1
|
Arai K, Qi H, Inoue-Murayama M. Age estimation of captive Asian elephants (Elephas maximus) based on DNA methylation: An exploratory analysis using methylation-sensitive high-resolution melting (MS-HRM). PLoS One 2023; 18:e0294994. [PMID: 38079426 PMCID: PMC10712859 DOI: 10.1371/journal.pone.0294994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Age is an important parameter for bettering the understanding of biodemographic trends-development, survival, reproduction and environmental effects-critical for conservation. However, current age estimation methods are challenging to apply to many species, and no standardised technique has been adopted yet. This study examined the potential use of methylation-sensitive high-resolution melting (MS-HRM), a labour-, time-, and cost-effective method to estimate chronological age from DNA methylation in Asian elephants (Elephas maximus). The objective of this study was to investigate the accuracy and validation of MS-HRM use for age determination in long-lived species, such as Asian elephants. The average lifespan of Asian elephants is between 50-70 years but some have been known to survive for more than 80 years. DNA was extracted from 53 blood samples of captive Asian elephants across 11 zoos in Japan, with known ages ranging from a few months to 65 years. Methylation rates of two candidate age-related epigenetic genes, RALYL and TET2, were significantly correlated with chronological age. Finally, we established a linear, unisex age estimation model with a mean absolute error (MAE) of 7.36 years. This exploratory study suggests an avenue to further explore MS-HRM as an alternative method to estimate the chronological age of Asian elephants.
Collapse
Affiliation(s)
- Kana Arai
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Huiyuan Qi
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
2
|
Armstrong MJ, Jin Y, Vattathil SM, Huang Y, Schroeder JP, Bennet DA, Qin ZS, Wingo TS, Jin P. Role of TET1-mediated epigenetic modulation in Alzheimer's disease. Neurobiol Dis 2023; 185:106257. [PMID: 37562656 PMCID: PMC10530206 DOI: 10.1016/j.nbd.2023.106257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder influenced by a complex interplay of environmental, epigenetic, and genetic factors. DNA methylation (5mC) and hydroxymethylation (5hmC) are DNA modifications that serve as tissue-specific and temporal regulators of gene expression. TET family enzymes dynamically regulate these epigenetic modifications in response to environmental conditions, connecting environmental factors with gene expression. Previous epigenetic studies have identified 5mC and 5hmC changes associated with AD. In this study, we performed targeted resequencing of TET1 on a cohort of early-onset AD (EOAD) and control samples. Through gene-wise burden analysis, we observed significant enrichment of rare TET1 variants associated with AD (p = 0.04). We also profiled 5hmC in human postmortem brain tissues from AD and control groups. Our analysis identified differentially hydroxymethylated regions (DhMRs) in key genes responsible for regulating the methylome: TET3, DNMT3L, DNMT3A, and MECP2. To further investigate the role of Tet1 in AD pathogenesis, we used the 5xFAD mouse model with a Tet1 KO allele to examine how Tet1 loss influences AD pathogenesis. We observed significant changes in neuropathology, 5hmC, and RNA expression associated with Tet1 loss, while the behavioral alterations were not significant. The loss of Tet1 significantly increased amyloid plaque burden in the 5xFAD mouse (p = 0.044) and lead to a non-significant trend towards exacerbated AD-associated stress response in 5xFAD mice. At the molecular level, we found significant DhMRs enriched in genes involved in pathways responsible for neuronal projection organization, dendritic spine development and organization, and myelin assembly. RNA-Seq analysis revealed a significant increase in the expression of AD-associated genes such as Mpeg1, Ctsd, and Trem2. In conclusion, our results suggest that TET enzymes, particularly TET1, which regulate the methylome, may contribute to AD pathogenesis, as the loss of TET function increases AD-associated pathology.
Collapse
Affiliation(s)
- Matthew J Armstrong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yulin Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Selina M Vattathil
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yanting Huang
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
| | - Jason P Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David A Bennet
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Thomas S Wingo
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
3
|
Yano N, Fedulov AV. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines 2023; 11:biomedicines11051334. [PMID: 37239005 DOI: 10.3390/biomedicines11051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen in a plethora of pathological conditions including cardiovascular, neurological, immunological, gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for experimental and therapeutic DNA demethylation have a great potential to demonstrate mechanistic importance, and even causality of epigenetic alterations, and may open novel avenues to epigenetic cures. However, existing methods based on DNA methyltransferase inhibitors that elicit genome-wide demethylation are not suitable for treatment of diseases with specific epimutations and provide a limited experimental value. Therefore, gene-specific epigenetic editing is a critical approach for epigenetic re-activation of silenced genes. Site-specific demethylation can be achieved by utilizing sequence-dependent DNA-binding molecules such as zinc finger protein array (ZFA), transcription activator-like effector (TALE) and clustered regularly interspaced short palindromic repeat-associated dead Cas9 (CRISPR/dCas9). Synthetic proteins, where these DNA-binding domains are fused with the DNA demethylases such as ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG) enzymes, successfully induced or enhanced transcriptional responsiveness at targeted loci. However, a number of challenges, including the dependence on transgenesis for delivery of the fusion constructs, remain issues to be solved. In this review, we detail current and potential approaches to gene-specific DNA demethylation as a novel epigenetic editing-based therapeutic strategy.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
4
|
Sager SG, Turkyilmaz A, Gunbey HP, Karatoprak EY, Aslan ES, Akın Y. A novel de novo TET3 loss-of-function variant in a Turkish boy presenting with neurodevelopmental delay and electrical status epilepticus during slow-wave sleep. Brain Dev 2023; 45:140-145. [PMID: 36192301 DOI: 10.1016/j.braindev.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Beck-Fahrner syndrome is caused by homozygous or heterozygous mutations in TET3 on chromosome 2p13. The general characteristics of this syndrome include behavioral abnormalities such as autistic features, attention-deficit hyperactivity disorder, learning disabilities, and epilepsy. CASE PRESENTATION Six years old male patient was found to have a de novo TET3 loss-of-function variant by whole-exome sequencing (WES) analysis and was diagnosed with electrical status epilepticus during slow-wave sleep (ESES) based on clinical and electroencephalogram (EEG) characteristics. The patient had a neurodevelopmental delay from the age of 3 months and started experiencing generalized tonic-clonic seizures and regression at the age of 5 years. EEG findings were consistent with ESES, and WES analysis revealed a novel heterozygous nonsense NM_001366022.1:c.1594C > T (p.Arg532*) variant in TET3. Valproic acid and immunotherapy were administered for the first 6 months, and clobazam was administered orally in addition to oral valproic acid therapy for the next 6 months. Clinical improvement was noted regardless of EEG improvement for the first 6 months. EEG improvement was achieved with clobazam. No regression was observed following the discontinuation of immunotherapy. CONCLUSION Decreased TET3 enzyme activity may be one of the new genetic etiologies of ESES.
Collapse
Affiliation(s)
- Safiye Gunes Sager
- Department of Pediatric Neurology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey.
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Hediye Pınar Gunbey
- Department of Radiology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| | - Elif Yuksel Karatoprak
- Department of Pediatric Neurology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Elif Sibel Aslan
- Department of Molecular Biology and Genetics, Biruni University, İstanbul, Turkey
| | - Yasemin Akın
- Department of Pediatrics, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Sung WY, Lin YZ, Hwang DY, Lin CH, Li RN, Tseng CC, Wu CC, Ou TT, Yen JH. Methylation of TET2 Promoter Is Associated with Global Hypomethylation and Hypohydroxymethylation in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Diagnostics (Basel) 2022; 12:diagnostics12123006. [PMID: 36553013 PMCID: PMC9776498 DOI: 10.3390/diagnostics12123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
(1) Background: It is widely accepted that aberrant methylation patterns contribute to the development of systemic lupus erythematosus (SLE). Ten-eleven translocation (TET) methylcytosine dioxygenase is an essential enzyme of which there are three members, TET1, 2, and 3, involved in hydroxymethylation, a newly uncovered mechanism of active DNA methylation. The epigenomes of gene transcription are regulated by 5-hydroxymethylcytocine (5-hmC) and TETs, leading to dysregulation of the immune system in SLE. The purpose of this study was to investigate the global hydroxymethylation status in SLE peripheral blood mononuclear cells (PBMCs) and to explore the role of TETs in changing the patterns of methylation. (2) Methods: We collected PBMCs from 101 SLE patients and 100 healthy donors. TaqMan real-time polymerase chain-reaction assay was performed for the detection of 5-methylcytosine (5-mC), 5-hmC, and TET2 mRNA expression and single-nucleotide polymorphism genotyping. The methylation rates in different CpG sites of TET2 promoters were examined using next-generation sequencing-based deep bisulfite sequencing. Putative transcription factors were investigated using the UCSC Genome Browser on the Human Dec. 2013 (GRCh38/hg38) Assembly. (3) Results: 5-mC and 5-hmC were both decreased in SLE. The mRNA expression level of TET2 was notably high and found to be correlated with the levels of immunologic biomarkers that are indicative of SLE disease activity. The analysis of methylation rates in the TET2 promoter revealed that SLE patients had significantly higher and lower rates of methylation in TET2 105146072-154 and TET2 105146218-331, respectively. (4) Conclusions: TET2 may play an important role in 5-mC/5-hmC dynamics in the PBMCs of SLE patients. The epigenetic modification of TET2 promoters could contribute to the pathogenesis of SLE and the intensity of the immunologic reaction.
Collapse
Affiliation(s)
- Wan-Yu Sung
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (W.-Y.S.); (J.-H.Y.)
| | - Yuan-Zhao Lin
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 350401, Taiwan
- Division of Nephrology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chia-Hui Lin
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chia-Chun Tseng
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Jeng-Hsien Yen
- Division of Rheumatology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (W.-Y.S.); (J.-H.Y.)
| |
Collapse
|
6
|
Sappa S, Dey D, Sudhamalla B, Islam K. Catalytic Space Engineering as a Strategy to Activate C-H Oxidation on 5-Methylcytosine in Mammalian Genome. J Am Chem Soc 2021; 143:11891-11896. [PMID: 34323479 DOI: 10.1021/jacs.1c03815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conditional remodeling of enzyme catalysis is a formidable challenge in protein engineering. Herein, we have undertaken a unique active site engineering tactic to command catalytic outcomes. With ten-eleven translocation (TET) enzyme as a paradigm, we show that variants with an expanded active site significantly enhance multistep C-H oxidation in 5-methylcytosine (5mC), whereas a crowded cavity leads to a single-step catalytic apparatus. We further identify an evolutionarily conserved residue in the TET family with a remarkable catalysis-directing ability. The activating variant demonstrated its prowess to oxidize 5mC in chromosomal DNA for potentiating expression of genes including tumor suppressors.
Collapse
Affiliation(s)
- Sushma Sappa
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Debasis Dey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Babu Sudhamalla
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Angeloni A, Bogdanovic O. Sequence determinants, function, and evolution of CpG islands. Biochem Soc Trans 2021; 49:1109-1119. [PMID: 34156435 PMCID: PMC8286816 DOI: 10.1042/bst20200695] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
In vertebrates, cytosine-guanine (CpG) dinucleotides are predominantly methylated, with ∼80% of all CpG sites containing 5-methylcytosine (5mC), a repressive mark associated with long-term gene silencing. The exceptions to such a globally hypermethylated state are CpG-rich DNA sequences called CpG islands (CGIs), which are mostly hypomethylated relative to the bulk genome. CGIs overlap promoters from the earliest vertebrates to humans, indicating a concerted evolutionary drive compatible with CGI retention. CGIs are characterised by DNA sequence features that include DNA hypomethylation, elevated CpG and GC content and the presence of transcription factor binding sites. These sequence characteristics are congruous with the recruitment of transcription factors and chromatin modifying enzymes, and transcriptional activation in general. CGIs colocalize with sites of transcriptional initiation in hypermethylated vertebrate genomes, however, a growing body of evidence indicates that CGIs might exert their gene regulatory function in other genomic contexts. In this review, we discuss the diverse regulatory features of CGIs, their functional readout, and the evolutionary implications associated with CGI retention in vertebrates and possibly in invertebrates.
Collapse
Affiliation(s)
- Allegra Angeloni
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, Australia
| |
Collapse
|
8
|
Zhu T, Brown AP, Ji H. The Emerging Role of Ten-Eleven Translocation 1 in Epigenetic Responses to Environmental Exposures. Epigenet Insights 2020; 13:2516865720910155. [PMID: 32166220 PMCID: PMC7054729 DOI: 10.1177/2516865720910155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Mounting evidence from epidemiological studies and animal models has linked exposures to environmental factors to changes in epigenetic markers, especially in DNA methylation. These epigenetic changes may lead to dysregulation of molecular processes and functions and mediate the impact of environmental exposures in complex diseases. However, detailed molecular events that result in epigenetic changes following exposures remain unclear. Here, we review the emerging evidence supporting a critical role of ten-eleven translocation 1 (TET1) in mediating these processes. Targeting TET1 and its associated pathways may have therapeutic potential in alleviating negative impacts of environmental exposures, preventing and treating exposure-related diseases.
Collapse
Affiliation(s)
- Tao Zhu
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
| | - Anthony P Brown
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
| | - Hong Ji
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
- Department of Anatomy, Physiology &
Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,
USA
| |
Collapse
|
9
|
Liu J, Hu H, Panserat S, Marandel L. Evolutionary history of DNA methylation related genes in chordates: new insights from multiple whole genome duplications. Sci Rep 2020; 10:970. [PMID: 31969623 PMCID: PMC6976628 DOI: 10.1038/s41598-020-57753-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mechanism involved in many biological processes, i.e. gametogenesis and embryonic development. However, increased copy numbers of DNA methylation related genes (dnmt, tet and tdg) have been found during chordate evolution due to successive whole genome duplication (WGD) events. Their evolutionary history and phylogenetic relationships remain unclear. The present study is the first to clarify the evolutionary history of DNA methylation genes in chordates. In particular, our results highlight the fixation of several dnmt3-related genes following successive WGD throughout evolution. The rainbow trout genome offered a unique opportunity to study the early evolutionary fates of duplicated genes due to a recent round of WGD at the radiation of salmonids. Differences highlighted in transcriptional patterns of these genes during gametogenesis and ontogenesis in trout indicated that they might be subjected to sub- or neo-functionalisation after WDG. The fixation of multiple dnmt3 genes in genomes after WGD could contribute to the diversification and plastic adaptation of the teleost.
Collapse
Affiliation(s)
- Jingwei Liu
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Huihua Hu
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Stéphane Panserat
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France.
| |
Collapse
|
10
|
TET enzymes, DNA demethylation and pluripotency. Biochem Soc Trans 2019; 47:875-885. [DOI: 10.1042/bst20180606] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Ten-eleven translocation (TET) methylcytosine dioxygenases (TET1, TET2, TET3) actively cause demethylation of 5-methylcytosine (5mC) and produce and safeguard hypomethylation at key regulatory regions across the genome. This 5mC erasure is particularly important in pluripotent embryonic stem cells (ESCs) as they need to maintain self-renewal capabilities while retaining the potential to generate different cell types with diverse 5mC patterns. In this review, we discuss the multiple roles of TET proteins in mouse ESCs, and other vertebrate model systems, with a particular focus on TET functions in pluripotency, differentiation, and developmental DNA methylome reprogramming. Furthermore, we elaborate on the recently described non-catalytic roles of TET proteins in diverse biological contexts. Overall, TET proteins are multifunctional regulators that through both their catalytic and non-catalytic roles carry out myriad functions linked to early developmental processes.
Collapse
|
11
|
Liu D, Li G, Zuo Y. Function determinants of TET proteins: the arrangements of sequence motifs with specific codes. Brief Bioinform 2019; 20:1826-1835. [DOI: 10.1093/bib/bby053] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Abstract
The ten-eleven translocation (TET) proteins play a crucial role in promoting locus-specific reversal of DNA methylation, a type of chromatin modification. Considerable evidences have demonstrated that the sequence motifs with specific codes are important to determine the functions of domains and active sites. Here, we surveyed major studies and reviews regarding the multiple functions of the TET proteins and established the patterns of the motif arrangements that determine the functions of TET proteins. First, we summarized the functional sequence basis of TET proteins and identified the new functional motifs based on the phylogenetic relationship. Next, we described the sequence characteristics of the functional motifs in detail and provided an overview of the relationship between the sequence motifs and the functions of TET proteins, including known functions and potential functions. Finally, we highlighted that sequence motifs with diverse post-translational modifications perform unique functions, and different selection pressures lead to different arrangements of sequence motifs, resulting in different paralogs and isoforms.
Collapse
Affiliation(s)
- Dongyang Liu
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongchun Zuo
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
12
|
Parker MJ, Weigele PR, Saleh L. Insights into the Biochemistry, Evolution, and Biotechnological Applications of the Ten-Eleven Translocation (TET) Enzymes. Biochemistry 2019; 58:450-467. [PMID: 30571101 DOI: 10.1021/acs.biochem.8b01185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A tight link exists between patterns of DNA methylation at carbon 5 of cytosine and differential gene expression in mammalian tissues. Indeed, aberrant DNA methylation results in various human diseases, including neurologic and immune disorders, and contributes to the initiation and progression of various cancers. Proper DNA methylation depends on the fidelity and control of the underlying mechanisms that write, maintain, and erase these epigenetic marks. In this Perspective, we address one of the key players in active demethylation: the ten-eleven translocation enzymes or TETs. These enzymes belong to the Fe2+/α-ketoglutarate-dependent dioxygenase superfamily and iteratively oxidize 5-methylcytosine (5mC) in DNA to produce 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. The latter three bases may convey additional layers of epigenetic information in addition to being intermediates in active demethylation. Despite the intense interest in understanding the physiological roles TETs play in active demethylation and cell regulation, less has been done, in comparison, to illuminate details of the chemistry and factors involved in regulating the three-step oxidation mechanism. Herein, we focus on what is known about the biochemical features of TETs and explore questions whose answers will lead to a more detailed understanding of the in vivo modus operandi of these enzymes. We also summarize the membership and evolutionary history of the TET/JBP family and highlight the prokaryotic homologues as a reservoir of potentially diverse functionalities awaiting discovery. Finally, we spotlight sequencing methods that utilize TETs for mapping 5mC and its oxidation products in genomic DNA and comment on possible improvements in these approaches.
Collapse
Affiliation(s)
- Mackenzie J Parker
- Research Department , New England Biolabs, Inc. , 240 County Road , Ipswich , Massachusetts 01938 , United States
| | - Peter R Weigele
- Research Department , New England Biolabs, Inc. , 240 County Road , Ipswich , Massachusetts 01938 , United States
| | - Lana Saleh
- Research Department , New England Biolabs, Inc. , 240 County Road , Ipswich , Massachusetts 01938 , United States
| |
Collapse
|
13
|
Ran H, Wohlgemuth V, Xie X, Li SM. A Nonheme Fe II/2-Oxoglutarate-Dependent Oxygenase Catalyzes a Double Bond Migration within a Dimethylallyl Moiety Accompanied by Hydroxylation. ACS Chem Biol 2018; 13:2949-2955. [PMID: 30226371 DOI: 10.1021/acschembio.8b00588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prenylation of cyclodipeptides contributes largely to the structure diversification and biological activity. The prenylated products can be further metabolized by modifications like hydroxylation with cytochrome P450 enzymes or nonheme FeII/2-oxoglutarate-dependent oxygenases. Herein, we cloned and overexpressed NFIA_045530 from Neosartorya fischeri, which shares high sequence similarity with the nonheme FeII/2-oxoglutarate-dependent oxygenase FtmOx1Af from Aspergillus fumigatus on the amino acid level. FtmOx1Af is a member of the biosynthetic enzymes for fumitremorgin-type mycotoxins and catalyzes the conversion of fumitremorgin B to verruculogen by insertion of an oxygen molecule into the two prenyl moieties. The recombinant protein EAW25734 encoded by NFIA_045530 was purified to apparent homogeneity and then was used for incubation with intermediates of the fumitremorgin biosynthetic pathway. LC-MS analysis revealed no consumption of fumitremorgin B but good conversion with its biosynthetic precursor tryprostatin B in the presence of FeII and 2-oxoglutarate. Structure elucidation confirmed 22-hydroxylisotryprostatin B and 14α, 22-dihydroxylisotryprostatin B as the major enzyme products. Further detailed biochemical characterization led to the identification of a novel enzyme, which catalyzes a double bond migration within the dimethylallyl moiety of tryprostatin B with concomitant hydroxylation. Incubation with 18O2-enriched atmosphere confirmed O2 as the major origin of the hydroxyl groups. Solvent exchange was also observed for that at C22. LC-MS analysis confirmed the presence of 22-hydroxylisotryprostatin B in a Neosartorya fischeri extract, highlighting the role of this enzyme in the metabolism of intermediates of the fumitremorgin/verruculogen pathway. A plausible reaction mechanism implementing a radical rearrangement prior to accepting a hydroxyl radical from FeIII is discussed.
Collapse
Affiliation(s)
- Huomiao Ran
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Viola Wohlgemuth
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
14
|
Fellous A, Labed‐Veydert T, Locrel M, Voisin A, Earley RL, Silvestre F. DNA methylation in adults and during development of the self-fertilizing mangrove rivulus, Kryptolebias marmoratus. Ecol Evol 2018; 8:6016-6033. [PMID: 29988456 PMCID: PMC6024129 DOI: 10.1002/ece3.4141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to genetic variation, epigenetic mechanisms such as DNA methylation might make important contributions to heritable phenotypic diversity in populations. However, it is often difficult to disentangle the contributions of genetic and epigenetic variation to phenotypic diversity. Here, we investigated global DNA methylation and mRNA expression of the methylation-associated enzymes during embryonic development and in adult tissues of one natural isogenic lineage of mangrove rivulus fish, Kryptolebias marmoratus. Being the best-known self-fertilizing hermaphroditic vertebrate affords the opportunity to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. Using the LUminometric Methylation Assay (LUMA), we described variable global DNA methylation at CpG sites in adult tissues, which differed significantly between hermaphrodite ovotestes and male testes (79.6% and 87.2%, respectively). After fertilization, an immediate decrease in DNA methylation occurred to 15.8% in gastrula followed by re-establishment to 70.0% by stage 26 (liver formation). Compared to zebrafish, at the same embryonic stages, this reprogramming event seems later, deeper, and longer. Furthermore, genes putatively encoding DNA methyltransferases (DNMTs), Ten-Eleven Translocation (TET), and MeCP2 proteins showed specific regulation in adult gonad and brain, and also during early embryogenesis. Their conserved domains and expression profiles suggest that these proteins play important roles during reproduction and development. This study raises questions about mangrove rivulus' peculiar reprogramming period in terms of epigenetic transmission and physiological adaptation of individuals to highly variable environments. In accordance with the general-purpose genotype model, epigenetic mechanisms might allow for the expression of diverse phenotypes among genetically identical individuals. Such phenotypes might help to overcome environmental challenges, making the mangrove rivulus a valuable vertebrate model for ecological epigenetic studies. The mangrove rivulus, Kryptolebias marmoratus, is the best-known self-fertilizing hermaphroditic vertebrate that allows to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. The reprogramming event is later, more dramatic and longer than in other described vertebrates. High evolutionary conservation and expression patterns of DNMT, TET, and MeCP2 proteins in K. marmoratus suggest biological roles for each member in gametogenesis and development.
Collapse
Affiliation(s)
- Alexandre Fellous
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Tiphaine Labed‐Veydert
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Mélodie Locrel
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Anne‐Sophie Voisin
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Ryan L. Earley
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Frederic Silvestre
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| |
Collapse
|
15
|
Developing a colorimetric assay for Fe(II)/2-oxoglutarate-dependent dioxygenase. Anal Biochem 2018; 548:109-114. [DOI: 10.1016/j.ab.2018.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 01/27/2023]
|
16
|
A network-based analysis of the human TET Gene Family. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|