1
|
Matrix Metalloproteinases in Cardioembolic Stroke: From Background to Complications. Int J Mol Sci 2023; 24:ijms24043628. [PMID: 36835040 PMCID: PMC9959608 DOI: 10.3390/ijms24043628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases participating in physiological processes of the brain, maintaining the blood-brain barrier integrity and playing a critical role in cerebral ischemia. In the acute phase of stroke activity, the expression of MMPs increase and is associated with adverse effects, but in the post-stroke phase, MMPs contribute to the process of healing by remodeling tissue lesions. The imbalance between MMPs and their inhibitors results in excessive fibrosis associated with the enhanced risk of atrial fibrillation (AF), which is the main cause of cardioembolic strokes. MMPs activity disturbances were observed in the development of hypertension, diabetes, heart failure and vascular disease enclosed in CHA2DS2VASc score, the scale commonly used to evaluate the risk of thromboembolic complications risk in AF patients. MMPs involved in hemorrhagic complications of stroke and activated by reperfusion therapy may also worsen the stroke outcome. In the present review, we briefly summarize the role of MMPs in the ischemic stroke with particular consideration of the cardioembolic stroke and its complications. Moreover, we discuss the genetic background, regulation pathways, clinical risk factors and impact of MMPs on the clinical outcome.
Collapse
|
2
|
Li Q, Lai Y, Gao X, Li X, Deng CY, Guo H, Zhao J, Yang H, Xu Y, Wu S, Xue Y, Rao F. Involvement of plasminogen activator inhibitor-1 and its related molecules in atrial fibrosis in patients with atrial fibrillation. PeerJ 2021; 9:e11488. [PMID: 34141473 PMCID: PMC8179226 DOI: 10.7717/peerj.11488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/27/2021] [Indexed: 12/01/2022] Open
Abstract
Atrial fibrillation is the most common form of cardiac arrhythmia. Atrial fibrosis is a significant feature of atrial fibrillation though its mechanism is not well understood. We searched the Gene Expression Omnibus database to compare mRNA expression patterns between atrial fibrillation and sinus rhythm samples; one hundred and forty eight differentially expressed genes were identified. Most of these genes were significantly enriched in the extracellular matrix organization process and collagen-activated tyrosine kinase receptor signaling pathway. To screen hub genes involved in atrial fibrosis, we constructed a protein-protein interaction network and found that three hub genes (SERPINE1/plasminogen activator inhibitor-1/PAI-1, TIMP Metallopeptidase Inhibitor 3/TIMP3 and decorin/DCN) play vital roles in atrial fibrosis, especially plasminogen activator inhibitor-1. Elevated plasminogen activator inhibitor-1 expression was positively correlated with the p53 signaling pathway. Plasminogen activator inhibitor-1 and p53 protein expression levels were verified in patients with sinus rhythm and atrial fibrillation by Western blot analysis. Compared with the sinus rhythm controls, p53 and plasminogen activator inhibitor-1 protein expressions were upregulated in the atrial tissues of patients with atrial fibrillation. p53 was also found to regulate plasminogen activator inhibitor-1 based on the results of cellular and molecular experiments. Thus, the p53/plasminogen activator inhibitor-1 signaling axis may participate in the pathophysiological processes of atrial fibrillation, and plasminogen activator inhibitor-1 may serve as a new therapeutic biomarker in atrial fibrillation.
Collapse
Affiliation(s)
- Qiaoqiao Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yingyu Lai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xiaoyan Gao
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junfei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yuwen Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shulin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Fang Rao
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
3
|
Wu Y, Xia Y, Li P, Qu HQ, Liu Y, Yang Y, Lin J, Zheng M, Tian L, Wu Z, Huang S, Qin X, Zhou X, Chen S, Liu Y, Wang Y, Li X, Zeng H, Hakonarson H, Zhuang J. Role of the ADCY9 gene in cardiac abnormalities of the Rubinstein-Taybi syndrome. Orphanet J Rare Dis 2020; 15:101. [PMID: 32321550 PMCID: PMC7178576 DOI: 10.1186/s13023-020-01378-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rubinstein-Taybi syndrome (RTS) is a rare, congenital, plurimalformative, and neurodevelopmental disorder. Previous studies have reported that large deletions contribute to more severe RTS phenotypes than those caused by CREBBP point mutations, suggesting a concurrent pathogenetic role of flanking genes, typical of contiguous gene syndromes, but the detailed genetics are unclear. RESULTS This study presented a rare case of Rubinstein-Taybi (RT) syndrome with serious cardiac abnormalities. Based on the clinical and genetic analysis of the patient, the ADCY9 gene deletion was highlighted as a plausible explanation of cardiac abnormalities. In adcy9 morphant zebrafish, cardiac malformation was observed. Immunofluorescence study disclosed increased macrophage migration and cardiac apoptosis. RNA sequencing in zebrafish model highlighted the changes of a number of genes, including increased expression of the mmp9 gene which encodes a matrix metalloproteinase with the main function to degrade and remodel extracellular matrix. CONCLUSIONS In this study, we identified a plausible new candidate gene ADCY9 of CHD through the clinical and genetic analysis of a rare case of Rubinstein-Taybi (RT) syndrome with serious cardiac abnormalities. By functional study of zebrafish, we demonstrated that deletion of adcy9 is the causation for the cardiac abnormalities. Cardiac apoptosis and increased expression of the MMP9 gene are involved in the pathogenesis.
Collapse
Affiliation(s)
- Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yu Xia
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ping Li
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yongchao Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jijin Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Meng Zheng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lifeng Tian
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhuanbin Wu
- Shanghai Model Organisms Center Inc, Shanghai, China
| | - Shufang Huang
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xianyu Qin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xianwu Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Shaoxian Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yanying Liu
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yonghua Wang
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xiaofeng Li
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hanshi Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pediatrics and Division of Human Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Li XH, Hu YM, Yin GL, Wu P. Correlation between HCN4 gene polymorphisms and lone atrial fibrillation risk. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2989-2993. [PMID: 31315459 DOI: 10.1080/21691401.2019.1637885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background and objective: Atrial electrical remodelling (AER) was significantly associated with atrial fibrillation (AF) development. Polymorphisms in hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4) gene might be correlated with AER. In the present study, we explored the association of HCN4 polymorphisms (rs498005 and rs7164883) with lone AF risk in a Chinese Han population. Methods: In this case-control study, the Sanger sequencing method was utilized to genotype the HCN4 polymorphisms. Relative risk of AF was assessed by the χ2 test, and presented by odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Logistic regression analysis was performed for multivariate analysis. The effects of HCN4 polymorphisms on AF clinical features were analyzed by the Mann-Whitney U test and adjusted by the Bonferroni method. Results: C allele of rs498005 was significantly correlated with increased risk of AF (OR = 1.412, 95%CI = 1.012-1.970), and the association still exited after adjustment by age, gender, the status of smoking and drinking, histories of diabetes, hyperlipidaemia and myocardial infarction (adjusted OR = 1.473, 95%CI = 1.043-2.081). G allele of rs7164883 SNP was marginally associated with enhanced AF risk after adjustment by the above clinical parameters (adjusted OR = 1.742, 95%CI = 1.019-2.980). Atrial late potential (ALP), including TP (P wave duration after filtering) and LP20 (the amplitude of superimposed potential in the final 20 ms of P wave) were significantly associated with rs498005 genotype (p < .001). Conclusion: HCN4 rs498005 and rs7164883 polymorphisms are significantly associated with AF risk.
Collapse
Affiliation(s)
- Xiao-Hong Li
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| | - Ya-Min Hu
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| | - Guang-Li Yin
- b Department of Cardiology, Hebei Provincial Hospital of Integrative Chinese and Western Medicine , Cangzhou , China
| | - Ping Wu
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| |
Collapse
|
5
|
Tingting H, Guangzhong L, Yanxiang Z, DongDong Y, Li S, Li W. Qiliqiangxin attenuates atrial structural remodeling in prolonged pacing-induced atrial fibrillation in rabbits. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:585-592. [PMID: 30627756 DOI: 10.1007/s00210-018-01611-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022]
Abstract
Qiliqiangxin (QL) can attenuate myocardial remodeling and improve cardiac function in some cardiac diseases, including heart failure and hypertension. This study was to explore the effects and mechanism of QL on atrial structural remodeling in atrial fibrillation (AF). Twenty-one rabbits were randomly divided into a sham-operation group, pacing group (pacing with 600 beats per minute for 4 weeks), and treatment group (2.5 g/kg/day). Before pacing, the rabbits received QL-administered p.o. for 1 week. We measured atrial electrophysiological parameters in all groups to evaluate AF inducibility and the atrial effective refractory period (AERP). Echocardiography evaluated cardiac function and structure. TUNEL detection, hematoxylin and eosin (HE) staining, and Masson's trichrome staining were performed. Immunohistochemistry and western blotting (WB) were used to detect alterations in calcium channel L-type dihydropyridine receptor α2 subunit (DHPR) and fibrosis-related regulatory factors. AF inducibility was markedly decreased after QL treatment. Furthermore, we found that AERP and DHPR were reduced significantly in pacing rabbits compared with sham rabbits; treatment with QL increased DHPR and AERP compared to the pacing group. The QL group showed significantly decreased mast cell density and improved atrial ejection fraction values compared with the pacing group. Moreover, QL decreased interventricular septum thickness (IVSd) and left ventricular end-diastolic diameter (LVEDD). Compared with the sham group, the levels of TGFβ1 and P-smad2/3 were significantly upregulated in the pacing group. QL reduced TGF-β1 and P-smad2/3 levels and downstream fibrosis-related factors. Our study demonstrated that QL treatment attenuates atrial structural remodeling potentially by inhibiting TGF-β1/P-smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Hou Tingting
- Department of Respiratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Liu Guangzhong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Zang Yanxiang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yu DongDong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Sun Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Weimin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.
- Department of Cardiology, The First Hospital of Harbin, No. 151 Diduan Street, DaoLi District, Harbin, 150056, Heilongjiang Province, China.
| |
Collapse
|
6
|
Association evidence of CCTTT repeat polymorphism in the iNOS promoter and the risk of atrial fibrillation in Taiwanese. Sci Rep 2017; 7:42388. [PMID: 28205526 PMCID: PMC5304328 DOI: 10.1038/srep42388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/09/2017] [Indexed: 11/17/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) plays an important role in the pathogenesis of atrial fibrillation (AF). The iNOS promoter has a CCTTT-repeat length polymorphism that can determine the level of gene transcription. This study enrolled 200 AF patients and 240 controls. The length of CCTTT-repeat polymorphism in the iNOS promoter region was examined by polymerase chain reactions, with the alleles with ≤11 repeats designated as S and alleles with ≥12 repeats designated as L alleles. AF patients carried significantly higher frequencies of the LL genotype than control subjects (40.0% versus 28.3%, P = 0.010). Multivariate analysis showed that the presence of LL genotype was significantly associated with AF (odds ratio: 1.87, 95% CI = 1.10–3.17, P = 0.021). In vitro, transient transfection assay in HL-1 atrial myocytes showed that the responsiveness of iNOS transcriptional activity to tachypacing was correlated with the length of the CCTTT-repeats. Right atrial tissues from patients with chronic AF were investigated with immunoconfocal microscopy. Patients with LL genotype exhibited greater oxidative stress and substrate remodeling in their atria than those with non-LL genotypes. Our results suggest that the iNOS microsatellite polymorphism may contribute to the genetic background of AF in Chinese-Taiwanese patients.
Collapse
|