9:20004. [PMID: 31882847 PMCID: PMC6934855 DOI: 10.1038/s41598-019-56640-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is commonly used for deciphering gene functions. For effective qPCR analyses, suitable reference genes are needed for normalization. The objective of this study is to identify the appropriate reference gene(s) for qPCR analyses of the leaves and roots of ramie (Boehmeria nivea L.), an important natural fiber crop. To accomplish this goal, we investigated the expression patterns of eight common plant qPCR reference genes in ramie leaves and roots under five abiotic stresses, five hormonal treatments, and one biotic stress. The relative expression stabilities of the eight genes were evaluated using four common but different approaches: geNorm, NormFinder, BestKeeper, and RefFinder. Across the 11 tested conditions, ACT1 was the most stably expressed among the eight genes while GAPDH displayed the biggest variation. Overall, while variations in the suggested reference genes were found for different tissue x treatment combinations, our analyses revealed that together, genes ACT1, CYP2, and UBQ can provide robust references for gene expression studies of ramie leaves under most conditions, while genes EF-1α, TUB, and ACT1 can be used for similar studies of ramie roots. Our results should help future functional studies of the genes in ramie genome across tissues and environmental conditions.
Collapse
Affiliation(s)
- Yongting Yu
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Gang Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712406, China
| | - Yikun Chen
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Qingqing Bai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712406, China
| | - Chunsheng Gao
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Liangbin Zeng
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Zhimin Li
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Yi Cheng
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Jia Chen
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Xiangping Sun
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Litao Guo
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| | - Jianping Xu
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China. .,Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Zhun Yan
- Department of Plant Protection, Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, 410205, China
| |
Collapse
|
4
|
Vieira P, Mowery J, Eisenback JD, Shao J, Nemchinov LG. Cellular and Transcriptional Responses of Resistant and Susceptible Cultivars of Alfalfa to the Root Lesion Nematode, Pratylenchus penetrans. FRONTIERS IN PLANT SCIENCE 2019; 10:971. [PMID: 31417588 PMCID: PMC6685140 DOI: 10.3389/fpls.2019.00971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/11/2019] [Indexed: 05/04/2023]
Abstract
The root lesion nematode (RLN), Pratylenchus penetrans, is a migratory species that attacks a broad range of crops, including alfalfa. High levels of infection can reduce alfalfa forage yields and lead to decreased cold tolerance. Currently, there are no commercially certified varieties with RLN resistance. Little information on molecular interactions between alfalfa and P. penetrans, that would shed light on mechanisms of alfalfa resistance to RLN, is available. To advance our understanding of the host-pathogen interactions and to gain biological insights into the genetics and genomics of host resistance to RLN, we performed a comprehensive assessment of resistant and susceptible interactions of alfalfa with P. penetrans that included root penetration studies, ultrastructural observations, and global gene expression profiling of host plants and the nematode. Several gene-candidates associated with alfalfa resistance to P. penetrans and nematode parasitism genes encoding nematode effector proteins were identified for potential use in alfalfa breeding programs or development of new nematicides. We propose that preformed or constitutive defenses, such as significant accumulation of tannin-like deposits in root cells of the resistant cultivar, could be a key to nematode resistance, at least for the specific case of alfalfa-P. penetrans interaction.
Collapse
Affiliation(s)
- Paulo Vieira
- Molecular Plant Pathology Laboratory, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA, United States
| | - Joseph Mowery
- Electron and Confocal Microscopy Unit, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
| | - Jonathan D. Eisenback
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan Shao
- Molecular Plant Pathology Laboratory, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
| | - Lev G. Nemchinov
- Molecular Plant Pathology Laboratory, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
5
|
Wang Y, Zeng Z, Li F, Yang X, Gao X, Ma Y, Rao J, Wang H, Liu T. A genomic resource derived from the integration of genome sequences, expressed transcripts and genetic markers in ramie. BMC Genomics 2019; 20:476. [PMID: 31185891 PMCID: PMC6558782 DOI: 10.1186/s12864-019-5878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background The redundancy of genomic resources, including transcript and molecular markers, and their uncertain position in the genome have dramatically hindered the study of traits in ramie, an important natural fiber crop. Results We obtained a high-quality transcriptome consisting of 30,591 non-redundant transcripts using single-molecule long-read sequencing and proposed it as a universal ramie transcriptome. Additionally, 55,882 single nucleotide polymorphisms (SNPs) were identified and a high-density genetic map was developed. Based on this genetic map, 181.7 Mb ramie genome sequences were assembled into 14 chromosomes. For the convenient use of these resources, 29,286 (~ 95.7%) of the transcripts and all 55,882 SNPs, along with 1827 previously reported sequence repeat markers (SSRs), were mapped into the ramie genome, and 22,343 (~ 73.0%) transcripts, 50,154 (~ 89.7%) SNPs, and 1466 (~ 80.3%) SSRs were assigned to a specific location in the corresponding chromosome. Conclusion This is the first study to characterize the ramie transcriptome by long-read sequencing, and the substantial number of transcripts of significant length obtained will accelerate our understanding of ramie growth and development. This integration of genome sequences, expressed transcripts, and genetic markers will provide an extremely useful resource for genetic, molecular, and breeding studies of ramie. Electronic supplementary material The online version of this article (10.1186/s12864-019-5878-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanzhou Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Fu Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | | | - Xinyue Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yonghong Ma
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jing Rao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | | | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
6
|
Huang K, Zhu A, Chen X, Shi Y, Tang Q, Wang X, Sun Z, Luan M, Chen J. Comparative transcriptomics reveals the selection patterns of domesticated ramie. Ecol Evol 2019; 9:7057-7068. [PMID: 31380033 PMCID: PMC6662332 DOI: 10.1002/ece3.5271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022] Open
Abstract
Although domestication has dramatically altered the phenotype, physiology, and life history of ramie (Boehmeria nivea) plants, few studies have investigated the effects of domestication on the structure and expression pattern of genes in this fiber crop. To investigate the selective pattern and genetic relationships among a cultivated variety of ramie (BNZ: B. nivea, ZZ1) and four wild species, BNT (B. nivea var. tenacissima), BNN (B. nivea var. nipononivea), BNW (B. nivea var. nivea), and BAN (B. nivea var. viridula), in the section Tilocnide, we performed an RNA sequencing analysis of these ramie species. The de novo assembly of the "all-ramie" transcriptome yielded 119,114 unigenes with an average length of 633 bp, and a total of 7,084 orthologous gene pairs were identified. The phylogenetic tree showed that the cultivar BNZ clustered with BAN in one group, BNW was closely related to BNT, and BNN formed a separate group. Introgression analysis indicated that gene flow occurred from BNZ to BNN and BAN, and between BAN and BNN. Among these orthologs, 2,425 and 269 genes underwent significant purifying and positive selection, respectively. For these positively selected genes, oxidation-reduction process (GO:0055114) and stress response pathways (GO:0006950) were enriched, indicating that modulation of the cellular redox status was important during both ramie fiber evolution and improvement. Two genes related to the suppression of flowering and one gene annotated as a flowering-promoting factor were subjected to positive selection, probably caused by human manipulation. Additionally, five genes were homologs of those involved in abiotic stress tolerance and disease resistance, with higher expression levels in the cultivar BNZ than in the wild species. Collectively, the results of this study indicated that domestication has resulted in the upregulation of many genes involved in the abiotic and biotic stress responses, fiber yield, and plant growth of ramie.
Collapse
Affiliation(s)
- Kun‐Yong Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Ai‐Guo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | | | - Ya‐Liang Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Xiao‐Fei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Zhi‐Min Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Ming‐Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| | - Jian‐Hua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem‐Fiber Biomass and Engineering MicrobiologyMinistry of AgricultureChangshaChina
| |
Collapse
|
7
|
Genome-Wide Expression Profiles of Hemp ( Cannabis sativa L.) in Response to Drought Stress. Int J Genomics 2018; 2018:3057272. [PMID: 29862250 PMCID: PMC5976996 DOI: 10.1155/2018/3057272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.
Collapse
|
8
|
Vieira P, Maier TR, Eves‐van den Akker S, Howe DK, Zasada I, Baum TJ, Eisenback JD, Kamo K. Identification of candidate effector genes of Pratylenchus penetrans. MOLECULAR PLANT PATHOLOGY 2018; 19:1887-1907. [PMID: 29424950 PMCID: PMC6638058 DOI: 10.1111/mpp.12666] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/02/2023]
Abstract
Pratylenchus penetrans is one of the most important species of root lesion nematodes (RLNs) because of its detrimental and economic impact in a wide range of crops. Similar to other plant-parasitic nematodes (PPNs), P. penetrans harbours a significant number of secreted proteins that play key roles during parasitism. Here, we combined spatially and temporally resolved next-generation sequencing datasets of P. penetrans to select a list of candidate genes aimed at the identification of a panel of effector genes for this species. We determined the spatial expression of transcripts of 22 candidate effectors within the oesophageal glands of P. penetrans by in situ hybridization. These comprised homologues of known effectors of other PPNs with diverse putative functions, as well as novel pioneer effectors specific to RLNs. It is noteworthy that five of the pioneer effectors encode extremely proline-rich proteins. We then combined in situ localization of effectors with available genomic data to identify a non-coding motif enriched in promoter regions of a subset of P. penetrans effectors, and thus a putative hallmark of spatial expression. Expression profiling analyses of a subset of candidate effectors confirmed their expression during plant infection. Our current results provide the most comprehensive panel of effectors found for RLNs. Considering the damage caused by P. penetrans, this information provides valuable data to elucidate the mode of parasitism of this nematode and offers useful suggestions regarding the potential use of P. penetrans-specific target effector genes to control this important pathogen.
Collapse
Affiliation(s)
- Paulo Vieira
- Department of Plant Pathology, Physiology, and Weed ScienceVirginia TechBlacksburgVA 24061USA
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of AgricultureBeltsvilleMD 20705‐2350USA
| | - Thomas R. Maier
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - Sebastian Eves‐van den Akker
- Department of Biological ChemistryJohn Innes Centre, Norwich Research ParkNorwich NR4 7UHUK
- School of Life SciencesUniversity of DundeeDundee DD1 5EHUK
| | - Dana K. Howe
- Department of Integrative BiologyOregon State UniversityCorvallisOR 97331USA
| | - Inga Zasada
- Horticultural Crops Research LaboratoryU.S. Department of AgricultureCorvallisOR 97330USA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - Jonathan D. Eisenback
- Department of Plant Pathology, Physiology, and Weed ScienceVirginia TechBlacksburgVA 24061USA
| | - Kathryn Kamo
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of AgricultureBeltsvilleMD 20705‐2350USA
| |
Collapse
|
9
|
Liu C, Zhu S, Tang S, Wang H, Zheng X, Chen X, Dai Q, Liu T. QTL analysis of four main stem bark traits using a GBS-SNP-based high-density genetic map in ramie. Sci Rep 2017; 7:13458. [PMID: 29044147 PMCID: PMC5647422 DOI: 10.1038/s41598-017-13762-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/29/2017] [Indexed: 11/09/2022] Open
Abstract
Ramie fiber extracted from ramie stem bark (RSB) is a highly important natural fiber, and therefore, RSB is an economically important plant organ. The genetic basis of RSB traits is poorly understood. In the present study, fiber yield and three RSB traits (bark thickness, bark weight, and fiber output ratio) were subject to quantitative trait locus (QTL) analysis using an F2 agamous line population derived from two ramie varieties (Qingdaye and Zhongzhu 1). A total of 4338 high-quality single nucleotide polymorphisms were identified using the genotyping-by-sequencing technique and were subsequently used to construct a high-density genetic map spanning 1942.9 cM. Thereafter, QTL analysis identified five, two, four, and four QTLs for bark thickness, bark weight, fiber output ratio, and fiber yield, respectively. A 5.1 cM region that corresponded to a QTL for bark thickness (qBT4a) contained 106 candidate genes, and the Zhongzhu 1 allele of one of the genes, a putative MYB gene (evm. MODEL scaffold7373.133_D1), included a 760-bp insertion that caused premature termination, thereby producing a protein that lacked part of the MYB domain. Because MYB transcription factors play central roles in regulating the development of secondary cellular walls and fiber biosynthesis, we propose evm. MODEL scaffold7373.133_D1 as a likely candidate gene for qBT4a.
Collapse
Affiliation(s)
- Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Shouwei Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Hongwu Wang
- Xianning Agriculture Academy of sciences, Hubei, China
| | - Xia Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaorong Chen
- Yichun Institute of Agricultural Sciences, Jiangxi, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
10
|
Molecular Cloning, Recombinant Expression and Antifungal Activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.). Genes (Basel) 2017; 8:genes8100265. [PMID: 29019965 PMCID: PMC5664115 DOI: 10.3390/genes8100265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
Phytocystatins play multiple roles in plant growth, development and resistance to pests and other environmental stresses. A ramie (Boehmeria nivea L.) phytocystatin gene, designated as BnCPI, was isolated from a ramie cDNA library and its full-length cDNA was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA sequence (691 bp) consisted of a 303 bp open reading frame (ORF) encoding a protein of 100 amino acids with deduced molecular mass of 11.06 kDa and a theoretical isoelectric point (pI) of 6.0. The alignment of genome DNA (accession No. MF153097) and cDNA sequences of BnCPI showed that an intron (~104 bp) exists in the coding region. The BnCPI protein contains most of the highly conserved blocks including Gly5-Gly6 at the N-terminal, the reactive site motif QxVxG (Q49V50V51S52G53), the L79-W80 block and the [LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N (L22G23R24 F25A26V27 D28D29H30 N31) block that is common among plant cystatins. BLAST analysis indicated that BnCPI is similar to cystatins from Glycine max (77%), Glycine soja (76%), Hevea brasiliensis (75%) and Ricinus communis (75%). The BnCPI was subcloned into expression vector pSmart-I and then overexpressed in Escherichia coli BL21 (DE3) as a His-tagged recombinant protein. The purified reBnCPI has a molecular mass of 11.4 kDa determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Purified reBnCPI can efficiently inhibit the protease activity of papain and ficin toward BANA (Nα-benzoyl-L-arginine-2-naphthyamide), as well as the mycelium growth of some important plant pathogenic fungi. The data further contribute to our understanding of the molecular functions of BnCPI.
Collapse
|
11
|
Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice. Exp Mol Med 2017; 49:e370. [PMID: 28857085 PMCID: PMC5579512 DOI: 10.1038/emm.2017.122] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic high-salt diet-associated renal injury is a key risk factor for the development of hypertension. However, the mechanism by which salt triggers kidney damage is poorly understood. Our study investigated how high salt (HS) intake triggers early renal injury by considering the ‘gut-kidney axis’. We fed mice 2% NaCl in drinking water continuously for 8 weeks to induce early renal injury. We found that the ‘quantitative’ and ‘qualitative’ levels of the intestinal microflora were significantly altered after chronic HS feeding, which indicated the occurrence of enteric dysbiosis. In addition, intestinal immunological gene expression was impaired in mice with HS intake. Gut permeability elevation and enteric bacterial translocation into the kidney were detected after chronic HS feeding. Gut bacteria depletion by non-absorbable antibiotic administration restored HS loading-induced gut leakiness, renal injury and systolic blood pressure elevation. The fecal microbiota from mice fed chronic HS could independently cause gut leakiness and renal injury. Our current work provides a novel insight into the mechanism of HS-induced renal injury by investigating the role of the intestine with enteric bacteria and gut permeability and clearly illustrates that chronic HS loading elicited renal injury and dysfunction that was dependent on the intestine.
Collapse
|
12
|
Vieira P, Mowery J, Kilcrease J, Eisenback JD, Kamo K. Characterization of Lilium longiflorum cv. 'Nellie White' Infection with Root-lesion Nematode Pratylenchus penetrans by Bright-field and Transmission Electron Microscopy. J Nematol 2017; 49:2-11. [PMID: 28512372 PMCID: PMC5411250 DOI: 10.21307/jofnem-2017-040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 11/11/2022] Open
Abstract
Lilium longiflorum cv. Nellie White, commonly known as Easter lily, is an important floral crop with an annual wholesale value of over $26 million in the United States. The root-lesion nematode, Pratylenchus penetrans, is a major pest of lily due to the significant root damage it causes. In this study, we investigated the cytological aspects of this plant-nematode interaction using bright-field and transmission electron microscopy. We took advantage of an in vitro culture method to multiply lilies and follow the nematode infection over time. Phenotypic reactions of roots inoculated with P. penetrans were evaluated from 0 to 60 d after nematode infection. Symptom development progressed from initial randomly distributed discrete necrotic areas to advanced necrosis along entire roots of each inoculated plant. A major feature characterizing this susceptible host response to nematode infection was the formation of necrosis, browning, and tissue death involving both root epidermis and cortical cells. Degradation of consecutive cell walls resulted in loss of cell pressure, lack of cytoplasmic integrity, followed by cell death along the intracellular path of the nematode's migration. Pratylenchus penetrans was never seen in the vascular cylinder as the layer of collapsed endodermal cells presumably blocked the progression of nematodes into this area of the roots. This study presents the first detailed cytological characterization of P. penetrans infection of Easter lily plants.
Collapse
Affiliation(s)
- Paulo Vieira
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture, Beltsville, MD 20705-2350
| | - Joseph Mowery
- Electron and Confocal Microscopy Unit, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705-2350
| | - James Kilcrease
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture, Beltsville, MD 20705-2350
| | - Jonathan D Eisenback
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
| | - Kathryn Kamo
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture, Beltsville, MD 20705-2350
| |
Collapse
|
13
|
Fosu-Nyarko J, Jones MGK. Advances in Understanding the Molecular Mechanisms of Root Lesion Nematode Host Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:253-78. [PMID: 27296144 DOI: 10.1146/annurev-phyto-080615-100257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root lesion nematodes (RLNs) are one of the most economically important groups of plant nematodes. As migratory endoparasites, their presence in roots is less obvious than infestations of sedentary endoparasites; nevertheless, in many instances, they are the major crop pests. With increasing molecular information on nematode parasitism, available data now reflect the differences and, in particular, similarities in lifestyle between migratory and sedentary endoparasites. Far from being unsophisticated compared with sedentary endoparasites, migratory endoparasites are exquisitely suited to their parasitic lifestyle. What they lack in effectors required for induction of permanent feeding sites, they make up for with their versatile host range and their ability to move and feed from new host roots and survive adverse conditions. In this review, we summarize the current molecular data available for RLNs and highlight differences and similarities in effectors and molecular mechanisms between migratory and sedentary endoparasitic nematodes.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| | - Michael G K Jones
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| |
Collapse
|
14
|
Transcriptome Analysis of Ramie (Boehmeria nivea L. Gaud.) in Response to Ramie Moth (Cocytodes coerulea Guenée) Infestation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3702789. [PMID: 27034936 PMCID: PMC4789370 DOI: 10.1155/2016/3702789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/13/2015] [Accepted: 02/01/2016] [Indexed: 11/27/2022]
Abstract
The ramie moth Cocytodes coerulea Guenée (RM) is an economically important pest that seriously impairs the yield of ramie, an important natural fiber crop. The molecular mechanisms that underlie the ramie-pest interactions are unclear up to date. Therefore, a transcriptome profiling analysis would aid in understanding the ramie defense mechanisms against RM. In this study, we first constructed two cDNA libraries derived from RM-challenged (CH) and unchallenged (CK) ramie leaves. The subsequent sequencing of the CH and CK libraries yielded 40.2 and 62.8 million reads, respectively. Furthermore, de novo assembling of these reads generated 26,759 and 29,988 unigenes, respectively. An integrated assembly of data from these two libraries resulted in 46,533 unigenes, with an average length of 845 bp per unigene. Among these genes, 24,327 (52.28%) were functionally annotated by predicted protein function. A comparative analysis of the CK and CH transcriptome profiles revealed 1,980 differentially expressed genes (DEGs), of which 750 were upregulated and 1,230 were downregulated. A quantitative real-time PCR (qRT-PCR) analysis of 13 random selected genes confirmed the gene expression patterns that were determined by Illumina sequencing. Among the DEGs, the expression patterns of transcription factors, protease inhibitors, and antioxidant enzymes were studied. Overall, these results provide useful insights into the defense mechanism of ramie against RM.
Collapse
|