1
|
Gao J, Lu C, Wei Y, Xie Q, Jin J, Li J, Yang F, Zhu G. Phosphorylation of 399S at CsHsp70 of Cymbidium sinense is essential to maintain chlorophyll stability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108518. [PMID: 38744085 DOI: 10.1016/j.plaphy.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 05/16/2024]
Abstract
The Chinese orchids symbolise nobility and gentility in China, and the variation of leaf color makes Cymbidium sinense more diversified and valuable. However, its color variations especially at the protein level still remain largely unexplored. In this study, the proteomics and phosphoproteomics of Cymbidium sinense leaf color variation mutants were studied. A total of 1059 differentially abundant proteins (DAPs) and 1127 differentially abundant phosphorylation sites belonging to 644 phosphoproteins (DAPPs) were identified in the yellow section of leaf variegation mutant of Cymbidium sinense (MY) compared with the green section (MG). Moreover, 349 co-expressing proteins were found in both omics' datasets, while only 26 proteins showed the same expression patterns in the two omics. The interaction network analysis of kinases and phosphatases showed that DAPs and DAPPs in photosynthesis, response to hormones, pigment metabolic process, phosphorylation, glucose metabolic process, and dephosphorylation might contribute to leaf color variation. The abundance of 28 Hsps and 28 phosphorylation sites belonging to 10 Hsps showed significant differences between MG and MY. CsHsp70 was selected to explore the function in Cymbidium sinense leaf variegation. The results showed CsHsp70 is essential for maintaining photosynthetic pigment content and the 399S phosphorylation site is crucial to the function of CsHsp70. Collectively, our findings construct a comprehensive coverage of protein and protein phosphorylation in leaf variegation of C. sinense, providing valuable insights into its formation mechanisms.
Collapse
Affiliation(s)
- Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
2
|
Qiao Q, Wu C, Cheng TT, Yan Y, Zhang L, Wan YL, Wang JW, Liu QZ, Feng Z, Liu Y. Comparative Analysis of the Metabolome and Transcriptome between the Green and Yellow-Green Regions of Variegated Leaves in a Mutant Variety of the Tree Species Pteroceltis tatarinowii. Int J Mol Sci 2022; 23:ijms23094950. [PMID: 35563341 PMCID: PMC9101679 DOI: 10.3390/ijms23094950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
In nature, many different factors cause plants to develop variegated leaves. To explore the mechanism of variegated leaf formation in Pteroceltis tatarinowii, a mutant variety ('Jinyuyuan'), which was induced by ethylmethylsulfone, was selected, and its morphological structure, physiology, biochemistry, transcription and metabolism were analysed. According to differences in colour values, the colours were divided into two regions: a green region and a yellow-green region. The chlorophyll content of the two regions was significantly different. Moreover, the yellow-green regions of the leaves were significantly thinner than the green regions. The chloroplast ultrastructure in the yellow-green region revealed small chloroplasts, large vacuoles, small starch grains, obviously increased numbers of osmophilic grains, loose lamellae of the inner capsule and thin lamellae. Moreover, the yellow-green region was accompanied by oxidative stress, and the activity of the oxidative phosphorylation pathway related to oxidative activity in the transcriptome showed an upward trend. Vitamin B6 and proline contents also increased, indicating that the antioxidant activity of cells in the yellow-green region increased. Transcriptomic and metabolomic analysis showed that the differentially expressed genes (DEGs) related to chlorophyll synthesis and metabolism led to a decrease in the photosynthesis and then a decrease in the assimilation ability and contents of sucrose, starch and other assimilates. Amino acid synthesis and metabolism, lipid synthesis and the activity of metabolic pathways were obviously downregulated, and the contents of differentially accumulated metabolites associated with amino acids and lipids were also reduced. At the same time, 31 out of 32 DEGs involved in the flavonoid synthesis pathway were downregulated, which affected leaf colour. We hypothesized that the variegated leaves of P. tatarinowii 'Jinyuyuan' are caused by transcriptional and post-transcriptional regulation. Mutations in pigment and flavonoid synthesis pathway genes and transcription factor genes directly affect both pigment and flavonoid synthesis and degradation rate, which in turn affect carbon assimilation, carbon fixation, related protein synthesis and enzyme activity, lipid synthesis and degradation and the activity of other metabolic pathways, eventually leading to the formation of different colour regions.
Collapse
Affiliation(s)
- Qian Qiao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Q.Q.); (Y.-L.W.)
| | - Chong Wu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an 271000, China; (C.W.); (J.-W.W.); (Q.-Z.L.)
| | - Tian-Tian Cheng
- Taishan Forestry Science Institute, Tai’an 271018, China; (T.-T.C.); (Y.Y.); (L.Z.)
| | - Yu Yan
- Taishan Forestry Science Institute, Tai’an 271018, China; (T.-T.C.); (Y.Y.); (L.Z.)
| | - Lin Zhang
- Taishan Forestry Science Institute, Tai’an 271018, China; (T.-T.C.); (Y.Y.); (L.Z.)
| | - Ying-Lin Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Q.Q.); (Y.-L.W.)
| | - Jia-Wei Wang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an 271000, China; (C.W.); (J.-W.W.); (Q.-Z.L.)
| | - Qing-Zhong Liu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an 271000, China; (C.W.); (J.-W.W.); (Q.-Z.L.)
| | - Zhen Feng
- Department of Forestry, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (Z.F.); (Y.L.)
| | - Yan Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Q.Q.); (Y.-L.W.)
- Correspondence: (Z.F.); (Y.L.)
| |
Collapse
|
3
|
Wu S, Guo Y, Adil MF, Sehar S, Cai B, Xiang Z, Tu Y, Zhao D, Shamsi IH. Comparative Proteomic Analysis by iTRAQ Reveals that Plastid Pigment Metabolism Contributes to Leaf Color Changes in Tobacco ( Nicotiana tabacum) during Curing. Int J Mol Sci 2020; 21:E2394. [PMID: 32244294 PMCID: PMC7178154 DOI: 10.3390/ijms21072394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/21/2023] Open
Abstract
Tobacco (Nicotiana tabacum), is a world's major non-food agricultural crop widely cultivated for its economic value. Among several color change associated biological processes, plastid pigment metabolism is of trivial importance in postharvest plant organs during curing and storage. However, the molecular mechanisms involved in carotenoid and chlorophyll metabolism, as well as color change in tobacco leaves during curing, need further elaboration. Here, proteomic analysis at different curing stages (0 h, 48 h, 72 h) was performed in tobacco cv. Bi'na1 with an aim to investigate the molecular mechanisms of pigment metabolism in tobacco leaves as revealed by the iTRAQ proteomic approach. Our results displayed significant differences in leaf color parameters and ultrastructural fingerprints that indicate an acceleration of chloroplast disintegration and promotion of pigment degradation in tobacco leaves due to curing. In total, 5931 proteins were identified, of which 923 (450 up-regulated, 452 down-regulated, and 21 common) differentially expressed proteins (DEPs) were obtained from tobacco leaves. To elucidate the molecular mechanisms of pigment metabolism and color change, 19 DEPs involved in carotenoid metabolism and 12 DEPs related to chlorophyll metabolism were screened. The results exhibited the complex regulation of DEPs in carotenoid metabolism, a negative regulation in chlorophyll biosynthesis, and a positive regulation in chlorophyll breakdown, which delayed the degradation of xanthophylls and accelerated the breakdown of chlorophylls, promoting the formation of yellow color during curing. Particularly, the up-regulation of the chlorophyllase-1-like isoform X2 was the key protein regulatory mechanism responsible for chlorophyll metabolism and color change. The expression pattern of 8 genes was consistent with the iTRAQ data. These results not only provide new insights into pigment metabolism and color change underlying the postharvest physiological regulatory networks in plants, but also a broader perspective, which prompts us to pay attention to further screen key proteins in tobacco leaves during curing.
Collapse
Affiliation(s)
- Shengjiang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China;
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.F.A.); (S.S.)
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.F.A.); (S.S.)
| | - Bin Cai
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Zhangmin Xiang
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Yonggao Tu
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Degang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China;
- Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.F.A.); (S.S.)
| |
Collapse
|
4
|
Tang Y, Fang Z, Liu M, Zhao D, Tao J. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony ( Paeonia lactiflora Pall.). 3 Biotech 2020; 10:76. [PMID: 32051809 PMCID: PMC6987280 DOI: 10.1007/s13205-020-2063-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/08/2020] [Indexed: 01/26/2023] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is one of the color-leaved ornamental spring plants, with graceful appearance and splendid color. However, the underlying mechanism of this coloration variation from purple to green has not been studied in P. lactiflora. In th study, the leaves in purple, purple-green, and green stages were compared in terms of anatomical, physiological, and molecular. We found that the variation of leaf color from purple to green was mainly determined by the change in pigments distributed in the leaf surface. Physiological experiments showed a significant increase in chlorophyll contents and a notable reduction in anthocyanin contents in leaves from the purple to green stages. We further found that the anthocyanin biosynthesis-related dihydroflavonol 4-reductase (DFR) gene and anthocyanin synthase (ANS) gene as well as chlorophyll biosynthesis-related glutamyl-tRNA reductase (HEMA) gene showed a decreased trend in leaves from purple to green stages, whereas the chlorophyll degradation-related chlorophyll b reductase (NYC) gene showed a rising trend. Alteration of DFR and ANS gene expression might reduce anthocyanin accumulation, whereas increased HEMA gene expression would enhance chlorophyll biosynthesis and reduced NYC gene expression would inhibit chlorophyll degradation. Consequently, reduction in anthocyanins and enhanced deposition of chlorophylls resulted in leaf coloration variation from purple to green in P. lactiflora, which could improve our understanding of its mechanism for further studies.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 People’s Republic of China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Ziwen Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Mi Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Jun Tao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 People’s Republic of China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| |
Collapse
|
5
|
Gao TM, Wei SL, Chen J, Wu Y, Li F, Wei LB, Li C, Zeng YJ, Tian Y, Wang DY, Zhang HY. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L.) mutant Siyl-1 with yellow-green leaf color. Genes Genomics 2020; 42:25-39. [PMID: 31677128 PMCID: PMC6942039 DOI: 10.1007/s13258-019-00876-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Both photosynthetic pigments and chloroplasts in plant leaf cells play an important role in deciding on the photosynthetic capacity and efficiency in plants. Systematical investigating the regulatory mechanism of chloroplast development and chlorophyll (Chl) content variation is necessary for clarifying the photosynthesis mechanism for crops. OBJECTIVE This study aims to explore the critical regulatory mechanism of leaf color mutation in a yellow-green leaf sesame mutant Siyl-1. METHODS We performed the genetic analysis of the yellow-green leaf color mutation using the F2 population of the mutant Siyl-1. We compared the morphological structure of the chloroplasts, chlorophyll content of the three genotypes of the mutant F2 progeny. We performed the two-dimensional gel electrophoresis (2-DE) and compared the protein expression variation between the mutant progeny and the wild type. RESULTS Genetic analysis indicated that there were 3 phenotypes of the F2 population of the mutant Siyl-1, i.e., YY type with light-yellow leaf color (lethal); Yy type with yellow-green leaf color, and yy type with normal green leaf color. The yellow-green mutation was controlled by an incompletely dominant nuclear gene, Siyl-1. Compared with the wild genotype, the chloroplast number and the morphological structure in YY and Yy mutant lines varied evidently. The chlorophyll content also significantly decreased (P < 0.05). The 2-DE comparison showed that there were 98 differentially expressed proteins (DEPs) among YY, Yy, and yy lines. All the 98 DEPs were classified into 5 functional groups. Of which 82.7% DEPs proteins belonged to the photosynthesis and energy metabolism group. CONCLUSION The results revealed the genetic character of yellow-green leaf color mutant Siyl-1. 98 DEPs were found in YY and Yy mutant compared with the wild genotype. The regulation pathway related with the yellow leaf trait mutation in sesame was analyzed for the first time. The findings supplied the basic theoretical and gene basis for leaf color and chloroplast development mechanism in sesame.
Collapse
Affiliation(s)
- Tong-Mei Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Shuang-Ling Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Jing Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yin Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Feng Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Li-Bin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yan-Juan Zeng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yuan Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Dong-Yong Wang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Hai-Yang Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Quantitative Phosphoproteomic and Physiological Analyses Provide Insights into the Formation of the Variegated Leaf in Catalpa fargesii. Int J Mol Sci 2019; 20:ijms20081895. [PMID: 30999580 PMCID: PMC6514904 DOI: 10.3390/ijms20081895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022] Open
Abstract
Variegated plants are valuable materials for investigating leaf color regulated mechanisms. To unveil the role of posttranslational modification in the variegated phenotype, we conducted global quantitative phosphoproteomic analysis on different leaf color sectors of Maiyuanjinqiu and the corresponding of Catalpa fargesii using Ti4+-IMAC phosphopeptide enrichment. A total of 3778 phosphorylated sites assigned to 1646 phosphoproteins were identified, and 3221 in 1434 proteins were quantified. Differential phosphoproteins (above 1.5 or below 1/1.5) in various leaf color sectors were selected for functional enrichment analyses. Gene ontology (GO) enrichment revealed that processes of photosynthesis, regulation of the generation of precursor metabolites, response to stress, homeostasis, amino acid metabolism, transport–related processes, and most of the energy metabolisms might contribute to leaf color. KEGG pathway enrichment analysis was performed based on differential phosphoproteins (DPs) in different organelles. The result showed that most enriched pathways were located in the chloroplasts and cytosol. The phosphorylation levels of glycometabolism enzymes might greatly affect leaf variegation. Measurements of fluorescence parameters and enzyme activities confirmed that protein phosphorylation could affect plant physiology by regulating enzyme activity. These results provide new clues for further study the formation mechanisms of naturally variegated phenotype.
Collapse
|
7
|
Komatsu S, Hossain Z. Preface-Plant Proteomic Research. Int J Mol Sci 2017; 18:ijms18010088. [PMID: 28054969 PMCID: PMC5297722 DOI: 10.3390/ijms18010088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 11/18/2022] Open
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan.
| | - Zahed Hossain
- Department of Botany, University of Kalyani, West Bengal 741235, India.
| |
Collapse
|
8
|
Comparative Proteomic and Physiological Analysis Reveals the Variation Mechanisms of Leaf Coloration and Carbon Fixation in a Xantha Mutant of Ginkgo biloba L. Int J Mol Sci 2016; 17:ijms17111794. [PMID: 27801782 PMCID: PMC5133795 DOI: 10.3390/ijms17111794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
Yellow-green leaf mutants are common in higher plants, and these non-lethal chlorophyll-deficient mutants are ideal materials for research on photosynthesis and plant development. A novel xantha mutant of Ginkgo biloba displaying yellow-colour leaves (YL) and green-colour leaves (GL) was identified in this study. The chlorophyll content of YL was remarkably lower than that in GL. The chloroplast ultrastructure revealed that YL had less dense thylakoid lamellae, a looser structure and fewer starch grains than GL. Analysis of the photosynthetic characteristics revealed that YL had decreased photosynthetic activity with significantly high nonphotochemical quenching. To explain these phenomena, we analysed the proteomic differences in leaves and chloroplasts between YL and GL of ginkgo using two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF MS. In total, 89 differential proteins were successfully identified, 82 of which were assigned functions in nine metabolic pathways and cellular processes. Among them, proteins involved in photosynthesis, carbon fixation in photosynthetic organisms, carbohydrate/energy metabolism, amino acid metabolism, and protein metabolism were greatly enriched, indicating a good correlation between differentially accumulated proteins and physiological changes in leaves. The identifications of these differentially accumulated proteins indicates the presence of a specific different metabolic network in YL and suggests that YL possess slower chloroplast development, weaker photosynthesis, and a less abundant energy supply than GL. These studies provide insights into the mechanism of molecular regulation of leaf colour variation in YL mutants.
Collapse
|