1
|
Vijayakumar STV, Narayanaswamy R, Prabhakaran VS. In Silico Analysis of Selected Mikania Constituents As Human HMG-CoA Reductase, Human Inducible Nitric Oxide Synthase, and Human Squalene Synthase Inhibitory Agents. Cureus 2024; 16:e55110. [PMID: 38558754 PMCID: PMC10979245 DOI: 10.7759/cureus.55110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Background Numerous pharmacological activities have been reportedin Mikania species. In the present investigation, we aimed to evaluate 26 selected constituents of Mikania as potent inhibitory agents of human HMG-CoA reductase (hHMGR), human inducible nitric oxide synthase (hiNOS), and human squalene synthase (hSQS) using the in silico method. Methodology Twenty-six selected constituents of Mikania were investigated based on the docking behavior of three target enzymes, namely hHMGR, hiNOS, and hSQS, using the Cdocker method (Discovery Studio® 3.1, Accelrys, Inc., San Diego, CA). Results Docking analysis showed that methyl-3,5-di-O-caffeoyl quinate (MCQ) has the maximum binding energy (BE) (-39.63, -50.65, and -58.56 kcal/mol) with hHMGR, hiNOS, and hSQS enzymes. On the other hand, six ligands (kaurenoic acid (KAA), stigmasterol (SS), grandifloric acid (GA), kaurenol (KA), spathlenol (SP), and taraxerol (TA)) of Mikania failed to dock with either of the target enzymes (hHMGR, hiNOS, or hSQS). Conclusions The findings of the current study provide new insight regarding 26 selected ligands of Mikania as potent inhibitory agents of hHMGR, hiNOS, and hSQS.
Collapse
Affiliation(s)
- Sri Tharany Vahsh Vijayakumar
- Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| | - Radhakrishnan Narayanaswamy
- Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| | - Vasantha-Srinivasan Prabhakaran
- Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai, IND
| |
Collapse
|
2
|
Shin JM, Kim KM, Choi MS, Park S, Hong D, Jung KE, Seo YJ, Kim CD, Yang H, Lee Y. The crosstalk between PTEN-induced kinase 1-mediated mitophagy and the inflammasome in the pathogenesis of alopecia areata. Exp Dermatol 2024; 33:e14844. [PMID: 37264692 DOI: 10.1111/exd.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Alopecia areata (AA) is a T-cell-mediated autoimmune disease that causes chronic, relapsing hair loss; however, its precise pathogenesis remains to be elucidated. Recent studies have provided compelling evidence of crosstalk between inflammasomes and mitophagy-a process that contributes to the removal of damaged mitochondria. Our previous studies showed that the NLR family pyrin domain containing 3 (NLRP3) inflammasome is important for eliciting and progressing inflammation in AA. In this study, we detected mitochondrial DNA damage in AA-affected scalp tissues and IFNγ and poly(I:C) treated outer root sheath (ORS) cells. In addition, IFNγ and poly(I:C) treatment increased mitochondrial reactive oxygen species (ROS) levels in ORS cells. Moreover, we showed that mitophagy induction alleviates IFNγ and poly(I:C)-induced NLRP3 inflammasome activation in ORS cells. Lastly, PTEN-induced kinase 1 (PINK1) knockdown increased NLRP3 inflammasome activation, indicating that PINK1-mediated mitophagy plays a critical role in NLRP3 inflammasome activation in ORS cells. This study supports previous studies showing that oxidative stress disrupts immune privilege status and promotes autoimmunity in AA. The results emphasize the significance of crosstalk between mitophagy and inflammasomes in the pathogenesis of AA. Finally, mitophagy factors regulating mitochondrial dysfunction and inhibiting inflammasome activation could be novel therapeutic targets for AA.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung Min Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Mi Soo Choi
- Department of Dermatology, Dankook University Hospital, Cheonan, Korea
| | - Sanghyun Park
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
3
|
Jie-Du-Hua-Yu Granules Promote Liver Regeneration in Rat Models of Acute Liver Failure: miRNA-mRNA Expression Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8180959. [PMID: 33456491 PMCID: PMC7787748 DOI: 10.1155/2020/8180959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022]
Abstract
Purpose Jie-Du-Hua-Yu (JDHY) granules are a traditional Chinese medicine with known therapeutic effects for the treatment of acute liver failure (ALF). This study explored the potential molecular mechanism(s) of JDHY granules in promoting liver regeneration and preventing ALF. Methods Rat models of ALF were constructed through administration of D-galactosamine (D-GalN) (600 mg/kg) and lipopolysaccharides (LPS) (20 μg/kg). Rats were gavaged with JDHY granules, and serum and liver samples were collected at 12 h post-D-GalN/LPS administration. The degree of liver injury was evaluated through hepatic pathology and alanine/aspartate aminotransferase (ALT/AST) activity. miRNA chips were used to detect the miRNA expression profiles of rat models. Bioinformatics analysis was used to identify the biological processes and cell signaling pathways mediating the therapeutic effects of JDHY. Real-time PCR (RT-PCR) and western blotting were used to validate the data. Results JDHY granules could effectively decrease the levels of ALT and AST, relieve D-GalN/LPS-induced liver injury, and improve hepatic function. JDHY granules were found to regulate the expression of 20 miRNAs and 19 mRNAs, which influenced 21 biological processes and 9 signaling pathways. Upon analysis of the therapeutic mechanism(s) governing the effects of JDHY granules on liver regeneration, enhanced DNA replication and an improved cholesterol metabolic ratio were identified. JDHY granules were also found to increase the expression of MCM3, CDK4, and TC, confirming the involvement of these pathways. Moreover, JDHY granules were found to promote hepatocyte mitosis and inhibit the progression of ALF. Conclusion JDHY granules protect against D-GalN/LPS-induced ALF in rats by promoting liver regeneration through enhanced DNA replication and an improved cholesterol metabolic ratio.
Collapse
|
4
|
Yuk JM, Silwal P, Jo EK. Inflammasome and Mitophagy Connection in Health and Disease. Int J Mol Sci 2020; 21:ijms21134714. [PMID: 32630319 PMCID: PMC7370205 DOI: 10.3390/ijms21134714] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammasome is a large intracellular protein complex that activates inflammatory caspase-1 and induces the maturation of interleukin (IL)-1β and IL-18. Mitophagy plays an essential role in the maintenance of mitochondrial homeostasis during stress. Previous studies have indicated compelling evidence of the crosstalk between inflammasome and mitophagy. Mitophagy regulation of the inflammasome, or vice versa, is crucial for various biological functions, such as controlling inflammation and metabolism, immune and anti-tumor responses, and pyroptotic cell death. Uncontrolled regulation of the inflammasome often results in pathological inflammation and pyroptosis, and causes a variety of human diseases, including metabolic and inflammatory diseases, infection, and cancer. Here, we discuss how improved understanding of the interactions between inflammasome and mitophagy can lead to novel therapies against various disease pathologies, and how the inflammasome-mitophagy connection is currently being targeted pharmacologically by diverse agents and small molecules. A deeper understanding of the inflammasome-mitophagy connection will provide new insights into human health and disease through the balance between mitochondrial clearance and pathology.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-580-8243
| |
Collapse
|
5
|
Piscianz E, Vecchi Brumatti L, Tommasini A, Marcuzzi A. Is autophagy an elective strategy to protect neurons from dysregulated cholesterol metabolism? Neural Regen Res 2019; 14:582-587. [PMID: 30632494 PMCID: PMC6352582 DOI: 10.4103/1673-5374.247441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
The balance of autophagy, apoptosis and necroptosis is crucial to determine the outcome of the cellular response to cholesterol dysregulation. Cholesterol plays a major role in regulating the properties of cell membranes, especially as regards their fluidity, and the regulation of its biosynthesis influences the shape and functions of these membranes. Whilst dietary cholesterol can easily be distributed to most organs, the central nervous system, whose membranes are particularly rich in cholesterol, mainly relies on de novo synthesis. For this reason, defects in the biosynthesis of cholesterol can variably affect the development of central nervous system. Moreover, defective synthesis of cholesterol and its intermediates may reflect both on structural cell anomalies and on the response to inflammatory stimuli. Examples of such disorders include mevalonate kinase deficiency, and Smith-Lemli-Opitz syndrome, due to deficiency in biosynthetic enzymes, and type C Niemann-Pick syndrome, due to altered cholesterol trafficking across cell compartments. Autophagy, as a crucial pathway dedicated to the degradation of cytosolic proteins and organelles, plays an essential role in the maintenance of homeostasis and in the turnover of the cytoplasmic material especially in the presence of imbalances such as those resulting from alteration of cholesterol metabolism. Manipulating the process of autophagy can offer possible strategies for improving neuronal cell viability and function in these genetic disorders.
Collapse
Affiliation(s)
- Elisa Piscianz
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Liza Vecchi Brumatti
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Annalisa Marcuzzi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
The Complex Interplay between Lipids, Immune System and Interleukins in Cardio-Metabolic Diseases. Int J Mol Sci 2018; 19:ijms19124058. [PMID: 30558209 PMCID: PMC6321433 DOI: 10.3390/ijms19124058] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lipids and inflammation regulate each other. Early studies on this topic focused on the systemic effects that the acute inflammatory response—and interleukins—had on lipid metabolism. Today, in the era of the obesity epidemic, whose primary complications are cardio-metabolic diseases, attention has moved to the effects that the nutritional environment and lipid derangements have on peripheral tissues, where lipotoxicity leads to organ damage through an imbalance of chronic inflammatory responses. After an overview of the effects that acute inflammation has on the systemic lipid metabolism, this review will describe the lipid-induced immune responses that take place in peripheral tissues and lead to chronic cardio-metabolic diseases. Moreover, the anti-inflammatory effects of lipid lowering drugs, as well as the possibility of using anti-inflammatory agents against cardio-metabolic diseases, will be discussed.
Collapse
|
7
|
The effect of N-stearoylethanolamine on adipocytes free cholesterol content and phospholipid composition in rats with obesity-induced insulin resistance. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.05.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Abstract
Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones.
Collapse
Affiliation(s)
- Georgios A Triantafyllou
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST 820, Boston, MA 02215, USA
| | - Stavroula A Paschou
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST 820, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST 820, Boston, MA 02215, USA.
| |
Collapse
|