1
|
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int J Mol Sci 2022; 23:ijms23169099. [PMID: 36012365 PMCID: PMC9409259 DOI: 10.3390/ijms23169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinchao Si
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Li Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| |
Collapse
|
2
|
You J, Li M, Li H, Bai Y, Zhu X, Kong X, Chen X, Zhou R. Integrated Methylome and Transcriptome Analysis Widen the Knowledge of Cytoplasmic Male Sterility in Cotton ( Gossypium barbadense L.). FRONTIERS IN PLANT SCIENCE 2022; 13:770098. [PMID: 35574131 PMCID: PMC9093596 DOI: 10.3389/fpls.2022.770098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
DNA methylation is defined as a conserved epigenetic modification mechanism that plays a key role in maintaining normal gene expression without altering the DNA sequence. Several studies have reported that altered methylation patterns were associated with male sterility in some plants such as rice and wheat, but global methylation profiles and their possible roles in cytoplasmic male sterility (CMS), especially in cotton near-isogenic lines, remain unclear. In this study, bisulfite sequencing technology and RNA-Seq were used to investigate CMS line 07-113A and its near-isogenic line 07-113B. Using integrated methylome and transcriptome analyses, we found that the number of hypermethylated genes in the differentially methylated regions, whether in the promoter region or in the gene region, was more in 07-113A than the number in 07-113B. The data indicated that 07-113A was more susceptible to methylation. In order to further analyze the regulatory network of male sterility, transcriptome sequencing and DNA methylation group data were used to compare the characteristics of near-isogenic lines 07-113A and 07-113B in cotton during the abortion stage. Combined methylation and transcriptome analysis showed that differentially expressed methylated genes were mainly concentrated in vital metabolic pathways including the starch and sucrose metabolism pathways and galactose metabolism. And there was a negative correlation between gene methylation and gene expression. In addition, five key genes that may be associated with CMS in cotton were identified. These data will support further understanding of the effect of DNA methylation on gene expression and their potential roles in cotton CMS.
Collapse
Affiliation(s)
- Jingyi You
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Min Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Hongwei Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Yulin Bai
- Xinjiang Yida Textile Co., Ltd, Urumqi, China
| | - Xuan Zhu
- Dali Bai Autonomous Prefecture Agricultural Science Extension Institute, Dali, China
| | - Xiangjun Kong
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaoyan Chen
- Dali Bai Autonomous Prefecture Agricultural Science Extension Institute, Dali, China
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Whole-transcriptome sequencing reveals a vernalization-related ceRNA regulatory network in chinese cabbage (Brassica campestris L. ssp. pekinensis). BMC Genomics 2021; 22:819. [PMID: 34773977 PMCID: PMC8590779 DOI: 10.1186/s12864-021-08110-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transition from vegetative growth to reproductive growth involves various pathways. Vernalization is a crucial process for floral organ formation and regulation of flowering time that is widely utilized in plant breeding. In this study, we aimed to identify the global landscape of mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) related to vernalization in Chinese cabbage. These data were then used to construct a competitive endogenous RNA (ceRNA) network that provides valuable information to better understand the vernalization response. RESULTS In this study, seeds sampled from the Chinese cabbage doubled haploid (DH) line 'FT' with or without vernalization treatment were used for whole-transcriptome sequencing. A total of 2702 differentially expressed (DE) mRNAs, 151 DE lncRNAs, 16 DE circRNAs, and 233 DE miRNAs were identified in the vernalization-treated seeds. Various transcription factors, such as WRKY, MYB, NAC, bHLH, MADS-box, zinc finger protein CONSTANS-like gene, and B3 domain protein, and regulatory proteins that play important roles in the vernalization pathway were identified. Additionally, we constructed a vernalization-related ceRNA-miRNA-target gene network and obtained 199 pairs of ceRNA relationships, including 108 DEmiRNA‒DEmRNA, 67 DEmiRNA‒DElncRNA, and 12 DEmiRNA‒DEcircRNA interactions, in Chinese cabbage. Furthermore, several important vernalization-related genes and their interacting lncRNAs, circRNAs, and miRNAs, which are involved in the regulation of flowering time, floral organ formation, bolting, and flowering, were identified. CONCLUSIONS Our results reveal the potential mRNA and non-coding RNAs involved in vernalization, providing a foundation for further studies on the molecular mechanisms underlying vernalization in Chinese cabbage.
Collapse
|
4
|
Liu X, Yue Y, Gu Z, Huang Q, Pan Z, Zhao Z, Zheng M, Zhang Z, Li C, Yi H, Yu T, Cao M. The characterization and candidate gene isolation for a novel male-sterile mutant ms40 in maize. PLANT CELL REPORTS 2021; 40:1957-1970. [PMID: 34319484 DOI: 10.1007/s00299-021-02762-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
A novel genic male-sterile mutant ms40 was obtained from EMS treated RP125. The key candidate gene ZmbHLH51 located on chromosome 4 was identified by map-based cloning. This study further enriched the male sterile gene resources for both production applications and theoretical studies of abortion mechanisms. Maize male-sterile mutant 40 (ms40) was obtained from the progeny of the ethyl methanesulfonate (EMS) treated inbred line RP125. Genetic analysis indicated that the sterility was controlled by a single recessive nuclear gene. Cytological observation of anthers revealed that the cuticles of ms40 anthers were abnormal, and no Ubisch bodies were observed on the inner surface of ms40 anthers through scanning electron microscopy(SEM). Moreover, its tapetum exhibited delayed degradation and then blocked the formation of normal microspores. Using map-based cloning strategy, the ms40 locus was found to locate in a 282-kb interval on chromosome 4, and five annotated genes were predicted within this region. PCR-based sequencing detected a single non-synonymous SNP (G > A) that changed glycine (G) to arginine (A) in the seventh exon of Zm00001d053895, while no sequence difference between ms40 and RP125 was found for the other four genes. Zm00001d053895 encodes the bHLH transcription factor ZmbHLH51 which is localized in the nucleus. Phylogenetic analysis showed that ZmbHLH51 had the highest homology with Sb04g001650, a tapetum degeneration retardation (TDR) bHLH transcription factor in Sorghum bicolor. Co-expression analysis revealed a total of 1192 genes co-expressed with ZmbHLH51 in maize, 647 of which were anther-specific genes. qRT-PCR results suggested the expression levels of some known genes related to anther development were affected in ms40. In summary, these findings revealed the abortion characteristics of ms40 anthers and lay a foundation for further studies on the mechanisms of male fertility.
Collapse
Affiliation(s)
- Xiaowei Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yujing Yue
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zicheng Gu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Qiang Huang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- Sichuan Institute of Atomic Energy, Chengdu, China
| | - Zijin Pan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zhuofan Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mingmin Zheng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Zhiming Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Chuan Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongyang Yi
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tao Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.
| |
Collapse
|
5
|
Wang J, Tang F, Gao C, Gao X, Xu B, Shi F. Comparative transcriptome between male fertile and male sterile alfalfa ( Medicago varia). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1487-1498. [PMID: 34366591 PMCID: PMC8295440 DOI: 10.1007/s12298-021-01026-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Male sterility is an important factor in improving crop quality and yield through heterosis breeding. In this study, we analyzed the transcriptomes of male fertile (MF) and male sterile (MS) alfalfa flower buds using the Illumina HiSeq™ 4000 platform. A total of 54.05 million clean reads were generated and assembled into 65,777 unigenes with an average length of 874 bp. The differentially expressed genes (DEGs) between the MF and MS flowers at three stages of pollen development were identified, and there were 3832, 5678 and 5925 DEGs respectively in stages 1, 2 and 3. GO and KEGG functional enrichment analysis revealed 12, 12, 6 and 12 key branch-point genes involved in circadian rhythm, transcription factors, pollen development and flavonoid biosynthesis. Our findings provide novel insights into the mechanism of male sterility in alfalfa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01026-x.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
- Department of Pharmacy, Baotou Medical College, Baotou, 014040 Inner Mongolia China
| | - Fang Tang
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Cuiping Gao
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Xia Gao
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Bo Xu
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Fengling Shi
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| |
Collapse
|
6
|
Hu J, Lan M, Xu X, Yang H, Zhang L, Lv F, Yang H, Yang D, Li C, He J. Transcriptome Profiling Reveals Molecular Changes during Flower Development between Male Sterile and Fertile Chinese Cabbage ( Brassica rapa ssp. pekinensis) Lines. Life (Basel) 2021; 11:life11060525. [PMID: 34199781 PMCID: PMC8227754 DOI: 10.3390/life11060525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Male sterility exists widely in flowering plants and is used as a fascinating tool by breeders for creating hybrid varieties. Herein, stamen samples from male sterile CCR20000 and male fertile CCR20001 lines during two developmental stages were employed to elucidate the molecular changes during flower development in fertile and sterile Chinese cabbage lines. RNA-seq revealed weak transcriptional activity in the sterile line, which may have led to the abnormal stamen development. The differentially expressed genes were enriched in plant hormone, carbon metabolism, and biosynthesis of amino acid pathways. Important genes with opposite patterns of regulation between the two lines have been associated with the male sterility trait. Members of the transcription factor families such as AP2, MYB, bHLH, and WRKY were highly active in the regulation of structural genes involved in pollen fertility. This study generated important genomic information to support the exploitation of the male sterility trait in Chinese cabbage breeding programs.
Collapse
Affiliation(s)
- Jingfeng Hu
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Mei Lan
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Xuezhong Xu
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Hongli Yang
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Liqin Zhang
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
| | - Fengxian Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (F.L.); (D.Y.); (C.L.)
| | - Huiju Yang
- Lijiang Teachers College, Lijiang 674100, China;
| | - Ding Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (F.L.); (D.Y.); (C.L.)
| | - Chongjuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & School of Life Sciences, Yunnan University, Kunming 650091, China; (F.L.); (D.Y.); (C.L.)
| | - Jiangming He
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Yunnan Branch of the National Vegetable Improvement Center, Kunming 650205, China; (J.H.); (M.L.); (X.X.); (H.Y.); (L.Z.)
- Correspondence:
| |
Collapse
|
7
|
Liu C, Fu W, Xu W, Liu X, Wang S. Genome-wide transcriptome analysis of microspore abortion initiation in radish (Raphanus sativus L.). Gene 2021; 794:145753. [PMID: 34090961 DOI: 10.1016/j.gene.2021.145753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The use of male sterile lines is one of the ideal means in hybrid seed production. Despite the widespread application of Ogura cytoplasmic male sterile (CMS) lines, the molecular mechanisms remain largely unknown. In this study, histological analyses of floral buds from a CMS line 40MA and its corresponding maintainer line 40MB were conducted, which indicate that microspore abortion was initiated shortly after the tetrad stage. RNA sequencing was performed to analyze the transcriptomes of floral buds from the tetrad stage and the early microspore stages of these two lines. More than 39 million clean reads were generated for each library, and the portions mapped to the reference genome were all above 70.60%. To further analyze the differentially expressed genes (DEGs), the samples were grouped into four pairs, of which the pair of 40MA and 40MB at the early microspore stage showed the most DEGs (5100 members). According to the abnormal appearance of the tapetum cells in 40MA, a series of tapetum development related genes were screened and analyzed. In addition, a total of 623 genes with differential expressions in the tetrad stage, but not in the early microspore stage between the two lines were filtered as the microspore abortion initiation related candidates. Twelve genes were selected to validate the sequencing result by quantitative RT-PCR. In this study, we identified a number of candidate genes involved in the initiation of microspore degeneration, which may provide a new perspective to unravel the molecular mechanism of Ogura CMS.
Collapse
Affiliation(s)
- Chen Liu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Weimin Fu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenling Xu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianxian Liu
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shufen Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
8
|
Transcriptome and MiRNAomics Analyses Identify Genes Associated with Cytoplasmic Male Sterility in Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2021; 22:ijms22094684. [PMID: 33925234 PMCID: PMC8124215 DOI: 10.3390/ijms22094684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is important for large-scale hybrid seed production. Rearrangements in the mitochondrial DNA (mtDNA) for the cotton (Gossypium hirsutum L.) CMS line J4A were responsible for pollen abortion. However, the expression patterns of nuclear genes associated with pollen abortion and the molecular basis of CMS for J4A are unknown, and were the objectives of this study by comparing J4A with the J4B maintainer line. Cytological evaluation of J4A anthers showed that microspore abortion occurs during meiosis preventing pollen development. Changes in enzyme activity of mitochondrial respiratory chain complex IV and mitochondrial respiratory chain complex V and the content of ribosomal protein and ATP during anther abortion were observed for J4A suggesting insufficient synthesis of ATP hindered pollen production. Additionally, levels of sucrose, starch, soluble sugar, and fructose were significantly altered in J4A during the meiosis stage, suggesting reduced sugar metabolism contributed to sterility. Transcriptome and miRNAomics analyses identified 4461 differentially expressed mRNAs (DEGs) and 26 differentially expressed microRNAs (DEMIs). Pathway enrichment analysis indicated that the DEMIs were associated with starch and sugar metabolism. Six deduced target gene regulatory pairs that may participate in CMS were identified, ghi-MIR7484-10/mitogen-activated protein kinase kinase 6 (MAPKK6), ghi-undef-156/agamous-like MADS-box protein AGL19 (AGL19), ghi-MIR171-1-22/SNF1-related protein kinase regulatory subunit gamma-1 and protein trichome birefringence-like 38, and ghi-MIR156-(8/36)/WRKY transcription factor 28 (WRKY28). Overall, a putative CMS mechanism involving mitochondrial dysfunction, the ghi-MIR7484-10/MAPKK6 network, and reduced glucose metabolism was suggested, and ghi-MIR7484-10/MAPKK6 may be related to abnormal microspore meiosis and induction of excessive sucrose accumulation in anthers.
Collapse
|
9
|
Yu X, Wang W, Yang H, Zhang X, Wang D, Tian X. Transcriptome and Comparative Chloroplast Genome Analysis of Vincetoxicum versicolor: Insights Into Molecular Evolution and Phylogenetic Implication. Front Genet 2021; 12:602528. [PMID: 33747039 PMCID: PMC7970127 DOI: 10.3389/fgene.2021.602528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Vincetoxicum versicolor (Bunge) Decne is the original plant species of the Chinese herbal medicine Cynanchi Atrati Radix et Rhizoma. The lack of information on the transcriptome and chloroplast genome of V. versicolor hinders its evolutionary and taxonomic studies. Here, the V. versicolor transcriptome and chloroplast genome were assembled and functionally annotated. In addition, the comparative chloroplast genome analysis was conducted between the genera Vincetoxicum and Cynanchum. A total of 49,801 transcripts were generated, and 20,943 unigenes were obtained from V. versicolor. One thousand thirty-two unigenes from V. versicolor were classified into 73 functional transcription factor families. The transcription factors bHLH and AP2/ERF were the most significantly abundant, indicating that they should be analyzed carefully in the V. versicolor ecological adaptation studies. The chloroplast genomes of Vincetoxicum and Cynanchum exhibited a typical quadripartite structure with highly conserved gene order and gene content. They shared an analogous codon bias pattern in which the codons of protein-coding genes had a preference for A/U endings. The natural selection pressure predominantly influenced the chloroplast genes. A total of 35 RNA editing sites were detected in the V. versicolor chloroplast genome by RNA sequencing (RNA-Seq) data, and one of them restored the start codon in the chloroplast ndhD of V. versicolor. Phylogenetic trees constructed with protein-coding genes supported the view that Vincetoxicum and Cynanchum were two distinct genera.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenxiu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongxia Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dan Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Hamid R, Jacob F, Marashi H, Rathod V, Tomar RS. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 2020; 112:3354-3364. [PMID: 32574832 DOI: 10.1016/j.ygeno.2020.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 02/01/2023]
Abstract
Cytoplasmic male sterility is a well-proven mechanism for cotton hybrid production. Long non-coding RNAs belong to a class of transcriptional regulators that function in multiple biological processes. The cDNA libraries from the flower buds of the cotton CGMS, it's restorer (Rf) and maintainer lines were sequenced using high throughput NGS technique. A total of 1531 lncRNAs showed significant differential expression patterns between these three lines. Functional analysis of the co-expression network of lncRNA-mRNA using gene ontology vouchsafes that, lncRNAs play a crucial role in cytoplasmic male sterility and fertility restoration through pollen development, INO80 complex, development of anther wall tapetum, chromatin remodeling, and histone modification. Additionally, 94 lncRNAs were identified as putative precursors of 49 miRNAs. qRT-PCR affirms the concordance of expression pattern to RNA-seq data. These findings divulge the lncRNA driven miRNA-mediated regulation of gene expression profiling superintended for a better understanding of the CMS mechanisms of cotton.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | - Feba Jacob
- Centre for plant biotechnology and molecular biology, Kerala agricultural university, Thrissur, India
| | - Hassan Marashi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran
| | - Visha Rathod
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
11
|
Li P, Zhang D, Su T, Wang W, Yu Y, Zhao X, Li Z, Yu S, Zhang F. Genome-wide analysis of mRNA and lncRNA expression and mitochondrial genome sequencing provide insights into the mechanisms underlying a novel cytoplasmic male sterility system, BVRC-CMS96, in Brassicarapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2157-2170. [PMID: 32399654 DOI: 10.1007/s00122-020-03587-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/31/2020] [Indexed: 05/26/2023]
Abstract
Characterization of a novel and valuable CMS system in Brassicarapa. Cytoplasmic male sterility (CMS) is extensively used to produce F1 hybrid seeds in a variety of crops. However, it has not been successfully used in Chinese cabbage (Brassicarapa L. ssp. pekinensis) because of degeneration or temperature sensitivity. Here, we characterize a novel CMS system, BVRC-CMS96, which originated in B.napus cybrid obtained from INRAE, France and transferred by us to B.rapa. Floral morphology and agronomic characteristics indicate that BVRC-CMS96 plants are 100% male sterile and show no degeneration in the BC7 generation, confirming its suitability for commercial use. We also sequenced the BVRC-CMS96 and maintainer line 18BCM mitochondrial genomes. Genomic analyses showed the presence of syntenic blocks and distinct structures between BVRC-CMS96 and 18BCM and the other known CMS systems. We found that BVRC-CMS96 has one orf222 from 'Nap'-type CMS and two copies of orf138 from 'Ogu'-type CMS. We analyzed expression of orf222, orf138, orf261b, and the mitochondrial energy genes (atp6, atp9, and cox1) in flower bud developmental stages S1-S5 and in four floral organs. orf138 and orf222 were both highly expressed in S4, S5-stage buds, calyx, and the stamen. RNA-seq identified differentially expressed mRNAs and lncRNAs (long non-coding RNAs) that were significantly enriched in pollen wall assembly, pollen development, and pollen coat. Our findings suggest that an energy supply disorder caused by orf222/orf138/orf261b may inhibit a series of nuclear pollen development-related genes. Our study shows that BVRC-CMS96 is a valuable CMS system, and our detailed molecular analysis will facilitate its application in Chinese cabbage breeding.
Collapse
Affiliation(s)
- Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Zhenxing Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
12
|
Saxena S, Sahu S, Kaila T, Nigam D, Chaduvla PK, Rao AR, Sanand S, Singh NK, Gaikwad K. Transcriptome profiling of differentially expressed genes in cytoplasmic male-sterile line and its fertility restorer line in pigeon pea (Cajanus cajan L.). BMC PLANT BIOLOGY 2020; 20:74. [PMID: 32054447 PMCID: PMC7020380 DOI: 10.1186/s12870-020-2284-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/07/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Pigeon pea (Cajanus cajan L.) is the sixth major legume crop widely cultivated in the Indian sub-continent, Africa, and South-east Asia. Cytoplasmic male-sterility (CMS) is the incompetence of flowering plants to produce viable pollens during anther development. CMS has been extensively utilized for commercial hybrid seeds production in pigeon pea. However, the molecular basis governing CMS in pigeon pea remains unclear and undetermined. In this study transcriptome analysis for exploring differentially expressed genes (DEGs) between cytoplasmic male-sterile line (AKCMS11) and its fertility restorer line (AKPR303) was performed using Illumina paired-end sequencing. RESULTS A total of 3167 DEGs were identified, of which 1432 were up-regulated and 1390 were down-regulated in AKCMS11 in comparison to AKPR303. By querying, all the 3167 DEGs against TAIR database, 34 pigeon pea homologous genes were identified, few involved in pollen development (EMS1, MS1, ARF17) and encoding MYB and bHLH transcription factors with lower expression in the sterile buds, implying their possible role in pollen sterility. Many of these DEGs implicated in carbon metabolism, tricarboxylic acid cycle (TCA), oxidative phosphorylation and elimination of reactive oxygen species (ROS) showed reduced expression in the AKCMS11 (sterile) buds. CONCLUSION The comparative transcriptome findings suggest the potential role of these DEGs in pollen development or abortion, pointing towards their involvement in cytoplasmic male-sterility in pigeon pea. The candidate DEGs identified in this investigation will be highly significant for further research, as they could lend a comprehensive basis in unravelling the molecular mechanism governing CMS in pigeon pea.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Deepti Nigam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Pavan K. Chaduvla
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - A. R. Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sandhya Sanand
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - N. K. Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| |
Collapse
|
13
|
Zheng J, Kong X, Li B, Khan A, Li Z, Liu Y, Kang H, Ullah Dawar F, Zhou R. Comparative Transcriptome Analysis between a Novel Allohexaploid Cotton Progeny CMS Line LD6A and Its Maintainer Line LD6B. Int J Mol Sci 2019; 20:ijms20246127. [PMID: 31817342 PMCID: PMC6940886 DOI: 10.3390/ijms20246127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/02/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is an important agronomic feature and provides an effective tool for heterosis utilization of crops. This study reports the comparative transcriptomic sketches between a novel allohexaploid cotton progeny CMS line LD6A and its maintainer line LD6B using de novo transcriptome sequencing technology at the pollen abortion stage. A total of 128,901 Unigenes were identified, in which 2007 were upregulated and 11,864 were downregulated. The significantly differentially expressed genes (DEGs) in LD6A show a distant and diverse genetic nature due to their distant hybrid hexaploidy progeny. Further analysis revealed that most of the DEGs participated in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, histone acetyltransferase activity, sepal development, stigma development, cotyledon development and microsporogenesis. A highly differentially expressed toxic protein, Abrin, was identified in the CMS line LD6A, which can catalyze the inactivation of ribosomes and consequently lead to cell death through the mitochondrial pathway in human cells. Twelve DEGs were selected randomly to validate transcriptome data using quantitative reverse-transcribed PCR (qRT-PCR). This study will contribute to new ideas and foundations related to the molecular mechanism of CMS and the innovation of cotton germplasm resources.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China; (J.Z.); (X.K.); (B.L.); (A.K.); (Z.L.); (Y.L.); (H.K.)
| | - Xiangjun Kong
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China; (J.Z.); (X.K.); (B.L.); (A.K.); (Z.L.); (Y.L.); (H.K.)
| | - Bin Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China; (J.Z.); (X.K.); (B.L.); (A.K.); (Z.L.); (Y.L.); (H.K.)
| | - Aziz Khan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China; (J.Z.); (X.K.); (B.L.); (A.K.); (Z.L.); (Y.L.); (H.K.)
| | - Zhiling Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China; (J.Z.); (X.K.); (B.L.); (A.K.); (Z.L.); (Y.L.); (H.K.)
| | - Yiding Liu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China; (J.Z.); (X.K.); (B.L.); (A.K.); (Z.L.); (Y.L.); (H.K.)
| | - Haodong Kang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China; (J.Z.); (X.K.); (B.L.); (A.K.); (Z.L.); (Y.L.); (H.K.)
| | - Farman Ullah Dawar
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China; (J.Z.); (X.K.); (B.L.); (A.K.); (Z.L.); (Y.L.); (H.K.)
- Correspondence:
| |
Collapse
|
14
|
Differentially Expressed Genes between Carrot Petaloid Cytoplasmic Male Sterile and Maintainer during Floral Development. Sci Rep 2019; 9:17384. [PMID: 31757985 PMCID: PMC6874560 DOI: 10.1038/s41598-019-53717-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/31/2019] [Indexed: 11/09/2022] Open
Abstract
Petaloid cytoplasmic male sterility (CMS) is a maternally inherited loss of male fertility due to the complete conversion of stamens into petal-like organs, and CMS lines have been widely utilized in carrot breeding. Petaloid CMS is an ideal model not only for studying the mitochondrial-nuclear interaction but also for discovering genes that are essential for floral organ development. To investigate the comprehensive mechanism of CMS and homeotic organ alternation during carrot flower development, we conducted transcriptome analysis between the petaloid CMS line (P2S) and its maintainer line (P2M) at four flower developmental stages (T1-T4). A total of 2838 genes were found to be differentially expressed, among which 1495 genes were significantly downregulated and 1343 genes were significantly upregulated in the CMS line. Functional analysis showed that most of the differentially expressed genes (DEGs) were involved in protein processing in the endoplasmic reticulum, plant hormone signal transduction, and biosynthesis. A total of 16 MADS-box genes were grouped into class A, B, C, and E, but not class D, genes. Several key genes associated with oxidative phosphorylation showed continuously low expression from stage T2 in P2S, and the expression of DcPI and DcAG-like genes also greatly decreased at stage T2 in P2S. This indicated that energy deficiency might inhibit the expression of B- and C-class MADS-box genes resulting in the conversion of stamens into petals. Stamen petaloidy may act as an intrinsic stress, upregulating the expression of heat shock protein (HSP) genes and MADS-box genes at stages T3 and T4 in P2S, which results in some fertile revertants. This study will provide a better understanding of carrot petaloid CMS and floral development as a basis for further research.
Collapse
|
15
|
Dai D, Xiong A, Yuan L, Sheng Y, Ji P, Jin Y, Li D, Wang Y, Luan F. Transcriptome analysis of differentially expressed genes during anther development stages on male sterility and fertility in Cucumis melo L. line. Gene 2019; 707:65-77. [DOI: 10.1016/j.gene.2019.04.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 02/03/2023]
|
16
|
Chen G, Ye X, Zhang S, Zhu S, Yuan L, Hou J, Wang C. Comparative Transcriptome Analysis between Fertile and CMS Flower Buds in Wucai (Brassica campestris L.). BMC Genomics 2018; 19:908. [PMID: 30541424 PMCID: PMC6292171 DOI: 10.1186/s12864-018-5331-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/29/2018] [Indexed: 11/12/2022] Open
Abstract
Background Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a variant of nonheading Chinese cabbage (Brassica campestris L.), which is one of the major vegetables in China. Cytoplasmic male sterility (CMS) has been used for Wucai breeding in recent years. However, the underlying molecular mechanism of Wucai CMS remains unclear. In this study, the phenotypic and cytological features of Wucai CMS were observed by anatomical analysis, and a comparative transcriptome analysis was carried out to identify genes related to male sterility using Illumina RNA sequencing technology (RNA-Seq). Results Microscopic observation demonstrated that tapetum development was abnormal in the CMS line, which failed to produce fertile pollen. Bioinformatics analysis detected 4430 differentially expressed genes (DEGs) between the fertile and sterile flower buds. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of these DEGs. Among the DEGs, 35 genes (53 DEGS) were implicated in anther and pollen development, and 11 genes were involved in pollen cell wall formation and modification; most of these showed downregulated expression in sterile buds. In addition, several genes related to tapetum development (A6, AMS, MS1, MYB39, and TSM1) and a few genes annotated to flowering (CO, AP3, VIN3, FLC, FT, and AGL) were detected and confirmed by qRT-PCR as being expressed at the meiosis, tetrad, and uninucleate microspore stages, thus implying possible roles in specifying or determining the fate and development of the tapetum, male gametophyte and stamen. Moreover, the top four largest transcription factor families (MYB, bHLH, NAC and WRKY) were analyzed, and most showed reduced expression in sterile buds. These differentially expressed transcription factors might result in abortion of pollen development in Wucai. Conclusion The present comparative transcriptome analysis suggested that many key genes and transcription factors involved in anther development show reduced gene expression patterns in the CMS line, which might contribute to male sterility in Wucai. This study provides valuable information for a better understanding of CMS molecular mechanisms and functional genome studies in Wucai. Electronic supplementary material The online version of this article (10.1186/s12864-018-5331-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Xinyu Ye
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shengyun Zhang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China.,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China. .,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei, 230036, China.
| |
Collapse
|
17
|
Hu T, Wei Q, Wang W, Hu H, Mao W, Zhu Q, Bao C. Genome-wide identification and characterization of CONSTANS-like gene family in radish (Raphanus sativus). PLoS One 2018; 13:e0204137. [PMID: 30248137 PMCID: PMC6152963 DOI: 10.1371/journal.pone.0204137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
Floral induction that initiates bolting and flowering is crucial for reproductive fitness in radishes. CONSTANS-like (CO-like, COL) genes play an important role in the circadian clock, which ensures regular development through complicated time-keeping mechanisms. However, the specific biological and functional roles of each COL transcription factor gene in the radish remain unknown. In this study, we performed a genome-wide identification of COL genes in the radish genome of three cultivars including ‘Aokubi’, ‘kazusa’ and ‘WK10039’, and we analyzed their exon-intron structure, gene phylogeny and synteny, and expression levels in different tissues. The bioinformatics analysis identified 20 COL transcription factors in the radish genome, which were divided into three subgroups (Group I to Group III). RsaCOL-09 and RsaCOL-12 might be tandem duplicated genes, whereas the others may have resulted from segmental duplication. The Ka/Ks ratio indicated that all the COL genes in radish, Arabidopsis, Brassica rapa, Brassica oleracea, Capsella rubella and rice were under purifying selection. We identified 6 orthologous and 19 co-orthologous COL gene pairs between the radish and Arabidopsis, and we constructed an interaction network among these gene pairs. The expression values for each COL gene during vegetable and flower development showed that the majority of Group I members had similar expression patterns. In general, the expression of radish COL genes in Groups I and III decreased during development, whereas the expression of radish COL genes in Group II first increased and then decreased. Substantial numbers of radish COL genes were differentially expressed after vernalization treatment. The expression levels of RsaCOL-02 and RsaCOL-04 were significantly increased during vernalization treatment, while the expression of RsaCOL-10 was significantly decreased. These outcomes provide insights for improving the genetic control of bolting and flowering in radish and other root vegetable crops, and they facilitate genetic improvements to radish yields and quality.
Collapse
Affiliation(s)
- Tianhua Hu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingzhen Wei
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wuhong Wang
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haijiao Hu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weihai Mao
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qinmei Zhu
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chonglai Bao
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
18
|
Normal and Abortive Buds Transcriptomic Profiling of Broccoli ogu Cytoplasmic Male Sterile Line and Its Maintainer. Int J Mol Sci 2018; 19:ijms19092501. [PMID: 30149512 PMCID: PMC6165216 DOI: 10.3390/ijms19092501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Bud abortion is the main factor affecting hybrid seeds’ yield during broccoli cross breeding when using ogura cytoplasmic male sterile (ogu CMS) lines. However, the genes associated with bud abortion are poorly understood. We applied RNA sequencing to analyze the transcriptomes of normal and abortive buds of broccoli maintainer and ogu CMS lines. Functional analysis showed that among the 54,753 annotated unigenes obtained, 74 and 21 differentially expressed genes in common were upregulated and downregulated in ogu CMS abortive buds compared with ogu CMS normal buds, maintainer normal, and abortive buds, respectively. Nineteen of the common differentially expressed genes were enriched by GO terms associated with glycosyl hydrolases, reactive oxygen species scavenging, inhibitor, and protein degradation. Ethylene-responsive transcription factor 115 and transcriptional factor basic helix-loop-helix 137 were significantly upregulated; transcription factors DUO1 and PosF21/RF2a/BZIP34 were downregulated in ogu CMS abortive buds compared with the other groups. Genes related to polygalacturonase metabolism, glycosyl hydrolases, oxidation reduction process, phenylalanine metabolism, and phenylpropanoid biosynthesis were significantly changed in ogu CMS abortive buds. Our results increase our understanding of bud abortion, provide a valuable resource for further functional characterization of ogu CMS during bud abortion, and will aid in future cross breeding of Brassica crops.
Collapse
|
19
|
Hamid R, Tomar RS, Marashi H, Shafaroudi SM, Golakiya BA, Mohsenpour M. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene 2018; 660:80-91. [PMID: 29577977 DOI: 10.1016/j.gene.2018.03.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 01/02/2023]
Abstract
Cytoplasmic Male Sterility is maternally inherited trait in plants, characterized by failure to produce functional pollen during anther development. Anther development is modulated through the interaction of nuclear and mitochondrial genes. In the present study, differential gene expression of floral buds at the sporogenous stage (SS) and microsporocyte stage (MS) between CGMS and its fertile maintainer line of cotton plants was studied. A total of 320 significantly differentially expressed genes, including 20 down-regulated and 37 up-regulated in CGMS comparing with its maintainer line at the SS stage, as well as and 89 down-regulated and 4 up-regulated in CGMS compared to the fertile line at MS stage. Comparing the two stages in the same line, there were 6 down-regulated differentially expressed genes only induced in CGMS and 9 up-regulated differentially expressed gene only induced in its maintainer. GO analysis revealed essential genes responsible for pollen development, and cytoskeleton category show differential expression between the fertile and CGMS lines. Validation studies by qRT-PCR shows concordance with RNA-seq result. A set of novel SSRs identified in this study can be used in evaluating genetic relationships among cultivars, QTL mapping, and marker-assisted breeding. We reported aberrant expression of genes related to pollen exine formation, and synthesis of pectin lyase, myosine heavy chain, tubulin, actin-beta, heat shock protein and myeloblastosis (MYB) protein as targets for CMS in cotton. The results of this study contribute to basic information for future screening of genes and identification of molecular portraits responsible for CMS as well as to elucidate molecular mechanisms that lead to CMS in cotton.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hassan Marashi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | | | - Balaji A Golakiya
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | | |
Collapse
|
20
|
Liu Y, Li J, Wei G, Sun Y, Lu Y, Lan H, Li C, Zhang S, Cao M. Cloning, molecular evolution and functional characterization of ZmbHLH16, the maize ortholog of OsTIP2 (OsbHLH142). Biol Open 2017; 6:1654-1663. [PMID: 28970232 PMCID: PMC5703606 DOI: 10.1242/bio.026393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/27/2017] [Indexed: 01/06/2023] Open
Abstract
The transcription factor ZmbHLH16, the maize ortholog of OsTIP2 (OsbHLH142), was isolated in the present study. Tissue expression analysis showed that ZmbHLH16 is preferentially expressed in male reproductive organs. Subcellular location analysis of ZmbHLH16 via rice protoplast indicated that it is located in the nucleus. Through nucleotide variation analysis, 36 polymorphic sites in ZmbHLH16, including 23 single nucleotide polymorphisms and 13 InDels, were detected among 78 maize inbred lines. Neutrality tests and linkage disequilibrium analysis showed that ZmbHLH16 experienced no significant evolutionary pressure. Yeast one-hybrid experiment showed that the first 80 residues in the N-terminus of ZmbHLH16 had transactivation activity, whereas the full length did not. Genome-wide coexpression analysis showed that 395 genes were coexpressed with ZmbHLH16. Among these genes, the transcription factor ZmbHLH51 had similar expression pattern and identical subcellular localization to those of ZmbHLH16. Subsequently, the interaction between ZmbHLH51 and ZmbHLH16 was verified by yeast two-hybrid experiment. Through yeast two-hybrid analysis of series truncated ZmbHLH16 fragments, we found not only the typical bHLH domain [175-221 amino acids (a.a.)], but also that the 81-160 a.a. and 241-365 a.a. of ZmbHLH16 could interact with ZmbHLH51. All these results lay the foundation for further understanding the functions of ZmbHLH16.
Collapse
Affiliation(s)
- Yongming Liu
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Jia Li
- Tropical Crops Genetic Resources Institute, Chinese Academic of Tropical Agricultural Sciences, 571737 Danzhou, China
| | - Gui Wei
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Yonghao Sun
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Chuan Li
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Suzhi Zhang
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, 611130 Chengdu, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, 611130 Chengdu, China
| |
Collapse
|
21
|
Li C, Zhao Z, Liu Y, Liang B, Guan S, Lan H, Wang J, Lu Y, Cao M. Comparative transcriptome analysis of isonuclear-alloplasmic lines unmask key transcription factor genes and metabolic pathways involved in sterility of maize CMS-C. PeerJ 2017; 5:e3408. [PMID: 28584730 PMCID: PMC5452966 DOI: 10.7717/peerj.3408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/11/2017] [Indexed: 11/23/2022] Open
Abstract
Although C-type cytoplasmic male sterility (CMS-C) is one of the most attractive tools for maize hybrid seed production, the detailed regulation network of the male sterility remains unclear. In order to identify the CMS-C sterility associated genes and/or pathways, the comparison of the transcriptomes between the CMS-C line C48-2 and its isonuclear-alloplasmic maintainer line N48-2 at pollen mother cell stage (PS), an early development stage of microspore, and mononuclear stage (MS), an abortive stage of microspore, were analyzed. 2,069 differentially expressed genes (DEGs) between the two stages were detected and thought to be essential for the spikelet development of N48-2. 453 of the 2,069 DEGs were differentially expressed at MS stage between the two lines and thought to be participated in the process or the causes of microspore abortion. Among the 453 DEGs, 385 (84.99%) genes were down-regulated and only 68 (15.01%) genes were up-regulated in C48-2 at MS stage. The dramatic decreased expression of the four DEGs encoding MYB transcription factors and the DEGs involved in "polyamine metabolic process", "Cutin, suberine and wax biosynthesis", "Fatty acid elongation", "Biosynthesis of unsaturated fatty acids" and "Proline metabolism" might play an important role in the sterility of C48-2. This study will point out some directions for detailed molecular analysis and better understanding of sterility of CMS-C in maize.
Collapse
Affiliation(s)
- Chuan Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Zhuofan Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Yongming Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Bing Liang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Shuxian Guan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| |
Collapse
|
22
|
Liu C, Wang S, Xu W, Liu X. Genome-wide transcriptome profiling of radish (Raphanus sativus L.) in response to vernalization. PLoS One 2017; 12:e0177594. [PMID: 28498850 PMCID: PMC5428929 DOI: 10.1371/journal.pone.0177594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/28/2017] [Indexed: 11/21/2022] Open
Abstract
Vernalization is a key process for premature bolting. Although many studies on vernalization have been reported, the molecular mechanism of vernalization is still largely unknown in radish. In this study, we sequenced the transcriptomes of radish seedlings at three different time points during vernalization. More than 36 million clean reads were generated for each sample and the portions mapped to the reference genome were all above 67.0%. Our results show that the differentially expressed genes (DEGs) between room temperature and the early stage of vernalization (4,845) are the most in all treatments pairs. A series of vernalization related genes, including two FLOWERING LOCUS C (FLC) genes, were screened according to the annotations. A total of 775 genes were also filtered as the vernalization related candidates based on their expression profiles. Cold stress responsive genes were also analyzed to further confirm the sequencing result. Several key genes in vernalization or cold stress response were validated by quantitative RT-PCR (RT-qPCR). This study identified a number of genes that may be involved in vernalization, which are useful for other functional genomics research in radish.
Collapse
Affiliation(s)
- Chen Liu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
| | - Shufen Wang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
- * E-mail:
| | - Wenling Xu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
| | - Xianxian Liu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
| |
Collapse
|
23
|
Ye J, Duan Y, Hu G, Geng X, Zhang G, Yan P, Liu Z, Zhang L, Song X. Identification of Candidate Genes and Biosynthesis Pathways Related to Fertility Conversion by Wheat KTM3315A Transcriptome Profiling. FRONTIERS IN PLANT SCIENCE 2017; 8:449. [PMID: 28428792 PMCID: PMC5382222 DOI: 10.3389/fpls.2017.00449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/15/2017] [Indexed: 05/05/2023]
Abstract
The Aegilops kotschyi thermo-sensitive cytoplasmic male sterility (K-TCMS) system may facilitate hybrid wheat (Triticum aestivum L.) seed multiplication and production. The K-TCMS line is completely male sterile during the normal wheat-growing season, whereas its fertility can be restored in a high-temperature environment. To elucidate the molecular mechanisms responsible for male sterility/fertility conversion and candidate genes involved with pollen development in K-TCMS, we employed RNA-seq to sequence the transcriptomes of anthers from K-TCMS line KTM3315A during development under sterile and fertile conditions. We identified 16840 differentially expressed genes (DEGs) in different stages including15157 known genes (15135 nuclear genes and 22 plasmagenes) and 1683 novel genes. Bioinformatics analysis identified possible metabolic pathways involved with fertility based on KEGG pathway enrichment of the DEGs expressed in fertile and sterile plants. We found that most of the genes encoding key enzyme in the phenylpropanoid biosynthesis and jasmonate biosynthesis pathways were significant upregulated in uninucleate, binuclate or trinucleate stage, which both interact with MYB transcription factors, and that link between all play essential roles in fertility conversion. The relevant DEGs were verified by quantitative RT-PCR. Thus, we suggested that phenylpropanoid biosynthesis and jasmonate biosynthesis pathways were involved in fertility conversion of K-TCMS wheat. This will provide a new perspective and an effective foundation for the research of molecular mechanisms of fertility conversion of CMS wheat. Fertility conversion mechanism in thermo-sensitive cytoplasmic male sterile/fertile wheat involves the phenylpropanoid biosynthesis pathway, jasmonate biosynthesis pathway, and MYB transcription factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiyue Song
- *Correspondence: Xiyue Song, Lingli Zhang,
| |
Collapse
|