1
|
Chen W, Chen Y, Wu R, Guo G, Liu Y, Zeng B, Liao X, Wang Y, Wang X. DHA alleviates diet-induced skeletal muscle fiber remodeling via FTO/m 6A/DDIT4/PGC1α signaling. BMC Biol 2022; 20:39. [PMID: 35135551 PMCID: PMC8827147 DOI: 10.1186/s12915-022-01239-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background Obesity leads to a decline in the exercise capacity of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. Dietary intervention has been shown to be an important measure to regulate skeletal muscle function, and previous studies have demonstrated the beneficial effects of docosahexaenoic acid (DHA; 22:6 ω-3) on skeletal muscle function. At the molecular level, DHA and its metabolites were shown to be extensively involved in regulating epigenetic modifications, including DNA methylation, histone modifications, and small non-coding microRNAs. However, whether and how epigenetic modification of mRNA such as N6-methyladenosine (m6A) mediates DHA regulation of skeletal muscle function remains unknown. Here, we analyze the regulatory effect of DHA on skeletal muscle function and explore the involvement of m6A mRNA modifications in mediating such regulation. Results DHA supplement prevented HFD-induced decline in exercise capacity and conversion of muscle fiber types from slow to fast in mice. DHA-treated myoblasts display increased mitochondrial biogenesis, while slow muscle fiber formation was promoted through DHA-induced expression of PGC1α. Further analysis of the associated molecular mechanism revealed that DHA enhanced expression of the fat mass and obesity-associated gene (FTO), leading to reduced m6A levels of DNA damage-induced transcript 4 (Ddit4). Ddit4 mRNA with lower m6A marks could not be recognized and bound by the cytoplasmic m6A reader YTH domain family 2 (YTHDF2), thereby blocking the decay of Ddit4 mRNA. Accumulated Ddit4 mRNA levels accelerated its protein translation, and the consequential increased DDIT4 protein abundance promoted the expression of PGC1α, which finally elevated mitochondria biogenesis and slow muscle fiber formation. Conclusions DHA promotes mitochondrial biogenesis and skeletal muscle fiber remodeling via FTO/m6A/DDIT4/PGC1α signaling, protecting against obesity-induced decline in skeletal muscle function. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01239-w.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Ruifan Wu
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Guanqun Guo
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China. .,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China. .,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China. .,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Barta DG, Coman V, Vodnar DC. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Amabile MI, Frusone F, De Luca A, Tripodi D, Imbimbo G, Lai S, D’Andrea V, Sorrenti S, Molfino A. Locoregional Surgery in Metastatic Breast Cancer: Do Concomitant Metabolic Aspects Have a Role on the Management and Prognosis in this Setting? J Pers Med 2020; 10:jpm10040227. [PMID: 33202793 PMCID: PMC7712935 DOI: 10.3390/jpm10040227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Although they cannot be considered curative, the new therapeutic integrated advances in metastatic breast cancer (MBC) have substantially improved patient outcomes. Traditionally, surgery was confined to palliation of symptomatic or ulcerating lumps. Data suggest, in some cases, a possible additive role for more aggressive locoregional surgical therapy in combination with systemic treatments in the metastatic setting, although a low level of evidence has been shown in terms of improvement in overall survival in MBC patients treated with surgery and medical treatment compared to medical treatment alone. In this light, tumor heterogeneity remains a challenge. To effectively reshape the therapeutic approach to MBC, careful consideration of who is a good candidate for locoregional resection is paramount. The patient’s global health condition, impacting on cancer progression and morbidity and their associated molecular targets, have to be considered in treatment decision-making. In particular, more recently, research has been focused on the role of metabolic derangements, including the presence of metabolic syndrome, which represent well-known conditions related to breast cancer recurrence and distant metastasis and are, therefore, involved in the prognosis. In the present article, we focus on locoregional surgical strategies in MBC and whether concomitant metabolic derangements may have a role in prognosis.
Collapse
Affiliation(s)
- Maria Ida Amabile
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.F.); (A.D.L.); (D.T.); (V.D.); (S.S.)
- Correspondence: ; Tel.: +39-06-499-72042
| | - Federico Frusone
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.F.); (A.D.L.); (D.T.); (V.D.); (S.S.)
| | - Alessandro De Luca
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.F.); (A.D.L.); (D.T.); (V.D.); (S.S.)
| | - Domenico Tripodi
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.F.); (A.D.L.); (D.T.); (V.D.); (S.S.)
| | - Giovanni Imbimbo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (S.L.); (A.M.)
| | - Silvia Lai
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (S.L.); (A.M.)
| | - Vito D’Andrea
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.F.); (A.D.L.); (D.T.); (V.D.); (S.S.)
| | - Salvatore Sorrenti
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.F.); (A.D.L.); (D.T.); (V.D.); (S.S.)
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (S.L.); (A.M.)
| |
Collapse
|
4
|
Zhao Z, Kim J, Lei XG. High Dietary Fat and Selenium Concentrations Exert Tissue- and Glutathione Peroxidase 1-Dependent Impacts on Lipid Metabolism of Young-Adult Mice. J Nutr 2020; 150:1738-1748. [PMID: 32386229 PMCID: PMC7330460 DOI: 10.1093/jn/nxaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Excessive dietary selenium (Se; 3 mg/kg) or fat (>25%) intakes and overproduction of glutathione peroxidase 1 (GPX1) adversely affect body lipid metabolism. OBJECTIVE The objective was to reveal impacts and mechanisms of a moderately high Se and a high fat intake on lipid metabolism in Gpx1 knockout (KO) and wild-type (WT) mice. METHODS The KO and WT mice (males, 12-wk-old, body weight = 24.8 ± 0.703 g) were allotted to 4 groups each (n = 5) and fed a sucrose-torula yeast basal diet (5% corn oil) supplemented with 0.3 or 1.0 mg (+Se) Se/kg (as sodium selenite) and 0% or 25% [high-fat (HF)] lard for 6 wk. Multiple physiological and molecular biomarkers (68) related to lipid metabolism and selenogenome expression in plasma, liver, and/or adipose tissue were analyzed by 2-way (+Se by HF) ANOVA. RESULTS Compared with the control diet, the +Se diet decreased (P < 0.05) body-weight gain and plasma and liver concentrations of lipids (22-66%) but elevated (≤1.5-fold, P < 0.05) adipose tissue concentrations of lipids in the WT mice. The +Se diet up- and downregulated (P < 0.05) mRNA and/or protein concentrations of factors related to lipogenesis, selenogenome, and transcription, stress, and cell cycle in the liver (26% to 176-fold) and adipose tissues (14% to 1-fold), respectively, compared with the control diet in the WT mice. Many of these +Se diet effects were different (P < 0.05) from those of the HF diet and were eliminated or altered (P < 0.05) by the KO. CONCLUSIONS The +Se and HF diets exerted tissue-specific and GPX1 expression-dependent impacts on lipid metabolism and related gene expression in the young-adult mice. Our findings will help reveal metabolic potential and underlying mechanisms of supplementing moderately high Se to subjects with HF intakes.
Collapse
Affiliation(s)
- Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Jonggun Kim
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
5
|
Zhang X, Shi X, Lu X, Li Y, Zhan C, Akhtar ML, Yang L, Bai Y, Zhao J, Wang Y, Yao Y, Li Y, Nie H. Novel Metabolomics Serum Biomarkers for Pancreatic Ductal Adenocarcinoma by the Comparison of Pre-, Postoperative and Normal Samples. J Cancer 2020; 11:4641-4651. [PMID: 32626510 PMCID: PMC7330680 DOI: 10.7150/jca.41250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human malignancies. The metabolomic approaches are developed to discover the novel biomarkers of PDAC. Methods: 550 preoperative, postoperative PDAC and normal controls (NCs) serums were employed to characterize metabolic alterations in training and validation sets by LC-MS. Results: The results of PLS-DA analysis indicated that three groups could be distinguished clearly and the post-PDAC group is adjacent to a normal group as compared with pre-PDAC group. Further results showed that histidinyl-lysine significantly increased whereas docosahexaenoic acid and LysoPC (14:0) decreased in pre-PDAC patients as compared with NCs. And these three markers had a significant tendency to recover after tumor resection. The validation set results revealed that for CA19-9 negative patients, 92.3% (12/13) of them can be screened using these three metabolites. The combination of these markers could significantly improve the diagnostic performance for PDAC, with higher sensitivity (0.93), specificity (0.92) and AUC (0.97). Moreover, network and pathways analyses explored the latent relationship among differential metabolites. The glycerolipid metabolism and primary bile acid synthesis showed variation in network and pathway analysis. Conclusions: These three markers combined with CA199 displayed high sensitivity and specificity for detecting PDAC patients from NCs. The results indicated that these three metabolites could be regarded as potential biomarkers to distinguish PDAC from NCs.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiuyun Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xin Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chao Zhan
- The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China
| | | | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yunfan Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jianxiang Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuanfei Yao
- The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Gigli S, Amabile MI, David E, De Luca A, Grippo C, Manganaro L, Monti M, Ballesio L. Morphological and Semiquantitative Kinetic Analysis on Dynamic Contrast Enhanced MRI in Triple Negative Breast Cancer Patients. Acad Radiol 2019; 26:620-625. [PMID: 30145205 DOI: 10.1016/j.acra.2018.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to retrospectly investigate the association between different breast cancer (BC) immunohistochemical subtypes and morphological and semiquantitative kinetic analysis on breast magnetic resonance imaging (MRI) performed before surgery treatment. Specifically we aimed to assess MRI features of triple-negative breast cancer (TNBC) compared to the other BC subtypes (nTNBC). MATERIALS AND METHODS Patients undergone to breast MRI and then diagnosed with BC by core-needle biopsy were included. The MRI morphological and kinetic features were studied. Parametric and non-parametric tests were used, as appropriate. RESULTS Seventy-five BC patients were considered, 30 patients included in TNBC Group and 45 patients included in nTNBC Group. We found in TNBC Group a greater mean lesion size (P <0.001), a rim enhancement imaging (P=0.003), and a higher intratumoral signal intensity on T2-weighted images (P=0.03) with respect to nTNBC Group. We noticed that TNBC patients presented a lower grade of BPE when compared to the nTBC Group (P< 0.02). TNBC Group showed lower EPeak values (P=0.003) and higher SER values (P=0.02) with respect to the nTNBC Group. In addition, stratifying kinetics parameters according to the tumor grade, the TNBC Group presented higher tumor grade (G3) (P< 0.005) and this subgroup had higher SER values when compared to TNBCs showing a lower tumor grade (G1 and G2) (P=0.03). CONCLUSION After validation by large-scale studies, the morphological and semiquantitative kinetic analysis on dynamic contrast enhanced MRI may help in the pretreatment risk stratification of patients with TNBC and in evidence-based clinical decision support.
Collapse
|
7
|
DHA Oral Supplementation Modulates Serum Epoxydocosapentaenoic Acid (EDP) Levels in Breast Cancer Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1280987. [PMID: 30949290 PMCID: PMC6425377 DOI: 10.1155/2019/1280987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Introduction The omega-3 polyunsaturated fatty acids, as docosahexaenoic acid (DHA), are considered mediators regulating the resolution of inflammation during cancer and may be associated with better outcomes. Epoxydocosapentaenoic acids (EDPs), metabolites of the DHA, are hypothesized to be responsible for some beneficial effects. In the present study, we aimed to assess the circulating 19,20-EDP levels in breast cancer (BC) patients and in healthy controls before and after DHA oral supplementation and the potential differences in the DHA conversion in 19,20-EDPs between patients with different BC presentations. Methods BC patients and healthy controls were supplemented with DHA (algal oil) for 10 days (2 g/day). Blood samples were collected at baseline (T0) and after supplementation (T1) to assess EDP (19,20-EDP) serum levels by liquid chromatography spectrometry. Results 33 BC patients and 10 controls were studied. EDP values at T0 were not different between patients and controls. At T1, we found an increase in 19,20-EDP levels in BC patients (P < 0.00001) and in controls (P < 0.001), whereas no differences in 19,20-EDPs were present between the two groups; when considering the type of BC presentation, patients with BRCA1/2 mutation showed lower 19,20-EDPs levels with respect to BC patients without the mutation (P = 0.03). According to immunohistochemical subtype, luminal A-like BC patients showed at T1 higher 19,20-EDP levels compared to nonluminal A (P = 0.02). Conclusions DHA oral supplementation was associated with increased 19,20-EDP serum levels in BC patients, independent of the type of BC presentation, and in controls. Patients carrier of BRCA1/2 mutation seem to possess lower ability of DHA epoxidation, whereas luminal A-like BC patients showed higher EDP conversion. This behavior should be tested in a larger population.
Collapse
|
8
|
Flores-Pérez JA, de la Rosa Oliva F, Argenes Y, Meneses-Garcia A. Nutrition, Cancer and Personalized Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1168:157-168. [PMID: 31713171 DOI: 10.1007/978-3-030-24100-1_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a complex group of diseases where different signaling pathways have been found to be deregulated, mainly related to cell proliferation, angiogenesis, metastasis, evasion of apoptosis and insensitivity to anti-growth sings among others. Diet plays a fundamental role in the treatment of the oncological patients, we must be aware that food can interact with certain types of cancer therapy. On the other hand, cancer therapies sometimes affect the patient's sense of smell, taste, appetite, gastric capacity or nutrient absorption, which often results in malnutrition due to the lack of essential nutriments. In this chapter we will review the effect of different metabolic disorders in cancer and mechanisms of action of some phytochemicals found in different foods like resveratrol, EGCG, curcumin and lycopene.
Collapse
Affiliation(s)
| | - Fabiola de la Rosa Oliva
- Unidad Academica de la Medicina Humana y Odontologia, Universidad Autonoma de Zacatecas, Mexico City, Mexico
| | - Yacab Argenes
- Translational Medicine Laboratory, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | |
Collapse
|
9
|
Di Domenico M, Pinto F, Quagliuolo L, Contaldo M, Settembre G, Romano A, Coppola M, Ferati K, Bexheti-Ferati A, Sciarra A, Nicoletti GF, Ferraro GA, Boccellino M. The Role of Oxidative Stress and Hormones in Controlling Obesity. Front Endocrinol (Lausanne) 2019; 10:540. [PMID: 31456748 PMCID: PMC6701166 DOI: 10.3389/fendo.2019.00540] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The accumulation of adipose tissue in the body occurs because the energy introduced with food and drink exceeds that expense, but to understand why this imbalance is established and why it is maintained over time, it is important to consider the main causes and risk factors of excess weight. In this review, we will refer to the main factors linked to obesity, starting from oxidative stress to hormonal factors including the role of obesity in breast cancer. Among the many hypotheses formulated on the etiopathology of obesity, a key role can be attributed to the relationship between stress oxidative and intestinal microbiota. Multiple evidences tend to show that genetic, epigenetic, and lifestyle factors contribute to determine in the obese an imbalance of the redox balance correlated with the alteration of the intestinal microbial flora. Obesity acts negatively on the wound healing, in fact several studies indicate morbid obesity significantly increased the risk of a post-operative wound complication and infection. Currently, in the treatment of obesity, medical interventions are aimed not only at modifying caloric intake, but also to modulate and improve the composition of diet with the aim of rebalancing the microbiota-redox state axis.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Federica Pinto
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuliana Settembre
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonio Romano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mario Coppola
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Kenan Ferati
- Faculty of Medicine, University of Tetovo, Tetovo, Macedonia
| | | | - Antonella Sciarra
- Department of Translational Medicad Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Plastic Surgery Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Andrea Ferraro
- Plastic Surgery Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
- *Correspondence: Giuseppe Andrea Ferraro
| | | |
Collapse
|
10
|
Martínez N, Herrera M, Frías L, Provencio M, Pérez-Carrión R, Díaz V, Morse M, Crespo MC. A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early stage breast cancer patients receiving adjuvant hormonal therapy: results of a pilot study. Clin Transl Oncol 2018; 21:489-498. [PMID: 30293230 DOI: 10.1007/s12094-018-1950-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE Breast cancer patients receiving hormonal therapies face risks of relapse, increased rates of cardiovascular events, and toxicities of therapy such as aromatase inhibitor (AI)-associated musculoskeletal symptoms (AIMSS). C-reactive protein (CRP), a marker for inflammation, is associated with breast cancer outcomes. We evaluated whether the olive-derived polyphenol hydroxytyrosol combined with omega-3 fatty acids and curcumin would reduce CRP and musculoskeletal symptoms in breast cancer patients receiving adjuvant hormonal therapies. EXPERIMENTAL DESIGN This prospective, multicenter, open-label, single arm, clinical trial enrolled post-menopausal breast cancer patients (n = 45) with elevated C-reactive protein (CRP) taking predominantly aromatase inhibitors to receive a combination of hydroxytyrosol, omega-3 fatty acids, and curcumin for 1 month. CRP, other inflammation-associated cytokines, and pain scores on the Brief Pain Inventory were measured before therapy, at the end of therapy and 1 month after completion of therapy. RESULTS CRP levels declined during the therapy [from 8.2 ± 6.4 mg/L at baseline to 5.3 ± 3.2 mg/L (p = 0.014) at 30 days of treatment], and remained decreased during the additional 1 month off therapy. Subjects with the highest baseline CRP levels had the greatest decrease with the therapy. Pain scores also decreased during the therapy. There were no significant adverse events. CONCLUSIONS The combination of hydroxytyrosol, omega-3 fatty acids, and curcumin reduced inflammation as indicated by a reduction in CRP and reduced pain in patients with aromatase-induced musculoskeletal symptoms. Longer studies comparing this combination to other anti-inflammatories in larger groups of patients with clinical outcome endpoints are warranted.
Collapse
Affiliation(s)
- N Martínez
- Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - M Herrera
- Hospital Clínico San Carlos, Madrid, Spain
| | - L Frías
- Hospital Universitario La Paz, Madrid, Spain
| | - M Provencio
- Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | - V Díaz
- Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | - M C Crespo
- IMDEA-Food, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Recently, concerns have been raised with regard to the recommended doses of marine long-chain omega-3 polyunsaturated fatty acids (LC-omega-3 PUFAs) especially in relation to cancer risk and treatment. There is urgent need to clarify this point. This review considers the most recent evidence related to the potential risk of developing cancer with high LC-omega-3 PUFA intakes, and possible research strategies to better elucidate this matter. RECENT FINDINGS The latest published recommendations have still highlighted the usefulness of an increased dietary intake of LC-omega-3 PUFAs for the prevention of some cardiovascular diseases. However, LC-omega-3 PUFAs have been related to the potential development and progression of cancer, and considerable debate exists on this issue. SUMMARY The use of biomarkers reflecting the intake of LC-omega-3 PUFAs as cancer risk markers is discussed, as well as the possibility that the reported beneficial/deleterious effects may be confined to specific subpopulations on the basis of genetic, metabolic, and nutritional characteristics. Recent advances on new strategies for a safer intake of LC-omega-3 PUFAs will be considered, as their dietary sources may be contaminated by toxic/carcinogenic compounds. Potentially future directions in this important research area are also discussed.
Collapse
Affiliation(s)
- Simona Serini
- Istituto di Patologia Generale, Facoltà di Medicina e Chirurgia, Università Cattolica del S. Cuore, L.go F. Vito, Roma, Italia
| | | |
Collapse
|
12
|
Al-Jawadi A, Moussa H, Ramalingam L, Dharmawardhane S, Gollahon L, Gunaratne P, Layeequr Rahman R, Moustaid-Moussa N. Protective properties of n-3 fatty acids and implications in obesity-associated breast cancer. J Nutr Biochem 2017; 53:1-8. [PMID: 29096149 DOI: 10.1016/j.jnutbio.2017.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022]
Abstract
Obesity is well documented as a risk factor for developing breast cancer, especially in postmenopausal women. Adipose tissue in the breast under obese conditions induces inflammation by increasing macrophage infiltration and pro-inflammatory cytokines that in turn up-regulates genes and signaling pathways, resulting in increased inflammation, cell proliferation and tumor growth in the breast. Due to their potent anti-inflammatory effects, n-3 polyunsaturated fatty acids (n-3 PUFA) are a promising and safe dietary intervention in reducing breast cancer risk. Here, we briefly review current status of breast cancer and its relationship with obesity. We then review in depth, current research and knowledge on the role of n-3 PUFA in reducing/preventing breast cancer cell growth in vitro, in vivo and in human studies, and how n-3 PUFA may modulate signaling pathways mitigating their effects on breast cancer development.
Collapse
Affiliation(s)
- Arwa Al-Jawadi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX; Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX; Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX; Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Lauren Gollahon
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX; Department of Biological Sciences, Texas Tech University, Lubbock, TX; Obesity Research Cluster, Texas Tech University, Lubbock, TX
| | | | | | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX; Obesity Research Cluster, Texas Tech University, Lubbock, TX.
| |
Collapse
|
13
|
Molfino A, Amabile MI, Mazzucco S, Biolo G, Farcomeni A, Ramaccini C, Antonaroli S, Monti M, Muscaritoli M. Effect of Oral Docosahexaenoic Acid (DHA) Supplementation on DHA Levels and Omega-3 Index in Red Blood Cell Membranes of Breast Cancer Patients. Front Physiol 2017; 8:549. [PMID: 28804463 PMCID: PMC5532437 DOI: 10.3389/fphys.2017.00549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/14/2017] [Indexed: 01/18/2023] Open
Abstract
Rationale: Docosahexaenoic acid (DHA) in cell membrane may influence breast cancer (BC) patients' prognosis, affecting tumor cells sensitivity to chemo- and radio-therapy and likely modulating inflammation. The possibility of identifying BC patients presenting with low DHA levels and/or low ability of DHA incorporation into cell membrane might help to treat this condition. Methods: We enrolled BC patients and healthy controls, recording their seafood dietary intake. DHA in form of algal oil was administered for 10 consecutive days (2 g/day). Blood samples were collected at baseline (T0) and after 10 days of supplementation (T1) to assess DHA, omega-3 index, as the sum of DHA + eicosapentaenoic acid (EPA), in red blood cells (RBC) membranes and plasma tumor necrosis factor-alpha and interleukin-6 levels. Pre- and post-treatment fatty acid profiles were obtained by gas-chromatography. Parametric and non-parametric tests were performed, as appropriate, and P-value < 0.05 was considered statistically significant. Results: Forty-three women were studied, divided into 4 groups: 11 patients with BRCA1/2 gene mutation (M group), 12 patients with familiar positive history for BC (F group), 10 patients with sporadic BC (S group), and 10 healthy controls (C group). DHA and omega-3 index increased from T0 to T1 in the 3 groups of BC patients and in controls (P < 0.001). No difference was found in DHA incorporation between each group of BC patients and between patients and controls, except for M group, which incorporated higher DHA levels with respect to controls (β = 0.42; P = 0.03). No association was documented between cytokines levels and DHA and omega-3 index at baseline and after DHA supplementation. Independent of the presence of BC, women considered as “good seafood consumers” showed at baseline DHA and omega-3 index higher with respect to “low seafood consumers” (P = 0.04; P = 0.007, respectively). After supplementation, the increase in DHA levels was greater in “low seafood consumers” with respect to “good seafood consumers” (P < 0.0001). Conclusion: DHA supplementation was associated with increased DHA levels and omega-3 index in RBC membranes of BC cancer patients, independent of the type of BC presentation, and in controls. BRCA1/2 mutation, as well as low seafood consuming habits in both BC patients and healthy controls, seem to be associated with greater ability of DHA incorporation. Larger samples of BC patients are necessary to confirm our observation.
Collapse
Affiliation(s)
- Alessio Molfino
- Department of Clinical Medicine, Sapienza University of RomeRome, Italy
| | - Maria I Amabile
- Department of Clinical Medicine, Sapienza University of RomeRome, Italy.,Department of Surgical Sciences, Sapienza University of RomeRome, Italy
| | - Sara Mazzucco
- Department of Medical, Technological and Translational Sciences, Ospedale di Cattinara, University of TriesteTrieste, Italy
| | - Gianni Biolo
- Department of Medical, Technological and Translational Sciences, Ospedale di Cattinara, University of TriesteTrieste, Italy
| | - Alessio Farcomeni
- Department of Public Health and Infectious Diseases, Sapienza University of RomeRome, Italy
| | | | - Simonetta Antonaroli
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata"Rome, Italy
| | - Massimo Monti
- Department of Surgical Sciences, Sapienza University of RomeRome, Italy
| | | |
Collapse
|
14
|
Rabinovich AL, Lyubartsev AP, Zhurkin DV. Unperturbed hydrocarbon chains and liquid phase bilayer lipid chains: a computer simulation study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:109-130. [PMID: 28698919 PMCID: PMC5834621 DOI: 10.1007/s00249-017-1231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
In this work, the properties of saturated and unsaturated fatty acid acyl chains 16:0, 18:0, 18:1(n-9)cis, 18:2(n-6)cis, 18:3(n-3)cis, 18:4(n-3)cis, 18:5(n-3)cis, 20:4(n-6)cis, 20:5(n-3)cis and 22:6(n-3)cis in a bilayer liquid crystalline state and similar hydrocarbon chains (with CH[Formula: see text] terminal groups instead of C=O groups) in the unperturbed state characterised by a lack of long-range interaction were investigated. The unperturbed hydrocarbon chains were modelled by Monte Carlo simulations at temperature [Formula: see text] K; sixteen fully hydrated homogeneous liquid crystalline phosphatidylcholine bilayers containing these chains were studied by molecular dynamics simulations at the same temperature. To eliminate effects of the simulation parameters, the molecular dynamics and Monte Carlo simulations were carried out using the same structural data and force field coefficients. From these computer simulations, the average distances between terminal carbon atoms of the chains (end-to-end distances) were calculated and compared. The trends in the end-to-end distances obtained for the unperturbed chains were found to be qualitatively similar to those obtained for the same lipid chains in the bilayers. So, for understanding of a number of processes in biological membranes (e.g., changes in fatty acid composition caused by environmental changes such as temperature and pressure), it is possible to use, at least as a first approximation, the relationships between the structure and properties for unperturbed or isolated hydrocarbon chains.
Collapse
Affiliation(s)
- Alexander L Rabinovich
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya 11, Petrozavodsk, 185910, Russian Federation
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden.
| | - Dmitrii V Zhurkin
- Physics and Technology Department, Petrozavodsk State University, Universitetskaya 10, Petrozavodsk, 185910, Russian Federation
| |
Collapse
|
15
|
Omega-3 Polyunsaturated Fatty Acids in Critical Illness: Anti-Inflammatory, Proresolving, or Both? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5987082. [PMID: 28694914 PMCID: PMC5488236 DOI: 10.1155/2017/5987082] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Prognosis and outcomes of critically ill patients are strictly related with inflammatory status. Inflammation involves a multitude of interactions between different cell types and chemical mediators. Omega-3 polyunsaturated fatty acids (PUFAs), mainly represented by eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are able to inhibit different pathways including leukocyte chemotaxis, adhesion molecule expression and interactions, and production of inflammatory cytokines, through the action of specialized proresolving mediators (SPMs). SPMs from omega-6 fatty acids, such as lipoxins, and from omega-3 fatty acids such as resolvins, protectins, and maresins, act in reducing/resolving the inflammatory process in critical diseases, stimulating the phases of resolution of inflammation. In this light, the resolution of inflammation is nowadays considered as an active process, instead of a passive process. In critical illness, SPMs regulate the excessive posttrauma inflammatory response, protecting organs from damage. This review focuses on the role of omega-3 PUFAs as pharma nutrition agents in acute inflammatory conditions, highlighting their effects as anti-inflammatory or proresolving agents.
Collapse
|
16
|
Zubair H, Azim S, Ahmad A, Khan MA, Patel GK, Singh S, Singh AP. Cancer Chemoprevention by Phytochemicals: Nature's Healing Touch. Molecules 2017; 22:molecules22030395. [PMID: 28273819 PMCID: PMC6155418 DOI: 10.3390/molecules22030395] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Phytochemicals are an important part of traditional medicine and have been investigated in detail for possible inclusion in modern medicine as well. These compounds often serve as the backbone for the synthesis of novel therapeutic agents. For many years, phytochemicals have demonstrated encouraging activity against various human cancer models in pre-clinical assays. Here, we discuss select phytochemicals—curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, plumbagin and honokiol—in the context of their reported effects on the processes of inflammation and oxidative stress, which play a key role in tumorigenesis. We also discuss the emerging evidence on modulation of tumor microenvironment by these phytochemicals which can possibly define their cancer-specific action. Finally, we provide recent updates on how low bioavailability, a major concern with phytochemicals, is being circumvented and the general efficacy being improved, by synthesis of novel chemical analogs and nanoformulations.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Molecular Biology and Biochemistry, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Molecular Biology and Biochemistry, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|