1
|
Qian Y, Ma Y, Banchev A, Duan W, Xu P, Zhao L, Jiang M, Yu Z, Zhou F, Guo JJ. Macrophage membrane-encapsulated miRNA nanodelivery system for the treatment of hemophilic arthritis. J Control Release 2025; 377:632-647. [PMID: 39580078 DOI: 10.1016/j.jconrel.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Hemophilic arthritis (HA) is one of the most pathologically altered joint diseases. Specifically, periodic spontaneous hemorrhage-induced hyperinflammation of the synovium and irreversible destruction of the cartilage are the main mechanisms that profoundly affect the behavioral functioning and quality of life of patients. In this study, we isolated and characterized platelet-rich plasma-derived exosomes (PRP-exo). We performed microRNA (miRNA) sequencing and bioinformatics analysis on these exosomes to identify the most abundant miRNA, miR-451a. Following this, we developed an M@ZIF-8@miR nanotherapeutic system that utilizes nanoscale zeolitic imidazolate framework (ZIF) as a carrier for miRNA delivery, encapsulated within M2 membranes to enhance its anti-inflammatory effects. In vitro and in vivo studies demonstrated that M@ZIF-8@miR significantly reduced pro-inflammatory cytokines, controlled synovial inflammation, and achieved potent therapeutic efficacy by reducing joint damage. We suggest that the ability of M@ZIF-8@miR nanocomposites to inhibit pro-inflammatory cytokines, enhance cellular uptake, and exhibit good endosomal escape properties makes them promising carriers for the efficient delivery of therapeutic nucleic acid drugs. This approach delays joint degeneration and provides a promising combinatorial strategy for HA treatment.
Collapse
Affiliation(s)
- Yufan Qian
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Yetian Ma
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Atanas Banchev
- Department of Paediatric Haematology and Oncology, University Hospital "Tzaritza Giovanna - ISUL", Sofia, Bulgaria
| | - Weifeng Duan
- Department of Orthopedic Trauma , Qujing First People's Hospital,Qujing, Yunnan, PR China
| | - Pingcheng Xu
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China; Department of Orthopedics, Suzhou Wujiang District Fourth People's Hospital, Suzhou, PR China
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Miao Jiang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Ziqiang Yu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Feng Zhou
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China.
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China; Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou, Jiangsu, PR China; MOE China-Europe Sports Medicine Belt and Road Joint Laboratory, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Leuci A, Marano M, Millet M, Lienhart A, Desage S, Chapurlat R, Dargaud Y. Deciphering the circulating microRNA signature of hemophilic arthropathy. Thromb Res 2024; 241:109099. [PMID: 39079229 DOI: 10.1016/j.thromres.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Haemophilic arthropathy (HArt) is a serious complication in patients with hemophilia. Early diagnosis and treatment are essential to minimise the development of HArt. The use of biomarkers may improve early diagnosis of HArt. Circulating microRNAs (miRNAs) are small, non-coding RNAsthat regulate gene expression, and are being investigated as promising biomarkers due to their role in joint and bone metabolism. AIMS To investigate differential expression of miRNAs and their relationship to arthropathy in patients with hemophilia A. METHODS miRNA expression was examined in a pilot study followed by a validation study (100 hemophilia A patients with [n = 83] and without HArt [n = 17], 14 controls). Differential miRNA expression was investigated using real-time quantitative PCR. RESULTS The pilot study identified 2 miRNAs differentially expressed in patients with Hart (Pettersson score ≥ 1), after adjusting for the false discovery rate (FDR). The validation study evaluated these 2 miRNAs. The results demonstrated that two miRNAs (miR- 208a-3p and 524-3p) were significantly underexpressed in plasma of patients with HArt compared to patients without arthropathy, with FDR <0.05 (Fig. 1). In addition, 3 miRNAs (130a-3p, miR- and 506-3p) were significantly underexpressed in patients with moderate HArt (Pettersson score 4 to 7). CONCLUSIONS In this proof of concept study we identified a signature of 5 circulating miRNAs associated with Hart with potential as diagnosis tools for HArt. These miRNAs are potential negative regulators of gene expression, suggesting their activity in HArt by interfering with osteoblastic (miR- 208a-3p) and osteoclastic (miR-506-3p) differentiation to impair bone mineralization and remodeling processes, or regulating chondrogenesis (miR-335-5p). miRNAs associated with earlier stages of HArt will be further investigated in a sub-study of the prospective clinical trial PROVE, which will investigate the effects of long-term prophylaxis with simoctocog alfa versus emicizumab in adults with hemophilia A.
Collapse
Affiliation(s)
- Alexandre Leuci
- UR4609 Thrombosis & Haemostasis, University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | - Muriel Marano
- UR4609 Thrombosis & Haemostasis, University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | - Marjorie Millet
- INSERM UMR 1033, University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | - Anne Lienhart
- French Reference Center for Hemophilia, Clinical Haemostasis Unit, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
| | - Stephanie Desage
- French Reference Center for Hemophilia, Clinical Haemostasis Unit, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
| | - Roland Chapurlat
- INSERM UMR 1033, University of Lyon Claude Bernard 1 (UCLB1), Lyon, France; Department of Rheumatology, Edouard Herriot University Hospital, Lyon, France
| | - Yesim Dargaud
- UR4609 Thrombosis & Haemostasis, University of Lyon Claude Bernard 1 (UCLB1), Lyon, France; French Reference Center for Hemophilia, Clinical Haemostasis Unit, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
3
|
Sarangi P, Senthilkumar MB, Amit S, Kumar N, Jayandharan GR. AAV mediated repression of Neat1 lncRNA combined with F8 gene augmentation mitigates pathological mediators of joint disease in haemophilia. J Cell Mol Med 2024; 28:e18460. [PMID: 38864710 PMCID: PMC11167708 DOI: 10.1111/jcmm.18460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.
Collapse
Affiliation(s)
- Pratiksha Sarangi
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| | - Mohankumar B. Senthilkumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| | - Sonal Amit
- Department of PathologyAutonomous State Medical CollegeKanpurUttar PradeshIndia
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| | - Giridhara R. Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| |
Collapse
|
4
|
Senthilkumar MB, Sarangi P, Amit S, Senguttuvan S, Kumar N, Jayandharan GR. Targeted delivery of miR125a-5p and human Factor VIII attenuates molecular mediators of hemophilic arthropathy. Thromb Res 2023; 231:8-16. [PMID: 37741049 DOI: 10.1016/j.thromres.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Hemophilic arthropathy (HA) due to repeated bleeding into the joint cavity is a major cause of morbidity in patients with hemophilia. The molecular mechanisms contributing to this condition are not well characterized. MicroRNAs (miRs) are known to modulate the phenotype of multiple joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). Since miR125a is known to modulate disease progression in OA and RA, we performed a targeted screen of miR125a-5p and its target genes in a murine model of chronic HA. A digital PCR analysis demonstrated significant downregulation of miR125a-5p (2-fold vs control joint). Further molecular evaluation revealed elevated expression of the immunological markers STAT1 (7.6-fold vs control joint) and TRAF6 (10.6 fold vs control joint), which are direct targets of miR125a-5p. We then studied the impact of targeted overexpression of miR125a-5p using an Adeno-associated virus (AAV) vector in modulating the molecular mediators of HA. AAV5-miR125a vectors were administered intra-articularly either alone or in combination with a low dose of AAV8-based human factor 8 (F8) gene in a murine model of HA. We observed significantly increased expression of miR125a-5p in AAV5-miR125a administered mice (~12 fold vs injured joint) or in combination with AAV8-F8 vectors (~44 fold vs injured joint). The activity assay revealed ~17 %-20 % FVIII levels in mice that received low dose liver-directed F8 gene therapy. Further immunohistochemical analysis, demonstrated a decrease in inflammatory markers (STAT1 and TRAF6) and cartilage-degrading matrix metalloproteinases (MMPs) 3, 9, 13 in the joints of treated animals. These data highlight the crucial role of miR125a-5p in the development of HA.
Collapse
Affiliation(s)
- Mohankumar B Senthilkumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Pratiksha Sarangi
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Sonal Amit
- Department of Pathology, Government Medical College, Jalaun (Orai), Uttar Pradesh, India
| | | | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India
| | - Giridhara R Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, UP, India.
| |
Collapse
|
5
|
Sarangi P, Senthilkumar MB, Kumar N, Senguttuvan S, Vasudevan M, Jayandharan GR. Potential role of long non-coding RNA H19 and Neat1 in haemophilic arthropathy. J Cell Mol Med 2023; 27:1745-1749. [PMID: 37183540 PMCID: PMC10273061 DOI: 10.1111/jcmm.17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Affiliation(s)
- Pratiksha Sarangi
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurIndia
| | | | - Narendra Kumar
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurIndia
| | | | - Madavan Vasudevan
- Genomics and Data ScienceTheomics International Pvt Ltd.BangaloreIndia
| | | |
Collapse
|
6
|
Zimta AA, Hotea I, Brinza M, Blag C, Iluta S, Constantinescu C, Bashimov A, Marchis-Hund EA, Coudsy A, Muller-Mohnssen L, Dirzu N, Gulei D, Dima D, Serban M, Coriu D, Tomuleasa C. The Possible Non-Mutational Causes of FVIII Deficiency: Non-Coding RNAs and Acquired Hemophilia A. Front Med (Lausanne) 2021; 8:654197. [PMID: 33968959 PMCID: PMC8099106 DOI: 10.3389/fmed.2021.654197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Hemophilia type A (HA) is the most common type of blood coagulation disorder. While the vast majority of cases are inherited and caused by mutations in the F8 gene, recent data raises new questions regarding the non-heritability of this disease, as well as how other molecular mechanisms might lead to the development of HA or increase the severity of the disease. Some data suggest that miRNAs may affect the severity of HA, but for some patients, miRNA-based interference might cause HA, in the absence of an F8 mutation. A mechanism in HA installation that is also worth investigating and which could be identified in the future is the epigenetic silencing of the F8 gene that might be only temporarily. Acquired HA is increasingly reported and as more cases are identified, the description of the disease might become challenging, as cases without FVIII autoantibodies might be identified.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ionut Hotea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Melen Brinza
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristina Blag
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Emergency Clinical Children's Hospital, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Intensive Care Unit, Clinical Hospital for Infectious Diseases, Cluj Napoca, Romania
| | - Atamyrat Bashimov
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Elisabeth-Antonia Marchis-Hund
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Alexandra Coudsy
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Laetitia Muller-Mohnssen
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Noemi Dirzu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Margit Serban
- Louis Turcanu Emergency Children's Hospital, Timisoara, Romania.,European Hemophilia Treatment Center, Timisoara, Romania.,Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Daniel Coriu
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| |
Collapse
|
7
|
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol Ther 2021; 218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
8
|
Pasta G, Annunziata S, Polizzi A, Caliogna L, Jannelli E, Minen A, Mosconi M, Benazzo F, Di Minno MND. The Progression of Hemophilic Arthropathy: The Role of Biomarkers. Int J Mol Sci 2020; 21:E7292. [PMID: 33023246 PMCID: PMC7583947 DOI: 10.3390/ijms21197292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hemophilia A and B are X-linked congenital bleeding disorders characterized by recurrent hemarthroses leading to specific changes in the synovium and cartilage, which finally result in the destruction of the joint: this process is called hemophilic arthropathy (HA). This review highlights the most prominent molecular biomarkers found in the literature to discuss their potential use in the clinical practice to monitor bleeding, to assess the progression of the HA and the effectiveness of treatments. METHODS A review of the literature was performed on PubMed and Embase, from 3 to 7 August 2020. Study selection and data extraction were achieved independently by two authors and the following inclusion criteria were determined a priori: English language, available full text and articles published in peer-reviewed journal. In addition, further articles were identified by checking the bibliography of relevant articles and searching for the studies cited in all the articles examined. RESULTS Eligible studies obtained at the end of the search and screen process were seventy-three (73). CONCLUSIONS Despite the surge of interest in the clinical use of biomarkers, current literature underlines the lack of their standardization and their potential use in the clinical practice preserving the role of physical examination and imaging in early diagnosis.
Collapse
Affiliation(s)
- Gianluigi Pasta
- Department of Orthopaedics and Traumatology, Fondazione Policlinico IRCCS San Matteo, University of Pavia, 27100 Pavia, Italy; (G.P.); (A.P.); (L.C.); (E.J.); (A.M.); (M.M.); (F.B.)
| | - Salvatore Annunziata
- Department of Orthopaedics and Traumatology, Fondazione Policlinico IRCCS San Matteo, University of Pavia, 27100 Pavia, Italy; (G.P.); (A.P.); (L.C.); (E.J.); (A.M.); (M.M.); (F.B.)
| | - Alberto Polizzi
- Department of Orthopaedics and Traumatology, Fondazione Policlinico IRCCS San Matteo, University of Pavia, 27100 Pavia, Italy; (G.P.); (A.P.); (L.C.); (E.J.); (A.M.); (M.M.); (F.B.)
| | - Laura Caliogna
- Department of Orthopaedics and Traumatology, Fondazione Policlinico IRCCS San Matteo, University of Pavia, 27100 Pavia, Italy; (G.P.); (A.P.); (L.C.); (E.J.); (A.M.); (M.M.); (F.B.)
| | - Eugenio Jannelli
- Department of Orthopaedics and Traumatology, Fondazione Policlinico IRCCS San Matteo, University of Pavia, 27100 Pavia, Italy; (G.P.); (A.P.); (L.C.); (E.J.); (A.M.); (M.M.); (F.B.)
| | - Alessandro Minen
- Department of Orthopaedics and Traumatology, Fondazione Policlinico IRCCS San Matteo, University of Pavia, 27100 Pavia, Italy; (G.P.); (A.P.); (L.C.); (E.J.); (A.M.); (M.M.); (F.B.)
| | - Mario Mosconi
- Department of Orthopaedics and Traumatology, Fondazione Policlinico IRCCS San Matteo, University of Pavia, 27100 Pavia, Italy; (G.P.); (A.P.); (L.C.); (E.J.); (A.M.); (M.M.); (F.B.)
| | - Francesco Benazzo
- Department of Orthopaedics and Traumatology, Fondazione Policlinico IRCCS San Matteo, University of Pavia, 27100 Pavia, Italy; (G.P.); (A.P.); (L.C.); (E.J.); (A.M.); (M.M.); (F.B.)
| | | |
Collapse
|
9
|
Andrawes NG, Saker HM, Salah El-Din NY, Abd Elhakim Hussain M. Tissue-inhibitors of metalloproteinase-1 and vascular-endothelial growth-factor in severe haemophilia A children on low dose prophylactic recombinant factor VIII: Relation to subclinical arthropathy. Haemophilia 2020; 26:607-614. [PMID: 32445517 DOI: 10.1111/hae.14041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Subclinical synovitis occur long before clinical haemophilic arthropathy (HA). New biomarkers are needed for early detection of HA. AIM To compare the levels of tissue inhibitors of metalloproteinase-1 (TIMP-1) and vascular endothelial growth factor (VEGF)in severe haemophilia A boys on prophylaxis and on-demand therapy to healthy boys and correlate them with the haemophilia joint health score (HJHS) & the Denver magnetic resonance imaging (MRI) scale; hence, determine their values in early detection of HA. METHODS Haemophilia joint health score, serum TIMP-1, VEGF and Denver MRI score were assessed in 50 boys with severe haemophilia A (31 on prophylactic factor VIII therapy (62%) with a dose of 15 IU/kg/twice weekly) and 50 age-matched healthy boys. RESULTS Boys with severe haemophilia A had significantly higher TIMP-1 240 ng/mL, SD200-350 (P < .001) and VEGF 600 pg/mL, SD400-1100 (P < .001). Their mean HJHS was 4.5 ± 3.0 (0-11) and their mean Denver MRI score was 5.55 ± 1.6 (2.00-8.00). A significant positive correlation was found between TIMP-1 and VEGF (P < .001), BMI Z-score (P = .029), HJHS (P = .041)and total MRI score (<.001). Significant correlations were found between VEGF and age (P < .001), HJHS (P = .003) and total MRI score (P < .001). Boys with severe haemophilia A on prophylaxis therapy had significantly lower HJHS (P = .021), VEGF (P < .001), TIMP-1 (P = .002) and total MRI score (P = .021) than those on on-demand therapy. Receiver operating characteristic curve, defined a cut-off value of 160 ng/mL for TIMP-1 with a sensitivity of 90% and specificity of 60% and that of 350 pg/mL for VEGF with a sensitivity of 78% and specificity of 88% for discrimination between severe haemophilia A and healthy boys. CONCLUSION Vascular endothelial growth factor and TIMP-1 can be used for early detection of HA. Further prospective studies should include larger study populations. In addition, studies should address the role of various anti-VEGFs as potential therapy for HA and their impact on prevention and treatment of HA.
Collapse
Affiliation(s)
| | - Hossam Mousa Saker
- Radiology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | | | | |
Collapse
|
10
|
Serological biomarkers in hemophilic arthropathy: Can they be used to monitor bleeding and ongoing progression of blood-induced joint disease in patients with hemophilia? Blood Rev 2020; 41:100642. [DOI: 10.1016/j.blre.2019.100642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/16/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
|
11
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
12
|
van Vulpen LFD, Popov-Celeketic J, van Meegeren MER, Coeleveld K, van Laar JM, Hack CE, Schutgens REG, Mastbergen SC, Lafeber FPJG. A fusion protein of interleukin-4 and interleukin-10 protects against blood-induced cartilage damage in vitro and in vivo. J Thromb Haemost 2017; 15:1788-1798. [PMID: 28696534 DOI: 10.1111/jth.13778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Indexed: 12/30/2022]
Abstract
Essentials Targeted treatment for hemophilic arthropathy, still causing significant morbidity, is lacking. This study evaluates the efficacy of a fusion of protein of interleukin(IL)-4 and IL-10. In vitro the fusion protein prevents blood-induced cartilage damage in a dose-dependent manner. In hemophilic mice, the IL4-10 fusion protein ameliorates cartilage damage upon joint bleeding. SUMMARY Background Joint damage still causes significant morbidity in hemophilia. It results from synovial inflammation and direct cartilage-degenerating properties of blood components. Interleukin (IL)-4 and IL-10 have been shown to protect cartilage from blood-induced damage. Recently an IL4-10 fusion protein has been developed to combine the function of IL-4 and IL-10 and increase their bioavailability. Objectives In this study we evaluate whether this IL4-10 fusion protein protects against blood-induced joint damage. Methods In vitro, human cartilage explants were exposed to whole blood and simultaneously to a broad concentration range of the IL4-10 fusion protein. Effects on cartilage matrix turnover were compared with the individual cytokines. Moreover, the influence of the fusion protein and its individual components on IL-1β and IL-6 production was investigated. In hemophilia A mice, the effect of intra-articular treatment on synovitis and cartilage damage resulting from joint bleeding was evaluated by histochemistry. Results In vitro, the fusion protein prevented blood-induced cartilage damage in a dose-dependent manner, with equal effectiveness to the combination of the separate cytokines. In whole blood cultures 10 ng mL-1 fusion protein completely blocked the production of IL-1β and IL-6 by monocytes/macrophages. In hemophilic mice, intra-articular injection of IL-4 and IL-10 did not influence synovitis or cartilage degeneration. In contrast, equimolar amounts of the fusion protein attenuated cartilage damage upon repeated joint bleeding, although synovial inflammation was hardly affected. Conclusions Overall, this study shows that the IL4-10 fusion protein prevents blood-induced cartilage damage in vitro and ameliorates cartilage degeneration upon joint bleeding in hemophilic mice.
Collapse
Affiliation(s)
- L F D van Vulpen
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J Popov-Celeketic
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M E R van Meegeren
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - K Coeleveld
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J M van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C E Hack
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R E G Schutgens
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S C Mastbergen
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F P J G Lafeber
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
13
|
Gringeri A, Steinitz-Trost K, Doralt J. Current and future approaches to overcoming the challenges of hemophilia treatment personalization. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1334551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
MicroRNA-15b silencing inhibits IL-1β-induced extracellular matrix degradation by targeting SMAD3 in human nucleus pulposus cells. Biotechnol Lett 2016; 39:623-632. [PMID: 28039556 DOI: 10.1007/s10529-016-2280-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To determine the role of microRNA-15b (miR-15b) in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation in the nucleus pulposus (NP). RESULTS MiR-15b was up-regulated in degenerative NP tissues and in IL-1β-stimulated NP cells, as compared to the levels in normal controls (normal tissue specimens from patients with idiopathic scoliosis). Bioinformatics and luciferase activity analyses showed that mothers against decapentaplegic homolog 3 (SMAD3), a key mediator of the transforming growth factor-β signaling pathway, was directly targeted by miR-15b. Functional analysis demonstrated that miR-15b overexpression aggravated IL-1β-induced ECM degradation in NP cells, while miR-15b inhibition had the opposite effects. Prevention of IL-1β-induced NP ECM degeneration by the miR-15b inhibitor was attenuated by small-interfering-RNA-mediated knockdown of SMAD3. In addition, activation of MAP kinase and nuclear factor-κB up-regulated miR-15b expression and down-regulated SMAD3 expression in IL-1β-stimulated NP cells. CONCLUSIONS MiR-15b contributes to ECM degradation in intervertebral disc degeneration (IDD) via targeting of SMAD3, thus providing a novel therapeutic target for IDD treatment.
Collapse
|