1
|
Galvan-Martinez DH, Bosquez-Mendoza VM, Ruiz-Noa Y, Ibarra-Reynoso LDR, Barbosa-Sabanero G, Lazo-de-la-Vega-Monroy ML. Nutritional, pharmacological, and environmental programming of NAFLD in early life. Am J Physiol Gastrointest Liver Physiol 2023; 324:G99-G114. [PMID: 36472341 DOI: 10.1152/ajpgi.00168.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main liver disease worldwide, and its prevalence in children and adolescents has been increasing in the past years. It has been demonstrated that parental exposure to different conditions, both preconceptionally and during pregnancy, can lead to fetal programming of several metabolic diseases, including NAFLD. In this article, we review some of the maternal and paternal conditions that may be involved in early-life programing of adult NAFLD. First, we describe the maternal nutritional factors that have been suggested to increase the risk of NAFLD in the offspring, such as an obesogenic diet, overweight/obesity, and altered lipogenesis. Second, we review the association of certain vitamin supplementation and the use of some drugs during pregnancy, for instance, glucocorticoids, with a higher risk of NAFLD. Furthermore, we discuss the evidence showing that maternal-fetal pathologies, including gestational diabetes mellitus (GDM), insulin resistance (IR), and intrauterine growth restriction (IUGR), as well as the exposure to environmental contaminants, and the impact of microbiome changes, are important factors in early-life programming of NAFLD. Finally, we review how paternal preconceptional conditions, such as exercise and diet (particularly obesogenic diets), may impact fetal growth and liver function. Altogether, the presented evidence supports the hypothesis that both in utero exposure and parental conditions may influence fetal outcomes, including the development of NAFLD in early life and adulthood. The study of these conditions is crucial to better understand the diverse mechanisms involved in NAFLD, as well as for defining new preventive strategies for this disease.
Collapse
Affiliation(s)
| | | | - Yeniley Ruiz-Noa
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | | - Gloria Barbosa-Sabanero
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | |
Collapse
|
2
|
Huang CF, Tiao MM, Lin IC, Huang LT, Sheen JM, Tain YL, Hsu CN, Tsai CC, Lin YJ, Yu HR. Maternal Metformin Treatment Reprograms Maternal High-Fat Diet-Induced Hepatic Steatosis in Offspring Associated with Placental Glucose Transporter Modifications. Int J Mol Sci 2022; 23:ijms232214239. [PMID: 36430717 PMCID: PMC9694630 DOI: 10.3390/ijms232214239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Maternal high-fat (HF) diet exposure in utero may affect fetal development and cause metabolic problems throughout life due to lipid dysmetabolism and oxidative damage. Metformin has been suggested as a potential treatment for body weight reduction and nonalcoholic fatty liver disease, but its reprogramming effect on offspring is undetermined. This study assesses the effects of maternal metformin treatment on hepatic steatosis in offspring caused by maternal HF diet. Female rats were fed either a control or an HF diet before conception, with or without metformin treatment during gestation, and placenta and fetal liver tissues were collected. In another experiment, the offspring were fed a control diet until 120 d (adult stage). Metformin treatment during pregnancy ameliorates placental oxidative stress and enhances placental glucose transporter 1 (GLUT1), GLUT3, and GLUT4 expression levels through 5' adenosine monophosphate-activated protein kinase (AMPK) activation. Maternal metformin treatment was shown to reprogram maternal HF diet-induced changes in offspring fatty liver with the effects observed in adulthood as well. Further validation is required to develop maternal metformin therapy for clinical applications.
Collapse
Affiliation(s)
- Chien-Fu Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8713)
| |
Collapse
|
3
|
Butyrate ameliorates maternal high-fat diet-induced fetal liver cellular apoptosis. PLoS One 2022; 17:e0270657. [PMID: 35793323 PMCID: PMC9258878 DOI: 10.1371/journal.pone.0270657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/14/2022] [Indexed: 12/22/2022] Open
Abstract
A maternal high-fat diet (HFD) can impact the offspring’s development of liver steatosis, with fetal development in utero being a crucial period. Therefore, this study investigated the mechanism and whether butyrate can rescue liver injury caused by maternal HFD in the fetus. Pregnant female Sprague Dawley rats were randomly divided into two groups, prenatal HFD (58% fat) exposure or normal control diet (4.5% fat). The HFD group was fed an HFD 7 weeks before mating and during gestation until sacrifice at gestation 21 days. After confirmation of mating, the other HFD group was supplemented with sodium butyrate (HFSB). The results showed that maternal liver histology showed lipid accumulation with steatosis and shortened ileum villi in HFD, which was ameliorated in the HFSB group (P<0.05). There was increased fetal liver and ileum TUNEL staining and IL-6 expression with increased fetal liver TNF-α and malondialdehyde expression in the HFD group (P<0.05), which decreased in the HFSB group (P<0.05). The fetal liver expression of phospho-AKT/AKT and GPX1 decreased in the HFD group but increased in the HFSB group (P<0.05). In conclusion that oxidative stress with inflammation and apoptosis plays a vital role after maternal HFD in the fetus liver that can be ameliorated with butyrate supplementation.
Collapse
|
4
|
Pes K, Ortiz-Delgado JB, Sarasquete C, Laizé V, Fernández I. Short-term exposure to pharmaceuticals negatively impacts marine flatfish species: Histological, biochemical and molecular clues for an integrated ecosystem risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103822. [PMID: 35101594 DOI: 10.1016/j.etap.2022.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The marine habitat and its biodiversity can be impacted by released pharmaceuticals. The short-term (7 days) effect of 3 commonly used drugs - warfarin, dexamethasone and imidazole - on Senegalese sole (Solea senegalensis) juveniles was investigated. Occurrence of hemorrhages, histopathological alterations, antioxidant status, activity of antioxidant enzymes and expression of genes involved in the xenobiotic response (pxr, abcb1 and cyp1a), were evaluated. The results showed a time and drug-dependent effect. Warfarin exposure induced hemorrhages, hepatocyte vacuolar degeneration, and altered the activity of glutathione peroxidase (GPx) and the expression of all the studied genes. Dexamethasone exposure increased liver glycogen content, altered antioxidant status, GPx and superoxide dismutase activities, as well as abcb1 and cyp1a expression. Imidazole induced hepatocyte vacuolar degeneration and ballooning, and altered the antioxidant status and expression of the tested genes. The present work anticipates a deeper impact of pharmaceuticals on the aquatic environment than previously reported, thus underlining the urgent need for an integrated risk assessment.
Collapse
Affiliation(s)
- Katia Pes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510 Puerto Real, Cádiz, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510 Puerto Real, Cádiz, Spain
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain; Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), 36390 Vigo, Spain.
| |
Collapse
|
5
|
Wang YW, Yu HR, Tiao MM, Tain YL, Lin IC, Sheen JM, Lin YJ, Chang KA, Chen CC, Tsai CC, Huang LT. Maternal Obesity Related to High Fat Diet Induces Placenta Remodeling and Gut Microbiome Shaping That Are Responsible for Fetal Liver Lipid Dysmetabolism. Front Nutr 2022; 8:736944. [PMID: 34977107 PMCID: PMC8715080 DOI: 10.3389/fnut.2021.736944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Maternal obesity in utero may affect fetal development and cause metabolic problems during childhood and even adulthood. Diet-induced maternal obesity can impair gut barrier integrity and change the gut microbiome, which may contribute to adverse placental adaptations and increase the obesity risk in offspring. However, the mechanism through which maternal obesity causes offspring metabolic disorder must be identified. Methods: Eight-week-old female rats received a control diet or high-fat (HF) diet for 11 weeks before conception and during gestation. The placentas were collected on gestational day 21 before offspring delivery. Placental tissues, gut microbiome, and short-chain fatty acids of dams and fetal liver tissues were studied. Results: Maternal HF diet and obesity altered the placental structure and metabolism-related transcriptome and decreased G protein–coupled receptor 43 expression. HF diet and obesity also changed the gut microbiome composition and serum propionate level of dams. The fetal liver exhibited steatosis, enhanced oxidative stress, and increased expression of acetyl-CoA carboxylase 1 and lipoprotein lipase with changes in maternal HF diet and obesity. Conclusions: Maternal HF diet and obesity shape gut microbiota and remodel the placenta of dams, resulting in lipid dysmetabolism of the fetal liver, which may ultimately contribute to the programming of offspring obesity.
Collapse
Affiliation(s)
- Ying-Wen Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | - Kow-Aung Chang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Metformin ameliorates maternal high-fat diet-induced maternal dysbiosis and fetal liver apoptosis. Lipids Health Dis 2021; 20:100. [PMID: 34496884 PMCID: PMC8424801 DOI: 10.1186/s12944-021-01521-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The deleterious effect of maternal high-fat diet (HFD) on the fetal rat liver may cause later development of non-alcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the effect of maternal HFD-induced maternal hepatic steatosis and dysbiosis on the fetal liver and intestines, and the effect of prenatal metformin in a rat model. METHODS Sprague-Dawley rats were assigned to three groups (N = 6 in each group). Before mating, the rats were randomly assigned to HFD or normal-chow diet (NCD) group for 7 weeks. After mating, the HFD group rats were continued with high-fat diet during pregnancy and some of the HFD group rats were co-treated with metformin (HFMf) via drinking water during pregnancy. All maternal rats and their fetuses were sacrificed on gestational day 21. The liver and intestinal tissues of both maternal and fetal rats were analyzed. In addition, microbial deoxyribonucleic acid extracted from the maternal fecal samples was analyzed. RESULTS HFD resulted in maternal weight gain during pregnancy, intrahepatic lipid accumulation, and change in the serum short-chain fatty acid profile, intestinal tight junctions, and dysbiosis in maternal rats. The effect of HFD on maternal rats was alleviated by prenatal metformin, which also ameliorated inflammation and apoptosis in the fetal liver and intestines. CONCLUSIONS This study demonstrated the beneficial effects of prenatal metformin on maternal liver steatosis, focusing on the gut-liver axis. In addition, the present study indicates that prenatal metformin could ameliorate maternal HFD-induced inflammation and apoptosis in the fetal liver and intestines. This beneficial effect of in-utero exposure of metformin on fetal liver and intestines has not been reported. This study supports the use of prenatal metformin for pregnant obese women.
Collapse
|
7
|
Liu H, He B, Hu W, Liu K, Dai Y, Zhang D, Wang H. Prenatal dexamethasone exposure induces nonalcoholic fatty liver disease in male rat offspring via the miR-122/YY1/ACE2-MAS1 pathway. Biochem Pharmacol 2021; 185:114420. [PMID: 33460628 DOI: 10.1016/j.bcp.2021.114420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have shown that nonalcoholic fatty liver disease (NAFLD) has an intrauterine developmental origin. We aimed to demonstrate that NAFLD is caused by prenatal dexamethasone exposure (PDE) in adult male rat offspring and to investigate the intrauterine programming mechanism. Liver samples were obtained on gestational day (GD) 21 and postnatal week (PW) 28. The effects and epigenetic mechanism of dexamethasone were studied with bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and other cell models. In the PDE group, lipid accumulation increased, triglyceride synthesis-related gene expression increased, and oxidation-related gene expression decreased in livers of adult male rat offspring. In utero, hepatic triglyceride synthesis increased and oxidative function decreased in PDE fetal male rats. Moreover, low hepatic miR-122 expression, high Yin Yang-1 (YY1) expression and angiotensin-converting enzyme 2 (ACE2)-Mas receptor (MAS1) signaling pathway inhibition were observed before and after birth. At the cellular level, dexamethasone (100-2500 nM) elevated the intracellular triglyceride content, increased triglyceride synthesis-related gene expression and decreased oxidation-related gene expression. Dexamethasone treatment also decreased miR-122 expression, increased YY1 expression and inhibited the ACE2-MAS1 signaling pathway. Interference or overexpression of glucocorticoid receptor (GR), miR-122, YY1 and ACE2 could reverse the changes in downstream gene expression. In summary, PDE could induce NAFLD in adult male rat offspring. The programming mechanism included inhibition of miR-122 expression after GR activation, and dexamethasone increased hepatocyte YY1 expression; these effects resulted in ACE2-MAS1 signaling pathway inhibition, which led to increased hepatic triglyceride synthesis and decreased oxidative function. The increased triglyceride synthesis and decreased oxidative function of hepatocytes caused by low miR-122 expression due to dexamethasone could continue postnatally, eventually leading to NAFLD in adult rat offspring.
Collapse
Affiliation(s)
- Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Bo He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
8
|
Song H, Zuo Z, Yang Z, Gao C, Chen K, Fang J, Cui H, Ouyang P, Deng J, Geng Y, Guo H. Hepatic histopathology and apoptosis in diet-induced-obese mice under Escherichia coli pneumonia. Aging (Albany NY) 2020; 11:2836-2851. [PMID: 31085802 PMCID: PMC6535052 DOI: 10.18632/aging.101956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
This research was to investigate the difference of hepatic histopathology and apoptosis between the diet-induced obesity (DIO) and normal (lean) mice after Escherichia coli (E. coli) pneumonia. A total of 128 ICR mice were selected to be challenged intranasally with phosphate-buffered saline (PBS) or 4×109CFUs/mL of E. coli, and the liver histopathology and apoptosis were examined pre- and post-infection. Results showed that the liver index, levels of lipid droplets, cytokines, adipocytokines, oxidative stress, apoptotic percentage, and apoptotic related factors in the E. coli-infected mice were generally higher than those in the uninfected mice, whereas the hepatic glycogen and Bcl-2 were the opposite. Interestingly, after E. coli infection, the DIO-E. coli mice exhibited decreased liver index and apoptotic percentages, and reduced levels of TNF-α, IL-6, resistin, MDA, GSH, CAT, Caspase-3, Caspase-9, Bax as well as Bax/Bcl-2 ratio in comparison to the lean-E. coli mice. Our results indicated that E. coli-induced pneumonia caused hepatic histopathological damage, increased hepatic apoptosis, oxidative damages, and higher levels of cytokines and adipocytokines. However, such changes showed less severely in the DIO mice than in the lean mice following E. coli pneumonia.
Collapse
Affiliation(s)
- Hetao Song
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Caixia Gao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500 PR China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
9
|
Tsai CC, Chen YJ, Yu HR, Huang LT, Tain YL, Lin IC, Sheen JM, Wang PW, Tiao MM. Long term N-acetylcysteine administration rescues liver steatosis via endoplasmic reticulum stress with unfolded protein response in mice. Lipids Health Dis 2020; 19:105. [PMID: 32450865 PMCID: PMC7249367 DOI: 10.1186/s12944-020-01274-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Fat accumulation in the liver contributes to the development of non-alcoholic fatty liver disease (NAFLD). N-acetylcysteine (NAC) is an antioxidant, acting both directly and indirectly via upregulation of cellular antioxidants. We examined the mechanisms of liver steatosis after 12 months high fat (HF) diet and tested the ability of NAC to rescue liver steatosis. Methods Seven-week-old C57BL/6 (B6) male mice were administered HF diet for 12 months (HF group). Two other groups received HF diet for 12 months accompanied by NAC for 12 months (HFD + NAC(1–12)) or 6 months (HFD + NAC(1–6)). The control group was fed regular diet for 12 months (CD group). Results Liver steatosis was more pronounced in the HF group than in the CD group after 12 month feeding. NAC intake for 6 or 12 months decreased liver steatosis in comparison with HF diet (p < 0.05). Furthermore, NAC treatment also reduced cellular apoptosis and caspase-3 expression. In the unfolded protein response (UPR) pathway, the expression of ECHS1, HSP60, and HSP70 was decreased in the HFD group (p < 0.05) and rescued by NAC therapy. With regards to the endoplasmic reticulum (ER) stress, Phospho-PERK (p-PERK) and ATF4 expression was decreased in the HF group, and only the HFD + NAC(1–12), but not HFD + NAC(1–6) group, showed significant improvement. Conclusion HF diet for 12 months induces significant liver steatosis via altered ER stress and UPR pathway activity, as well as liver apoptosis. NAC treatment rescues the liver steatosis and apoptosis induced by HF diet.
Collapse
Affiliation(s)
- Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan.,Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yu-Jen Chen
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan.,Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Pei-Wen Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan.
| |
Collapse
|
10
|
Bagley JR, Szumlinski KK, Kippin TE. Discovery of early life stress interacting and sex-specific quantitative trait loci impacting cocaine responsiveness. Br J Pharmacol 2019; 176:4159-4172. [PMID: 30874305 DOI: 10.1111/bph.14661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Addiction vulnerability involves complex gene X environment interactions leading to a pathological response to drugs. Identification of the genes involved in these interactions is an important step in understanding the underlying neurobiology and rarely have such analyses examined sex-specific influences. To dissect this interaction, we examined the impact of prenatal stress (PNS) on cocaine responsiveness in male and female mice of the BXD recombinant inbred panel. EXPERIMENTAL APPROACH BXD strains were subjected to timed mating and assigned to PNS or control groups. PNS dams were subjected to restraint stress (1-hr restraint, three times daily) starting between embryonic day (E) 11 and 14 and continued until parturition. Adult male and female, control and PNS offspring were tested for locomotor response to initial and repeated cocaine injections (sensitization) as well as cocaine-induced conditioned place preference (CPP). KEY RESULTS Strain, PNS, and sex interacted to modulate initial and sensitized cocaine-induced locomotion, as well as CPP. Moreover, a quantitative trait locus (QTL) interacting with PNS regulating initial locomotor response to cocaine (chromosome X, 37.91 to 50.95 Mb) was identified. Also PNS-independent, female-specific QTLs regulating CPP (chromosome 11, 65.50 to 81.31 Mb) and sensitized cocaine-induced locomotion (chromosome 16, 95.79 to 98.32 Mb) were identified. Publicly available mRNA expression data were utilized to identify cis-eQTL and transcript covariation with the behavioural phenotype to prioritize candidate genes; including Aifm1. CONCLUSIONS AND IMPLICATIONS These QTL encompass genes that may moderate genetic susceptibility to PNS and interact with sex to determine adult responsiveness to cocaine and addiction vulnerability. LINKED ARTICLES This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Jared R Bagley
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California.,Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California.,Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
11
|
Tiao MM, Lin YJ, Yu HR, Sheen JM, Lin IC, Lai YJ, Tain YL, Huang LT, Tsai CC. Resveratrol ameliorates maternal and post-weaning high-fat diet-induced nonalcoholic fatty liver disease via renin-angiotensin system. Lipids Health Dis 2018; 17:178. [PMID: 30055626 PMCID: PMC6064630 DOI: 10.1186/s12944-018-0824-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) can develop in prenatal stages and can be exacerbated by exposure to a postnatal high-fat (HF) diet. We investigated the protective effects of resveratrol on prenatal and postnatal HF diet-induced NAFLD. METHODS Male Sprague-Dawley rat offspring were placed in five experimental groups (n = 10-12 per group): normal diet (VNF), maternal HF diet (ONF), postnatal HF diet (VHF), and maternal HF diet/postnatal HF diet (OHF). A therapeutic group with resveratrol for maternal HF diet/postnatal HF diet (OHFR) was used for comparison. Resveratrol (50 mg/kg/day) was dissolved in drinking water for offspring from post-weaning to postnatal day (PND) 120. RESULTS We found that HF/HF-induced NAFLD was prevented in adult offspring by the administration of resveratrol. Resveratrol administration mediated a protective effect on rats on HF/HF by regulating lipid metabolism, reducing oxidative stress and apoptosis, restoring nutrient-sensing pathways by increasing Sirt1 and leptin expression, and mediating the renin-angiotensin system (RAS) to decrease angiotensinogen, renin, ACE1, and AT1R levels and increased ACE2, AT2R and MAS1 levels compared to those in the OHF group. CONCLUSION Our results suggest that a maternal and post-weaning HF diet increases liver steatosis and apoptosis via the RAS. Resveratrol might serve as a therapeutic target by mediating protective actions against NAFLD in offspring exposed to a combination of maternal and postnatal HF diet.
Collapse
Affiliation(s)
- Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao Sung, Kaohsiung, 83301, Taiwan, Republic of China
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao Sung, Kaohsiung, 83301, Taiwan, Republic of China
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 123 Ta-Pei Road, Niao Sung, Kaohsiung, 83301, Taiwan, Republic of China.
| |
Collapse
|
12
|
Tsai CC, Lin YJ, Yu HR, Sheen JM, Tain YL, Huang LT, Tiao MM. Melatonin alleviates liver steatosis induced by prenatal dexamethasone exposure and postnatal high-fat diet. Exp Ther Med 2018; 16:917-924. [PMID: 30112044 DOI: 10.3892/etm.2018.6256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Prenatal exposure to glucocorticoids is associated with negative health consequences for the offspring that persist into adulthood, including liver steatosis. Melatonin has previously been demonstrated to suppress liver steatosis and oxidative stress in humans with non-alcoholic fatty liver disease and in animal models of obesity. The present study aimed to determine whether melatonin protects against liver steatosis induced by prenatal dexamethasone exposure followed by postnatal high-fat diet. Pregnant Sprague-Dawley rats at gestational days 14-21 were administered dexamethasone (0.1 mg/kg/day) or saline via intraperitoneal injection. The offspring were then divided into five groups, as follows: Vehicle, postnatal high-fat diet (VHF), prenatal dexamethasone exposure (DEX), prenatal dexamethasone exposure + postnatal high-fat diet (DHF), and prenatal dexamethasone exposure + postnatal high-fat diet + melatonin (DHFM) group. Following vehicle or dexamethasone exposure of the maternal rats, the offspring rats in the VHF, DHF and DHFM groups received a high-fat diet (58% fat) between weaning and 6 months of age. In the DHFM group, melatonin was administered to the mothers from gestational days 14-21 until weaning. The offspring continued to receive melatonin until they were sacrificed at 6 months old. Oil Red O staining demonstrated stronger intensity in the DHF group compared with that in the other four groups. Western blot analysis also revealed higher levels of cleaved caspase-3, tumor necrosis factor-α (TNF-α), suppressor of cytokine signaling 3 (SOCS3) and malondialdehyde (MDA), as well as reduced expression of manganese superoxide dismutase (MnSOD) and phosphoinositide 3-kinase (PI3K) in the DHF group compared with the vehicle and DHFM groups. In addition, melatonin reduced the Oil Red O staining intensity and the levels of cleaved caspase-3, TNF-α, SOCS3 and MDA, while it increased the MnSOD and PI3K levels, in the DHFM group compared with the DHF group. In conclusion, postnatal high-fat diet aggravated the prenatal dexamethasone-induced liver steatosis in adult rat offspring via inflammation, oxidative stress and cellular apoptosis, which may be ameliorated by prenatal melatonin therapy.
Collapse
Affiliation(s)
- Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C.,Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| |
Collapse
|
13
|
Pridans C, Sauter KA, Irvine KM, Davis GM, Lefevre L, Raper A, Rojo R, Nirmal AJ, Beard P, Cheeseman M, Hume DA. Macrophage colony-stimulating factor increases hepatic macrophage content, liver growth, and lipid accumulation in neonatal rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G388-G398. [PMID: 29351395 PMCID: PMC5899243 DOI: 10.1152/ajpgi.00343.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Signaling via the colony-stimulating factor 1 receptor (CSF1R) controls the survival, differentiation, and proliferation of macrophages. Mutations in CSF1 or CSF1R in mice and rats have pleiotropic effects on postnatal somatic growth. We tested the possible application of pig CSF1-Fc fusion protein as a therapy for low birth weight (LBW) at term, using a model based on maternal dexamethasone treatment in rats. Neonatal CSF1-Fc treatment did not alter somatic growth and did not increase the blood monocyte count. Instead, there was a substantial increase in the size of liver in both control and LBW rats, and the treatment greatly exacerbated lipid droplet accumulation seen in the dexamethasone LBW model. These effects were reversed upon cessation of treatment. Transcriptional profiling of the livers supported histochemical evidence of a large increase in macrophages with a resident Kupffer cell phenotype and revealed increased expression of many genes implicated in lipid droplet formation. There was no further increase in hepatocyte proliferation over the already high rates in neonatal liver. In conclusion, treatment of neonatal rats with CSF1-Fc caused an increase in liver size and hepatic lipid accumulation, due to Kupffer cell expansion and/or activation rather than hepatocyte proliferation. Increased liver macrophage numbers and expression of endocytic receptors could mitigate defective clearance functions in neonates. NEW & NOTEWORTHY This study is based on extensive studies in mice and pigs of the role of CSF1/CSF1R in macrophage development and postnatal growth. We extended the study to neonatal rats as a possible therapy for low birth weight. Unlike our previous studies in mice and pigs, there was no increase in hepatocyte proliferation and no increase in monocyte numbers. Instead, neonatal rats treated with CSF1 displayed reversible hepatic steatosis and Kupffer cell expansion.
Collapse
Affiliation(s)
- Clare Pridans
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom,2Medical Research Council Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Kristin A. Sauter
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M. Irvine
- 3Mater Research-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Gemma M. Davis
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Raper
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rocio Rojo
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ajit J. Nirmal
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa Beard
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom,4The Pirbright Institute, Surrey, United Kingdom
| | - Michael Cheeseman
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Hume
- 1The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom,2Medical Research Council Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom,3Mater Research-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
14
|
Maridas DE, DeMambro VE, Le PT, Mohan S, Rosen CJ. IGFBP4 Is Required for Adipogenesis and Influences the Distribution of Adipose Depots. Endocrinology 2017; 158:3488-3500. [PMID: 28938423 PMCID: PMC5659704 DOI: 10.1210/en.2017-00248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 01/29/2023]
Abstract
Insulinlike growth factor (IGF) I induces adipogenesis in vitro. IGF-binding protein 4 (IGFBP4) is highly expressed in adipocytes and osteoblasts and is inhibitory of IGFs in vitro. We previously reported that Igfbp4 null mice (Igfbp4-/-) had decreased fat proportions at 8 and 16 weeks of age. However, the mechanism leading to the reduced adiposity remains unknown. The purpose of this study was to elucidate how IGFBP4 mediates adipose tissue development in vivo. Our results showed that inguinal and gonadal white adipose tissue (gWAT) from Igfbp4-/- mice had decreased weights and Pparγ expression. Cultures of primary bone marrow stromal cells (BMSCs) and ear mesenchymal stem cells (eMSCs) from mutant mice showed reduced adipogenesis. Both BMSCs and eMSC had a strong induction of Igfbp4 expression during adipogenesis. Furthermore, the increase in phosphorylated Akt (p-Akt), a downstream target of IGF-I signaling, in wild-type cells, was blunted in mutant eMSCs. On a high-fat diet (HFD) there were sexual differences in adipocyte expansion of Igfbp4-/- mice. Mutant males gained weight by expanding their white fat depots. However, Igfbp4-/- female mice were protected against diet-induced obesity. Ovariectomized Igfbp4-/- female mice gained weight in a manner similar to that seen in ovariectomized controls. Thus, Igfbp4 is required for inguinal fat expansion in female mice but not in male mice. However, gWAT expansion, which is prevented by estrogen during HFD, does not require Igfbp4.
Collapse
Affiliation(s)
- David E. Maridas
- Maine Medical Center Research Institute, Scarborough, Maine 04074
| | | | - Phuong T. Le
- Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Subburaman Mohan
- Veterans Affairs Loma Linda Healthcare System, Loma Linda, California 92357
| | | |
Collapse
|
15
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, type 2 diabetes and cardiovascular disease and can be considered the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of disease, from the relatively benign simple steatosis to the more serious non-alcoholic steatohepatitis, which can progress to liver cirrhosis, hepatocellular carcinoma and end-stage liver failure, necessitating liver transplantation. Although the increasing prevalence of NAFLD in developed countries has substantial implications for public health, many of the precise mechanisms accounting for the development and progression of NAFLD are unclear. The environment in early life is an important determinant of cardiovascular disease risk in later life and studies suggest this also extends to NAFLD. Here we review data from animal models and human studies which suggest that fetal and early life exposure to maternal under- and overnutrition, excess glucocorticoids and environmental pollutants may confer an increased susceptibility to NAFLD development and progression in offspring and that such effects may be sex-specific. We also consider studies aimed at identifying potential dietary and pharmacological interventions aimed at reducing this risk. We suggest that further human epidemiological studies are needed to ensure that data from animal models are relevant to human health.
Collapse
|
16
|
Postnatal high-fat diet leads to spatial deficit, obesity, and central and peripheral inflammation in prenatal dexamethasone adult offspring rats. Neuroreport 2016; 27:818-25. [DOI: 10.1097/wnr.0000000000000620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|