1
|
Gebreyohannes G, Sbhatu DB, Nyerere A, Bii C, Gebrehiwot AG. Wild Mushrooms: Potential Natural Sources of Antioxidant and Anti-Quorum Sensing Bioactive Compounds for Medical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6141646. [PMID: 37899907 PMCID: PMC10602707 DOI: 10.1155/2023/6141646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
Objective This study was aimed at determining the antioxidant, anti-quorum sensing, and in vitro cytotoxic activities of five wild mushroom extracts. Methods Wild mushrooms of Auricularia auricula-judae, Termitomyces umkowaani, Trametes elegans, Trametes versicolor, and Microporus xanthopus were collected from Arabuko-Sokoke and Kakamega National Forests, in Kenya. Specimens were identified and extracted using chloroform (CHL), 70% ethanol (Eth), and hot water (HW) solvents. Antioxidant and cytotoxic activities of the extracts were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Vero cell lines, respectively, while anti-quorum sensing activities were tested against Chromobacterium violaceum. All data were compared using relevant descriptive and inferential statistics at a significance level of p ≤ 0.05. Results A total of 35 wild mushrooms were collected, identified, and classified into 14 genera. Among screened mycochemicals, fatty acids, flavonoids, polyphenols, and saponins were detected at higher concentrations. The highest free radical scavenging activities of A. auricula-judae, T. umkowaani, T. elegans, and T. versicolor were observed in 70% Eth extract with the percentage values of 76.40 ± 0.12%, 68.40 ± 0.01%, 62.40 ± 0.07%, and 66.40 ± 0.04%, respectively, whereas the HW extract of Microporus xanthopus showed free radical scavenging activity at 65.90 ± 0.02%. None of the extracts, at the tested concentrations (up to 1000 µg/mL), had shown cytotoxic activity against the Vero cell line. The HW extract of T. umkowaani and the 70% Eth extract of T. versicolor showed a statistically significant difference in the inhibitory activity of violacein production against C. violaceum at the concentration of 200 µg/mL. Conclusions The antioxidant activity of wild mushrooms can help to tackle the diseases caused by free radicals. The anti-quorum sensing potential of wild mushrooms could also provide future alternatives to conventional drug therapies cost-effectively. Further detailed chemistry of the bioactive compounds and their possible mechanisms of action responsible for the observed antioxidant and anti-quorum sensing activities are needed.
Collapse
Affiliation(s)
- Gebreselema Gebreyohannes
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Ethiopia
| | - Desta Berhe Sbhatu
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Ethiopia
| | - Andrew Nyerere
- Department of Medical Microbiology, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Christine Bii
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | |
Collapse
|
2
|
Song Y, Su D, Yang Y, Zeng Q, Liao L, Chen C, Yang M, Zhu G, Zhang R, Ai Z, Li Y. Two Species Origins Comparison of Herba Patriniae based on Their Ingredients Profile by UPLC-QTOF/MS/MS and Orthogonal Partial Least Squares Discriminant Analysis. Chem Biodivers 2022; 19:e202100961. [PMID: 35979749 DOI: 10.1002/cbdv.202100961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/15/2022] [Indexed: 11/10/2022]
Abstract
Herba Patriniae (HP) is widely used as a medicinal and edible material in China. Besides food value, HP attracts more attention due to its medicinal potential. Patrinia villosa Juss. ( PV ) and Patrinia scabiosaefolia Fisch. ( PS ) are the two species origins of HP. These two of HP show different effects on cell proliferation, migration, angiogenesis and anti-diabetic. As we have previously reported, PV and PS show significant differences on their anti-inflammatory ability in the same experimental model. Comparing the ingredient profiles of two different sources will not only facilitate the understanding of their medicinal effects, but also help the development and research of new activities. However, still now, there is no systematic and detailed study to compare the components of PV and PS . In present study, ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was employed to achieve a high-throughput qualitative and thorough analysis of the chemical composition spectrum of HP. A total of 164 compounds were identified, among these compounds, 127 compounds were identified from PV , and 107 compounds were identified from PS . Most of the chemical components was discovered for the first time. Flavonoids, saponins, terpenoids and organic acids, as the main ingredients in PV and PS were 45.45%vs 28.46%, 12.61% vs 32.09%, 14.33% vs 22.38% and 14.58% vs 6.79%, respectively. Flavonoids are the main components of PV , while PS is rich in saponins. PV and PS were classified into two groups by principal component analysis (PCA) and screened out the main molecular differences responsible by orthogonal partial least squares discriminant analysis (OPLS-DA). All the results will be a guide for the quality control, functional activity research, or better clinic use based on the ingredients profile between these two species. Besides, this first study on ingredients profile of two species origins will be beneficial for potential and best resources utilization of both PV and PS .
Collapse
Affiliation(s)
- Yonggui Song
- Jiangxi University of Traditional Chinese Medicine, Laboratory Animal Science and Technology Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, 330000, Nanchang, CHINA
| | - Da Su
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Yanyan Yang
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Qiang Zeng
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Liangliang Liao
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Changlian Chen
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Genhua Zhu
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Ruowen Zhang
- Shenzhen Honsan Health Industry Group, Shenzhen Honsan Health Industry Group, 2028 Shenyan Road, Haishan street, Shenzhen, China, Shenzhen, CHINA
| | - Zhifu Ai
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| | - Yanzhen Li
- Jiangxi University of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Nanchang, CHINA
| |
Collapse
|
3
|
Ruan X, Li W, Du P, Wang Y. Mechanism of Phellodendron and Anemarrhena Drug Pair on the Treatment of Liver Cancer Based on Network Pharmacology and Bioinformatics. Front Oncol 2022; 12:838152. [PMID: 35463358 PMCID: PMC9021729 DOI: 10.3389/fonc.2022.838152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background This study aims to explore the key targets and signaling pathways of the traditional Chinese medicine Phellodendron and Anemarrhena drug pair (PADP) for the treatment of liver cancer. Methods Firstly, bioinformatics technology was used to analyze GSE62232 gene chip to obtain the differential genes of liver cancer. A network pharmacology technology was used to find the active components of PADP and their targets. Secondly, the differential genes were imported into STRING database to draw a PPI network, and network topology structure map combined with Cytoscape software. And the R language was used to identify differential gene targets and pathways through GO and KEGG pathway enrichment analysis. In addition, AutoDock Vina was used for molecular docking of core targets and core compounds. Moreover, GEPIA online analysis tool was used to perform survival analysis of the core target genes. Finally, RT-PCR was used to verify the changes of key target genes. CCK−8 assay was performed to detect cell proliferation. Flow cytometry was performed to detect the cell cycle and apoptotic. Transwell invasion assay was performed to detect cell invasion. Results Firstly, a total of 21,654 genes were obtained. After screening, 1019 differential genes were obtained, including 614 down-regulated genes and 405 up-regulated genes. Furthermore, after screening by ADME standards, 52 active ingredients were obtained, of which 37 were Phellodendron and 15 were Anemarrhena. And a total of 36 differential genes have been identified, including 13 up-regulated genes and 23 down-regulated genes. Moreover, through enrichment analysis, we found that PADP may treat liver cancer through multiple channels and multiple pathways including the p53 signaling pathway, IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway and so on. Secondly, the molecular docking results showed that there was certain affinity between the core compounds and core target genes. In addition, GEPIA online analysis showed that ESR1, AR, CCNB1, CDK1, AKR1C3 and CCNA2 might become potential target genes for the survival and prognosis of PADP for the treatment of liver cancer. Finally, it was found that PADP could up regulate genes ESR1 and AR, down regulate genes CCNB1, CDK1, AKR1C3, and CCNA2. PADP could promote the apoptosis of liver cancer cells, shorten the cell cycle, and inhibit the proliferation and invasion of liver cancer cells. Conclusion PADP may treat liver cancer through multiple targets, multiple channels, and multiple pathways, thereby suppressing cancer cells and improving the living quality of patients.
Collapse
Affiliation(s)
- Xiaofeng Ruan
- College of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, China.,Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Du
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Fetouhi A, Sujak A, Bentallah L, Nawrocka A, Szymańska-Chargot M, Tomczyńska-Mleko M, Wójtowicz A, Zidoune M. Development of New Gluten-Free Maize-Field Bean Bread Dough: Relationships Between Rheological Properties and Structure of Non-Gluten Proteins. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/135800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Trzciński JW, Morillas-Becerril L, Scarpa S, Tannorella M, Muraca F, Rastrelli F, Castellani C, Fedrigo M, Angelini A, Tavano R, Papini E, Mancin F. Poly(lipoic acid)-Based Nanoparticles as Self-Organized, Biocompatible, and Corona-Free Nanovectors. Biomacromolecules 2020; 22:467-480. [PMID: 33347750 PMCID: PMC8016167 DOI: 10.1021/acs.biomac.0c01321] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Herein
we present an innovative approach to produce biocompatible,
degradable, and stealth polymeric nanoparticles based on poly(lipoic
acid), stabilized by a PEG-ended surfactant. Taking advantage of the
well-known thiol-induced polymerization of lipoic acid, a universal
and nontoxic nanovector consisted of a solid cross-linked polymeric
matrix of lipoic acid monomers was prepared and loaded with active
species with a one-step protocol. The biological studies demonstrated
a high stability in biological media, the virtual absence of “protein”
corona in biological fluids, the absence of acute toxicity in vitro
and in vivo, complete clearance from the organism, and a relevant
preference for short-term accumulation in the heart. All these features
make these nanoparticles candidates as a promising tool for nanomedicine.
Collapse
Affiliation(s)
- Jakub W Trzciński
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Lucía Morillas-Becerril
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Sara Scarpa
- Dipartimento di Scienze Biomediche, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy.,Centre for Innovative Biotechnological Research-CRIBI, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy
| | - Marco Tannorella
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Francesco Muraca
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Chiara Castellani
- Patologia Cardiovascolare e Anatomia Patologica, Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università di Padova, via Giustiniani 2, Padova, I-35128, Italy
| | - Marny Fedrigo
- Patologia Cardiovascolare e Anatomia Patologica, Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università di Padova, via Giustiniani 2, Padova, I-35128, Italy
| | - Annalisa Angelini
- Patologia Cardiovascolare e Anatomia Patologica, Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università di Padova, via Giustiniani 2, Padova, I-35128, Italy
| | - Regina Tavano
- Dipartimento di Scienze Biomediche, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy.,Centre for Innovative Biotechnological Research-CRIBI, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy
| | - Emanuele Papini
- Dipartimento di Scienze Biomediche, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy.,Centre for Innovative Biotechnological Research-CRIBI, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| |
Collapse
|
6
|
Wei XC, Cao B, Luo CH, Huang HZ, Tan P, Xu XR, Xu RC, Yang M, Zhang Y, Han L, Zhang DK. Recent advances of novel technologies for quality consistency assessment of natural herbal medicines and preparations. Chin Med 2020; 15:56. [PMID: 32514289 PMCID: PMC7268247 DOI: 10.1186/s13020-020-00335-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
Quality consistency is one of the basic attributes of medicines, but it is also a difficult problem that natural medicines and their preparations must face. The complex chemical composition and comprehensive pharmacological action of natural medicines make it difficult to simply apply the commonly used evaluation methods in chemical drugs. It is thus urgent to explore the novel evaluation methods suitable for the characteristics of natural medicines. With the rapid development of analytical techniques and the deepening understanding of the quality of natural herbs, increasing numbers of researchers have proposed many new ideas and technologies. This review mainly focuses on the basic principles, technical characteristics and application examples of the chemical evaluation, biological evaluation methods and their combination in quality consistency evaluation of natural herbs. On the bases of chemical evaluation and clinical efficacy, new methods reflecting their pharmacodynamic mechanism and safety characteristics will be developed, and gradually towards accurate quality control, to achieve the goal of quality consistency. We hope that this manuscript can provide new ideas and technical references for the quality consistency of natural drugs and their preparations, thus better guarantee their clinical efficacy and safety, and better promote industrial development.
Collapse
Affiliation(s)
- Xi-Chuan Wei
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Bo Cao
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Chuan-Hong Luo
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Hao-Zhou Huang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, 610041 China
| | - Xiao-Rong Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Run-Chun Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Yi Zhang
- Chengdu Food and Drug Control, Chengdu, 610000 China
| | - Li Han
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ding-Kun Zhang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| |
Collapse
|
7
|
A Network Pharmacology Approach for Uncovering the Osteogenic Mechanisms of Psoralea corylifolia Linn. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2160175. [PMID: 31781261 PMCID: PMC6874874 DOI: 10.1155/2019/2160175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Background and Aim Psoralea corylifolia Linn (PCL) is an herb that is commonly used for alleviating osteoporosis and vitiligo. Although accumulating evidence has demonstrated the antiosteoporotic effect of PCL, the identities of the osteogenic compounds in PCL and their functional targets remain elusive. To investigate the osteogenic ingredients in PCL and their functional mechanisms, network pharmacology analysis was performed on the targets of PCL and osteogenesis. Methods The active components of PCL were screened by literature review. The potential protein targets of the active PCL components were predicted with the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Search Tool for Interactions of Chemicals (STITCH), SwissTargetPrediction, and PubChem. The target networks related to PCL and osteogenic differentiation were constructed by using Cytoscape. MC3T3-E1 cells were used to verify the targets. Results Twenty-three active components of PCL and 162 potential target proteins were identified. Further analysis reduced the number of potential target proteins to 71. Of the 23 components, bavachalcone, psoralen, bavachinin, neobavaisoflavone, methoxsalen, psoradin, bakuchiol, and angelicin may be the main active components of PCL that promote bone formation. PPARγ and aryl hydrocarbon receptor (AhR) were verified as targets of PCL in MC3T3-E1 cells, and the western blot and immunofluorescence staining results showed that compared to the control, PCL reduced the expression of these targets. Conclusions The active components of PCL and the mechanisms by which they promoted osteogenic differentiation were successfully identified using network pharmacology.
Collapse
|
8
|
Li Y, Chang N, Han Y, Zhou M, Gao J, Hou Y, Jiang M, Zhang T, Bai G. Anti-inflammatory effects of Shufengjiedu capsule for upper respiratory infection via the ERK pathway. Biomed Pharmacother 2017; 94:758-766. [PMID: 28802227 DOI: 10.1016/j.biopha.2017.07.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Shufengjiedu Capsule (SFJD) is a type of Chinese traditional medicine compound for the treatment of acute upper respiratory tract infection. The present work aims to decipher the mechanism of SFJD. METHODS In this study, we used target prediction and RNA sequence (RNA-Seq) based on transcriptome analysis to clarify the inflammation-eliminating mechanism of SFJD. Firstly, Pseudomonas aeruginosa (PAK) was used to induce acute lung injury in KM mice. After being treated by SFJD, the differently expressed genes were analyzed by RNA-Seq. Secondly, the chemical constituents of SFJD were identified by ultra-performance liquid chromatography quadrupole/time of flight mass spectrometry (UPLC/Q-TOF-MS) and submitted to PharmMapper to predict targets. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and String 9.1 websites were employed to establish the interaction network of inflammation of these targets. RESULTS The results indicated that SFJD alleviated PAK induced lung injury in KM mice. We infer that the mechanism is a complex network containing 15 pathways related to inflammation regulated by 16 types of components from six types of herbs via 29 proteins. The ERK signaling pathway was a key pathway among them, which was predicted to be regulated by 14 types of components in SFJD. Phillyrin, emodin, and verbenalin were screened out by binding capacity, and the synergistic effect of them was further confirmed. CONCLUSIONS Various components of SFJD ameliorated PAK induced upper respiratory tract infection via multiple targets, of which ERK phosphorylation might be the key event regulated specifically by verbenalin, phillyrin and emodin.
Collapse
Affiliation(s)
- Yanmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yanqi Han
- Department of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research Co. Ltd., Tianjin 300193, People's Republic of China
| | - Mengge Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| | - Tiejun Zhang
- Department of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research Co. Ltd., Tianjin 300193, People's Republic of China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| |
Collapse
|