1
|
Saçıntı KG, Sadat R, Özkavukçu S, Sonmezer M, Sönmezer M. Maximizing Success: An Overview of Optimizing the Ovarian Tissue Transplantation Site. JBRA Assist Reprod 2024; 28:497-502. [PMID: 38838161 PMCID: PMC11349257 DOI: 10.5935/1518-0557.20240027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/21/2024] [Indexed: 06/07/2024] Open
Abstract
Ovarian tissue cryopreservation and transplantation (OTCT) has emerged in recent years as a potential method for reversing abnormal endocrine and reproductive functions, particularly in patients receiving gonadotoxic cancer treatments having longer survival rates. From its first rodent experiments to human trials, OTCT has evolved tremendously, opening new windows for further utilization. Since then, significant progress has been achieved in terms of techniques used for surgical removal of the tissue, optimal fragment size, freezing and thawing procedures, and appropriate surgical sites for the subsequent reimplementation of the graft. In addition, various approaches have been proposed to decrease the risk of ischemic injury, which is the leading cause of significant follicle loss during neo-angiogenesis. This review aims to discuss the pros and cons of ovarian and retroperitoneal transplantation sites, highlighting the justifications for the viability and efficacy of different transplantation sites as well as the potential advantages and drawbacks of retroperitoneal or preperitoneal area.
Collapse
Affiliation(s)
- Koray Görkem Saçıntı
- Department of Obstetrics and Gynecology, Ankara University School
of Medicine, Ankara, Turkey
- Division of Epidemiology, Department of Public Health, Hacettepe
University Faculty of Medicine, Ankara, Turkey
| | - Rowaida Sadat
- Ankara University School of Medicine, Ankara, Turkey
| | - Sinan Özkavukçu
- University of Dundee, School of Medicine, Assisted Conception Unit,
Postgraduate Medicine, Ninewells Medicine, Dundee, UK
| | | | - Murat Sönmezer
- Department of Obstetrics and Gynecology, Ankara University School
of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Vieira ARS, Pereira Bersano LMC, Brandão FAS, Barros CHSC, Sousa FCD, Rodrigues ALDS, Alves BG, Gomes FDR, Rodrigues APR, Teixeira DÍA. Heterotopic ovarian allotransplantation in a caprine model: Effects of implant site on morphological parameters. Anim Reprod Sci 2024; 267:107509. [PMID: 38878559 DOI: 10.1016/j.anireprosci.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024]
Abstract
This study aimed to investigate a new implantation site (intra-auricular subcutaneous - IA) compared to intramuscular (IM) in the cervical portion (cervical splenius muscle) of the neck for ovarian transplantation in goats. Morphological aspects of the implant, follicular activation and morphology, and type I and III collagen deposits of the transplanted tissue were evaluated. Four fragments of the ovarian cortex were allotransplanted at the IA and IM sites in all goat recipients and recovered 7 (IA-7; IM-7) or 15 (IA-15; IM-15) days later and submitted to histological analysis. Two fragments/animal were separated for the fresh control (FC) group. There was a higher percentage of normal and developing primordial follicles at the IA-7 site (P < 0.05) compared to the other treatments, with similar values to the fresh control. Type I and III collagen fibers differed between the groups (P < 0.05), showing a considerable decrease in type I collagen fibers at the IA-7 site compared to the FC. However, the IM-7 and IA-15 sites showed higher values of type I collagen fibers, showing similarity to the FC. Therefore, we conclude that the IA site in goats is an effective site for ovarian tissue transplantation, as it is easily accessible, low invasive and has presented satisfactory rates of morphology and follicular activation.
Collapse
Affiliation(s)
- Antonio Renilson Sousa Vieira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará - UECE, Fortaleza, CE, Brazil
| | | | | | | | | | - Ana Luiza de Sousa Rodrigues
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará - UECE, Fortaleza, CE, Brazil
| | | | | | - Ana Paula Ribeiro Rodrigues
- Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles - LAMOFOPA - UECE, Fortaleza, CE, Brazil
| | - Dárcio Ítalo Alves Teixeira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará - UECE, Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Liu B, Liu Y, Li S, Chen P, Zhang J, Feng L. Depletion of placental brain-derived neurotrophic factor (BDNF) is attributed to premature ovarian insufficiency (POI) in mice offspring. J Ovarian Res 2024; 17:141. [PMID: 38982490 PMCID: PMC11232340 DOI: 10.1186/s13048-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Premature ovarian insufficiency (POI) is one of the causes of female infertility. Unexplained POI is increasingly affecting women in their reproductive years. However, the etiology of POI is diverse and remains elusive. We and others have shown that brain-derived neurotrophic factor (BDNF) plays an important role in adult ovarian function. Here, we report on a novel role of BDNF in the Developmental Origins of POI. METHODS Placental BDNF knockout mice were created using CRISPR/CAS9. Homozygous knockout (cKO(HO)) mice didn't survive, while heterozygous knockout (cKO(HE)) mice did. BDNF reduction in cKO(HE) mice was confirmed via immunohistochemistry and Western blots. Ovaries were collected from cKO(HE) mice at various ages, analyzing ovarian metrics, FSH expression, and litter sizes. In one-month-old mice, oocyte numbers were assessed using super-ovulation, and oocyte gene expression was analyzed with smart RNAseq. Ovaries of P7 mice were studied with SEM, and gene expression was confirmed with RT-qPCR. Alkaline phosphatase staining at E11.5 and immunofluorescence for cyclinD1 assessed germ cell number and cell proliferation. RESULTS cKO(HE) mice had decreased ovarian function and litter size in adulthood. They were insensitive to ovulation induction drugs manifested by lower oocyte release after superovulation in one-month-old cKO(HE) mice. The transcriptome and SEM results indicate that mitochondria-mediated cell death or aging might occur in cKO(HE) ovaries. Decreased placental BDNF led to diminished primordial germ cell proliferation at E11.5 and ovarian reserve which may underlie POI in adulthood. CONCLUSION The current results showed decreased placental BDNF diminished primordial germ cell proliferation in female fetuses during pregnancy and POI in adulthood. Our findings can provide insights into understanding the underlying mechanisms of POI.
Collapse
Affiliation(s)
- Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pingping Chen
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Liping Feng
- Department of Obstetrics and Gynaecology, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
5
|
Zaninović L, Bašković M, Ježek D, Habek D, Pogorelić Z, Katušić Bojanac A, Elveđi Gašparović V, Škrgatić L. Enhancement of Vascularization and Ovarian Follicle Survival Using Stem Cells in Cryopreserved Ovarian Tissue Transplantation-A Systematic Review. BIOLOGY 2024; 13:342. [PMID: 38785824 PMCID: PMC11117700 DOI: 10.3390/biology13050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The increase in cancer survival rates has put a focus on ensuring fertility preservation procedures for cancer patients. Ovarian tissue cryopreservation presents the only option for prepubertal girls and patients who require immediate start of treatment and, therefore, cannot undergo controlled ovarian stimulation. We aimed to provide an assessment of stem cells' impact on cryopreserved ovarian tissue grafts in regard to the expression of growth factors, angiogenesis promotion, tissue oxygenation, ovarian follicle survival and restoration of endocrine function. For this systematic review, we searched the Scopus and PubMed databases and included reports of trials using murine and/or human cryopreserved ovarian tissue for transplantation or in vitro culture in combination with mesenchymal stem cell administration to the grafting site. Of the 1201 articles identified, 10 met the criteria. The application of stem cells to the grafting site has been proven to support vascular promotion and thereby shorten the period of tissue hypoxia, which is reflected in the increased number of remaining viable follicles and faster recovery of ovarian endocrine function. Further research is needed before implementing the use of stem cells in OT cryopreservation and transplantation procedures in clinical practice. Complex ethical dilemmas make this process more difficult.
Collapse
Affiliation(s)
- Luca Zaninović
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, Petrova ulica 13, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Marko Bašković
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Pediatric Surgery, Children’s Hospital Zagreb, Ulica Vjekoslava Klaića 16, 10 000 Zagreb, Croatia
- Croatian Academy of Medical Sciences, Kaptol 15, 10 000 Zagreb, Croatia
| | - Davor Ježek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Centre Zagreb, Kišpatićeva ulica 12, 10 000 Zagreb, Croatia
| | - Dubravko Habek
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Croatian Academy of Medical Sciences, Kaptol 15, 10 000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, Clinical Hospital Merkur, Zajčeva ulica 19, 10 000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10 000 Zagreb, Croatia
| | - Zenon Pogorelić
- Department of Pediatric Surgery, University Hospital of Split, Spinčićeva ulica 1, 21 000 Split, Croatia;
- School of Medicine, University of Split, Šoltanska ulica 2a, 21 000 Split, Croatia
| | - Ana Katušić Bojanac
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Vesna Elveđi Gašparović
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, Petrova ulica 13, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Lana Škrgatić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, Petrova ulica 13, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
6
|
Xu J, Zhang L, Ye Z, Chang B, Tu Z, Du X, Wen X, Teng Y. A 3D "sandwich" co-culture system with vascular niche supports mouse embryo development from E3.5 to E7.5 in vitro. Stem Cell Res Ther 2023; 14:349. [PMID: 38072932 PMCID: PMC10712047 DOI: 10.1186/s13287-023-03583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Various methods for ex utero culture systems have been explored. However, limitations remain regarding the in vitro culture platforms used before implanting mouse embryos and the normal development of mouse blastocysts in vitro. Furthermore, vascular niche support during mouse embryo development from embryonic day (E) 3.5 to E7.5 is unknown in vitro. METHODS This study established a three-dimensional (3D) "sandwich" vascular niche culture system with in vitro culture medium (IVCM) using human placenta perivascular stem cells (hPPSCs) and human umbilical vein endothelial cells (hUVECs) as supportive cells (which were seeded into the bottom layer of Matrigel) to test mouse embryos from E3.5 to E7.5 in vitro. The development rates and greatest diameters of mouse embryos from E3.5 to E7.5 were quantitatively determined using SPSS software statistics. Pluripotent markers and embryo transplantation were used to monitor mouse embryo quality and function in vivo. RESULTS Embryos in the IVCM + Cells (hPPSCs + hUVECs) group showed higher development rates and greater diameters at each stage than those in the IVCM group. Embryos in the IVCM + Cells group cultured to E5.5 morphologically resembled natural egg cylinders and expressed specific embryonic cell markers, including Oct4 and Nanog. These features were similar to those of embryos developed in vivo. After transplantation, the embryos were re-implanted in the internal uterus and continued to develop to a particular stage. CONCLUSIONS The 3D in vitro culture system enabled embryo development from E3.5 to E7.5, and the vascularization microenvironment constructed by Matrigel, hPPSCs, and hUVECs significantly promoted the development of implanted embryos. This system allowed us to further study the physical and molecular mechanisms of embryo implantation in vitro.
Collapse
Affiliation(s)
- Junjun Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325015, China.
| | - Linye Zhang
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Zihui Ye
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Binwen Chang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Zheng Tu
- Renji College, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xi Wen
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, 100053, China.
| | - Yili Teng
- Reproductive Medicine Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China.
| |
Collapse
|
7
|
Wu Q, Ru G, Xiao W, Wang Q, Li Z. Adverse effects of ovarian cryopreservation and auto-transplantation on ovarian grafts and quality of produced oocytes in a mouse model. Clin Sci (Lond) 2023; 137:1577-1591. [PMID: 37782233 PMCID: PMC10600147 DOI: 10.1042/cs20230483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
The process of ovarian cryopreservation and transplantation is the only feasible fertility preservation method for prepubertal girls and female patients with cancer who cannot delay radiotherapy and chemotherapy. However, basic research on this technique is lacking. To better understand ovarian function and oocyte quality after ovarian tissue (OT) transplantation, we characterised the appearance, angiogenesis, and endocrine function of ovarian grafts in a murine model; the mitochondrial function and DNA damage in oocytes isolated from the OT; and the development of embryos after in vitro fertilisation. The results showed a decrease in oocyte numbers in the transplanted OT, abnormal endocrine function of ovarian grafts, as well as dysfunctional mitochondria and DNA damage in the oocytes, which could adversely affect subsequent embryonic development. However, these adverse phenotypes were partially or completely resolved within 21 days of transplantation, suggesting that ovulation induction and assisted pregnancy treatment should not be conducted too soon after OT transfer to ensure optimal patient and offspring outcomes.
Collapse
Affiliation(s)
- Que Wu
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Gaizhen Ru
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Wanfen Xiao
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Qian Wang
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| | - Zhiling Li
- Reproductive Center, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou City, 515041, Guangdong, China
| |
Collapse
|
8
|
Rodrigues AQ, Silva IM, Goulart JT, Araújo LO, Ribeiro RB, Aguiar BA, Ferreira YB, Silva JKO, Bezerra JLS, Lucci CM, Paulini F. Effects of erythropoietin on ischaemia-reperfusion when administered before and after ovarian tissue transplantation in mice. Reprod Biomed Online 2023; 47:103234. [PMID: 37524029 DOI: 10.1016/j.rbmo.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 08/02/2023]
Abstract
RESEARCH QUESTION Is the optimal timing for administering erythropoietin to minimize ischaemic injury in ovarian tissue transplantation before ovary removal for cryopreservation and subsequent transplantation or after transplantation? DESIGN Thirty Swiss mice (nu/nu) were divided into three groups: treatment control group (n = 10); erythropoietin before harvesting group (EPO-BH) (n = 10) and erythropoietin after transplantation group (EPO-AT) (n = 10). Animals underwent bilateral ovariohysterectomy and their hemiovaries were cryopreserved by slow freezing. At the same time, previously cryopreserved hemiovaries were transplanted subcutaneously in the dorsal region. Erythropoietin (250 IU/kg) and sterile 0.9% saline solution were administered every 12/12 h over 5 consecutive days in the EPO-AT and EPO-BH groups, respectively. RESULTS Administration of erythropoietin in the EPO-AT group improved the viability of ovarian follicles, reducing degeneration and increasing the number of morphologically normal growing follicles at 14 days after transplantation compared with the EPO-BH group (P = 0.002). This group also showed higher percentages of proliferative follicles at 7 days after transplantation (P ≤ 0.03), increased blood vessel count (P ≤ 0.03) and greater tissue area occupied by blood vessels at days 7 and 14 after transplantation (P ≤ 0.03), compared with hormone administration before cryopreservation (EPO-BH group) and the treatment control group. Additionally, treatment with erythropoietin before or after transplantation reduced fibrotic areas at 7 days after transplantation (P = 0.004). CONCLUSION Erythropoietin treatment after transplantation reduced ischaemic damage in transplanted ovarian tissue, increased angiogenesis, maintenance of ovarian follicle proliferation and reduced fibrosis areas in the grafted tissue.
Collapse
Affiliation(s)
- Aline Q Rodrigues
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Isabella Mg Silva
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Jair T Goulart
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Luane O Araújo
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Rayane B Ribeiro
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Beatriz A Aguiar
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Yasmin B Ferreira
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Jessyca Karoline O Silva
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Julliene Larissa S Bezerra
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Carolina M Lucci
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil.
| |
Collapse
|
9
|
Chen HT, Wu WB, Lin JJ, Lai TH. Identification of potential angiogenic biomarkers in human follicular fluid for predicting oocyte maturity. Front Endocrinol (Lausanne) 2023; 14:1173079. [PMID: 37635970 PMCID: PMC10448508 DOI: 10.3389/fendo.2023.1173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Background Angiogenesis in folliculogenesis contributes to oocyte developmental competence in natural and in vitro fertilization (IVF) cycles. Therefore, the identification of key angiogenic factors in follicular fluid (FF) during folliculogenesis is clinically significant and important for in vitro fertilization. This study aims to identify the key angiogenic factors in FF for predicting oocyte maturity during in vitro fertilization. Materials and methods Forty participants who received ovarian stimulation using a GnRH antagonist protocol in their first in vitro fertilization treatment were recruited. From each patient, two follicular samples (one preovulatory follicle, > 18 mm; one mid-antral follicle, < 14 mm) were collected without flushing during oocyte retrieval. In total, 80 FF samples were collected from 40 patients. The expression profiles of angiogenesis-related proteins in FF were analyzed via Luminex high-performance assays. Recorded patient data included antral follicle count, anti-müllerian hormone, age, and BMI. Serum samples were collected on menstrual cycle day 2, the trigger day, and the day of oocyte retrieval. Hormone concentrations including day 2 FSH/LH/E2/P4, trigger day E2/LH/P4, and retrieval day E2/LH/P4 were measured by chemiluminescence assay. Results Ten angiogenic factors were highly expressed in FF: eotaxin, Gro-α, IL-8, IP-10, MCP-1, MIG, PAI-1 (Serpin), VEGF-A, CXCL-6, and HGF. The concentrations of eotaxin, IL-8, MCP1, PAI-1, and VEGF-A were significantly higher in preovulatory follicles than those in mid-antral follicles, while the Gro-α and CXCL-6 expressional levels were lower in preovulatory than in mid-antral follicles (p < 0.05). Logistic regression and receiver operating characteristic (ROC) analysis revealed that VEGF-A, eotaxin, and CXCL-6 were the three strongest predictors of oocyte maturity. The combination of VEGF-A and CXCL-6 predicted oocyte maturity with a higher sensitivity (91.7%) and specificity (72.7%) than other combinations. Conclusion Our findings suggest that VEGF-A, eotaxin, and CXCL-6 concentrations in FF strongly correlate with oocyte maturity from the mid-antral to preovulatory stage. The combination of VEGF-A and CXCL-6 exhibits a relatively good prediction rate of oocyte maturity during in vitro fertilization.
Collapse
Affiliation(s)
- Hsuan-Ting Chen
- Ph.D. Program in Pharmaceutic Biotechnology, Graduate Institute of Biomedical and Pharmaceutical Science, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jun-Jin Lin
- Assisted Reproductive Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | - Tsung-Hsuan Lai
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Assisted Reproductive Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Rodriguez-Wallberg KA, Jiang Y, Lekberg T, Nilsson HP. The Late Effects of Cancer Treatment on Female Fertility and the Current Status of Fertility Preservation-A Narrative Review. Life (Basel) 2023; 13:1195. [PMID: 37240840 PMCID: PMC10224240 DOI: 10.3390/life13051195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Fertility counseling should be offered to all individuals of young reproductive age early in the patient's trajectory following a cancer diagnosis. Systemic cancer treatment and radiotherapy often have an inherent gonadotoxic effect with the potential to induce permanent infertility and premature ovarian failure. For the best chances to preserve a patient's fertility potential and to improve future quality of life, fertility preservation methods should be applied before cancer treatment initiation, thus multidisciplinary team-work and timely referral to reproductive medicine centers specialized in fertility preservation is recommended. We aim to review the current clinical possibilities for fertility preservation and summarize how infertility, as a late effect of gonadotoxic treatment, affects the growing population of young female cancer survivors.
Collapse
Affiliation(s)
- Kenny A. Rodriguez-Wallberg
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Yanyu Jiang
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
| | - Tobias Lekberg
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
- Breast, Endocrine tumors and Sarcoma Cancer Theme, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Hanna P. Nilsson
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
| |
Collapse
|
11
|
Izadpanah M, Rahbarghazi R, Seghinsara AM, Abedelahi A. Novel Approaches Used in Ovarian Tissue Transplantation for Fertility Preservation: Focus on Tissue Engineering Approaches and Angiogenesis Capacity. Reprod Sci 2023; 30:1082-1093. [PMID: 35962303 DOI: 10.1007/s43032-022-01048-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Due to the impact of the modern lifestyle, female infertility has been reduced because of different reasons. For example, in combined chemotherapeutic therapies, a small fraction of cancer survivors has faced different post-complications and side effects such as infertility. Besides, in modern society, delayed age of childbearing has also affected fertility. Nowadays, ovarian tissue cryopreservation and transplantation (OTC/T) is considered one of the appropriate strategies for the restoration of ovarian tissue and bioactivity in patients with the loss of reproductive function. In this regard, several procedures have been considered to improve the efficacy and safety of OTT. Among them, a surgical approach is used to transplant ovaries into the optimal sites, but the existence of ischemic changes and lack of appropriate revascularization can lead to bulk follicular atresia. Besides, the role of OTC/T is limited in women of advanced maternal age undergoing lifesaving chemo-radiation. As a correlate, the development of de novo approaches with efficacious regenerative outcomes is highly welcomed. Tissue engineering shows high therapeutic potentialities to restore fertility in males and females using the combination of biomaterials, cells, and growth factors. Unfortunately, most synthetic and natural materials are at the experimental stage and only the efficacy has been properly evaluated in limited cases. Along with these descriptions, strategies associated with the induction of angiogenesis in transplanted ovaries can diminish the injuries associated with ischemic changes. In this review, the authors tried to summarize recent techniques, especially tissue engineering approaches for improving ovarian function and fertility by focusing on angiogenesis and neovascularization.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Majdi Seghinsara
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166714766, Iran.
| |
Collapse
|
12
|
El-Sheikh M, Mesalam A, Khalil AAK, Idrees M, Ahn MJ, Mesalam AA, Kong IK. Downregulation of PI3K/AKT/mTOR Pathway in Juglone-Treated Bovine Oocytes. Antioxidants (Basel) 2023; 12:antiox12010114. [PMID: 36670976 PMCID: PMC9854430 DOI: 10.3390/antiox12010114] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
We have previously reported that juglone, a natural compound found in Juglandaceae with a wide range of biological activities, can reduces the developmental competence of bovine oocytes. In the current study, we investigated the possible mechanisms behind the toxicity of juglone and the relationship with PI3K/AKT/mTOR signaling during the in vitro maturation (IVM) of oocytes. Results show that oocyte exposure to juglone was associated with a significant decrease in filamentous actin (F-actin) accumulation. The RT-qPCR showed downregulation of the meiosis progression indicator GSK-3A, oocyte development marker BMP15, mitochondria fusion controlling MFN1, oxidative stress-related OGG1, and histone methylation-related EZH1, EZH2, SUZ12, G9a, and SUV39H2 genes in juglone-treated oocytes. In addition, glycolysis- (PFK1 and GLUT1), ATP synthesis- (ATPase8 and ATP5F1B), and OXPHOS-specific markers (SDHA and SDHD), as well as the oocyte survival regulators (SOD2, VEGF, and MAPK1) significantly decreased upon juglone treatment. Moreover, lower expression of PI3K, AKT, and mTOR was observed at the transcriptional and/or translational level(s). The autophagy markers LC3B and beclin-1 as well as the DNA damage-specific marker 8-OxoG displayed overexpression in juglone-exposed oocytes. Taken together, our results show that administration of juglone during the IVM can reduce the quality and developmental health of bovine oocytes through downregulation of the PI3K/AKT/mTOR pathway and its downstream signaling cascades.
Collapse
Affiliation(s)
- Marwa El-Sheikh
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Atif Ali Khan Khalil
- Department of Pharmacognosy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ahmed Atef Mesalam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
- Correspondence: (A.A.M.); (I.-K.K.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: (A.A.M.); (I.-K.K.)
| |
Collapse
|
13
|
Raimondo D, Raspollini A, Vicenti R, Renzulli F, Magnani V, Franceschini C, Raffone A, Mollo A, Casadio P, Seracchioli R. The use of near-infrared imaging with indocyanine green in the ovarian tissue transplantation: a case report. Facts Views Vis Obgyn 2022; 14:353-356. [PMID: 36724430 PMCID: PMC10364327 DOI: 10.52054/fvvo.14.4.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The request for fertility preservation has consistently increased in recent years. To our knowledge this case report is the first to describe the application of near-infrared intraoperative imaging using indocyanine green (NIR-ICG) during ovarian tissue transplantation (OTT), to assist surgeon choosing the site of implantation of ovarian fragments. OTT was performed in a 42-year-old woman using NIR-ICG to evaluate the vascularisation of peritoneal area as the site of implantation for the ovarian graft. we believe this new approach could be useful in identifying the best reimplantation site.
Collapse
|
14
|
Einenkel R, Schallmoser A, Sänger N. Metabolic and secretory recovery of slow frozen-thawed human ovarian tissue in vitro. Mol Hum Reprod 2022; 28:6808636. [PMID: 36342218 DOI: 10.1093/molehr/gaac037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Within the options available for fertility preservation, cryopreservation of ovarian cortical tissue has become an important technique. Freezing and thawing procedures have been optimized to preserve tissue integrity and viability. However, the improvement of the tissue retransplantation is currently of great interest. Rapid angiogenesis is needed at the retransplantation site to accomplish sufficient blood supply to provide oxygen and nutrients. Many studies address this issue. However, we need to understand the physiology of the thawed tissue to gain further understanding of the complexities of the procedure. As freezing and thawing generally impairs cellular metabolism, we aimed to characterize the changes in metabolic activity and secretion of the angiogenic factor vascular endothelial growth factor-A (VEGF-A) of frozen-thawed ovarian cortical tissue over time. Biopsy punches of ovarian cortical tissue from patients undergoing fertility preservation were maintained in culture without freezing or after a slow-freezing and thawing procedure. VEGF-A secretion was measured after 48 h by ELISA. To examine temporary changes, metabolic activity was assessed for both fresh and frozen-thawed tissue of the same patient. Metabolic activity and VEGF-A secretion were measured at 0, 24 and 48 h in culture. Thawed ovarian cortical tissue secreted significantly less VEGF-A compared to fresh ovarian cortical tissue within 48 h of culture. After thawing, metabolic activity was significantly reduced compared to fresh ovarian cortex but over the course of 48 h, the metabolic activity recovered. Similarly, VEGF-A secretion of thawed tissue increased significantly over 48 h. Here, we have shown that it takes 48 h for ovarian cortical tissue to recover metabolically after thawing, including VEGF-A secretion.
Collapse
Affiliation(s)
- Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, Bonn, Germany
| | - Andreas Schallmoser
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Xu W, Wu C, Zhu X, Wu J, Zhang Z, Wei Z, Cao Y, Zhou P, Wang J. UC-MSCs promote frozen-thawed ovaries angiogenesis via activation of the Wnt/β-catenin pathway in vitro ovarian culture system. Stem Cell Res Ther 2022; 13:296. [PMID: 35841074 PMCID: PMC9284710 DOI: 10.1186/s13287-022-02989-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background Ovarian tissue cryopreservation and transplantation are novel therapeutic approaches for fertility preservation. However, follicle loss caused by ischemic and hypoxic damage is one of the issues after frozen-thawed ovarian tissue transplantation. Promoting angiogenesis in grafts is the key to restore cryopreserved ovarian function. Mesenchymal stem cells (MSCs) have been reported to facilitate angiogenesis in the cryopreserved ovarian tissue transplantation. However, the risk of embolization, immunogenic effect and tumorigenesis hinders the clinical application of MSCs to human organ transplantation. In this study, we established an in vitro ovarian culture system to restore frozen-thawed ovarian function before transplantation with the application of umbilical cord mesenchymal stem cells (UC-MSCs), and explored the effects of UC-MSCs on frozen-thawed ovaries in vitro ovarian culture system and the mechanisms of UC-MSCs on the angiogenesis of frozen-thawed ovaries. Methods A simple in vitro three dimensional (3D) ovarian culture system using Matrigel was established to support to an ideal niche, and ovary was alone cultured in the 24-well plate as a control. We also evaluated the effects of UC-MSCs treatment on ovarian function with or without Matrigel support. All thawed ovaries were randomly divided into control group (Matrigel−/UC-MSCs−), Matrigel group (Matrigel+/UC-MSCs−), UC-MSCs group (Matrigel−/UC-MSCs+) and UC-MSCs + Matrigel group (Matrigel+/UC-MSCs+). HE staining was used to detect the histological structure of follicles and TUNEL staining was used to detect cell apoptosis. The number of microvessels was counted to evaluate neovascularization. The mRNA expression of VEGFA, IGF1 and ANGPT2 were detected by RT-PCR. Western blotting was used to measure the expression of GSK-3β, β-catenin and p-β-catenin. Results In the absence of UC-MSCs, 3D culture system supported by Matrigel showed significantly improved follicular development and microvascular number. Additionally, UC-MSCs were also found to effectively improve follicular development and microvascular number regardless of the culture condition used. However, alleviated follicular apoptosis, increased mRNA expression of angiogenesis-related gene and activated Wnt/β-catenin pathway occurred only in the UC-MSCs + Matrigel group. Besides, with the application of IWP-2 in UC-MSCs + Matrigel group, Wnt//β-catenin pathway could be blocked by IWP-2 serving as one of Wnt/β-catenin pathway inhibitors. Conclusions This in vitro study showed the beneficial effects of UC-MSCs on thawed ovaries and explored a potential mechanism inducing angiogenesis. In particular, 3D ovarian culture system supported by Matrigel further improved UC-MSCs treatment. The in vitro culture system using Matrigel and UC-MSCs may provide a potential treatment strategy for improving the success rate of thawed ovaries transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02989-8.
Collapse
Affiliation(s)
- Wenjuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqian Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingjing Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jianye Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
16
|
Dong T, Wang H, Hang-Zhou Y. Ovarian Auto-Transplantation of Cryopreserved Tissue on Muscle Surface Compared With Subrenal Capsular in Rats. Transplant Proc 2022; 54:2016-2020. [PMID: 35781160 DOI: 10.1016/j.transproceed.2022.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/09/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Fertility protection and ovarian function preservation are important to those undergoing radiation therapy to fight female reproductive cancers. The aim of this study was to explore a new ovarian transplantation position, the surface of thigh muscle, which was biceps femoris muscle in rats. METHODS We hypothesized that this procedure was comparable to traditional subrenal capsular transplantation and realized a normal ovarian function. The ovarian tissue, after cryopreservation, were transplanted to surface of biceps femoris muscle by suturing. RESULTS Histologic examination indicated that the transplanted tissues would survive and support a lower level of follicle growth compared with subrenal capsular (17 ± 2.6 vs 8.9 ± 4; P = .0018). According to weight gaining record, muscle surface transplantation supported appropriate weight gain although the β-estradiol levels did not completely recover. This new procedure could support a basic normal estrous cycle. CONCLUSION Ovarian transplantation through this procedure partly rebuilt ovarian function, which was more likely to be an alternative way for those not suitable for subrenal capsular transplantation.
Collapse
Affiliation(s)
- Tong Dong
- Department of Obstetrics and Gynecology, the Sixth Medical Center, PLA General Hospital, BeiJing, China.
| | - HuiYing Wang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, BeiJing, China
| | - Yu Hang-Zhou
- Department of Obstetrics and Gynecology, the Sixth Medical Center, PLA General Hospital, BeiJing, China
| |
Collapse
|
17
|
He H, Zhang H, Pan Y, Zhang T, Yang S, Liu M, Robert N, Wang J, Zhao T, Zhao L, Fan J, Cui Y, Yu S. Low oxygen concentration improves yak oocyte maturation and inhibits apoptosis through HIF-1 and VEGF. Reprod Domest Anim 2021; 57:381-392. [PMID: 34967955 DOI: 10.1111/rda.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
The gas-phase environment of in vitro culture system plays an important role in the development of oocytes, and oxygen concentration is one of the important factors. In the present study, we aimed to explore the effect of different oxygen concentrations (20%, 10%, 5% or 1% O2 ) in yak oocyte maturation and to detect the expression of HIF-1α, VEGF and cell apoptosis in yak COCs. First, the maturation rate of oocytes, cleavage rate and blastocysts rate following parthenogenetic activation in the group with 5% oxygen concentration were significantly higher (p < 0.05) than the other groups. Then, TUNEL analysis showed that the 5% oxygen concentration group significantly inhibited apoptosis of cumulus-oocyte complexes (COCs) compared to the other group, and the transcription and protein levels of pro-apoptotic factor Bax, HIF-1α and VEGF in yak COCs significantly reduced, while anti-apoptotic factor Bcl-2 significantly increased. Furthermore, immunohistochemical staining results indicated that HIF-1α protein was mainly located in theca follicle interna, mural follicular stratum granulosum, corona radiata and ovarian stroma in the follicular ovarian tissue; while VEGF protein was mainly located in the granulosa and theca cell layers. In summary, our findings demonstrate that 5% oxygen concentration may promote maturation and inhibit apoptosis of oocytes through HIF-1α-mediated VEGF expression.
Collapse
Affiliation(s)
- Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,College of Animal Husbandry and Verterinary Medicine, Southwest Minzu University, Chengdu, 610041, China
| | - Huizhu Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Minqing Liu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Niayale Robert
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinglei Wang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Role of Stem Cells in the Ovarian Tissue Cryopreservation and Transplantation for Fertility Preservation. Int J Mol Sci 2021; 22:ijms222212482. [PMID: 34830363 PMCID: PMC8620430 DOI: 10.3390/ijms222212482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Although the cancer survival rate has increased, cancer treatments, including chemotherapy and radiotherapy, can cause ovarian failure and infertility in women of reproductive age. Preserving fertility throughout cancer treatment is critical for maintaining quality of life. Fertility experts should propose individualized fertility preservation methods based on the patient’s marital status, pubertal status, partner status, and the urgency of treatment. Widely practiced fertility preservation methods, including ovarian transposition and embryo and oocyte cryopreservation, are inappropriate for prepubertal girls or those needing urgent initiation of cancer treatment. Ovarian tissue cryopreservation and transplantation, an emerging new technology, may be a solution for these cancer patients. The use of stem cells in ovarian tissue cryopreservation and transplantation increases oxygenation, angiogenesis, and follicle survival rates. This review discusses the recent advances in ovarian tissue cryopreservation and transplantation with special focus on the use of stem cells to improve fertilization techniques.
Collapse
|
19
|
Wang G, Zhang S, Lu H, Mu Y. Therapeutic Angiogenesis for Ovarian Transplantation through Ultrasound-Targeted Microbubble Destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1868-1880. [PMID: 33832825 DOI: 10.1016/j.ultrasmedbio.2021.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Timely angiogenesis and effective microcirculation perfusion are essential for the survival and functional recovery of transplanted ovaries. Ultrasound-targeted microbubble destruction (UTMD) can lead to angiogenesis and increase flow perfusion by causing transient inflammation. The purpose of this study was to evaluate the effects of UTMD on transplanted ovarian revascularization and survival. In vitro, for the criteria of cell viability and tube formation capability, the optimal exposure parameters were determined to be a microbubble concentration of 1 × 108/mL, mechanical index of 1 and exposure time of 30 s. After ovarian transplantation, 40 female Sprague Dawley rats were divided into four groups: transplantation alone, ultrasound alone, microbubbles alone and ultrasound and microbubbles (UTMD). At 7 d after transplantation, ovarian perfusion was assessed using qualitative and quantitative methods. The effect of angiogenesis was assessed by contrast-enhanced ultrasound, laser Doppler perfusion imaging and histologic analysis. The results, in which ovarian perfusion was highest in the UTMD group, suggest that UTMD can effectively improve ovarian perfusion. Compared with the other three groups, the number of follicles, microvascular density and rate of Ki-67-positive cells increased significantly in the UTMD group, while apoptosis decreased significantly (p < 0.05). The study indicates that UTMD promoted ovarian re-vascularization after ovarian transplantation and maintained follicular reserve.
Collapse
Affiliation(s)
- Guodong Wang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shan Zhang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hanbing Lu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
20
|
Cacciottola L, Donnez J, Dolmans MM. Ovarian tissue damage after grafting: systematic review of strategies to improve follicle outcomes. Reprod Biomed Online 2021; 43:351-369. [PMID: 34384692 DOI: 10.1016/j.rbmo.2021.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Frozen-thawed human ovarian tissue endures large-scale follicle loss in the early post-grafting period, characterized by hypoxia lasting around 7 days. Tissue revascularization occurs progressively through new vessel invasion from the host and neoangiogenesis from the graft. Such reoxygenation kinetics lead to further potential damage caused by oxidative stress. The aim of the present manuscript is to provide a systematic review of proangiogenic growth factors, hormones and various antioxidants administered in the event of ovarian tissue transplantation to protect the follicle pool from depletion by boosting revascularization or decreasing oxidative stress. Although almost all investigated studies revealed an advantage in terms of revascularization and reduction in oxidative stress, far fewer demonstrated a positive impact on follicle survival. As the cascade of events driven by ischaemia after transplantation is a complex process involving numerous players, it appears that acting on specific molecular mechanisms, such as concentrations of proangiogenic growth factors, is not enough to significantly mitigate tissue damage. Strategies exploiting the activated tissue response to ischaemia for tissue healing and remodelling purposes, such as the use of antiapoptotic drugs and adult stem cells, are also discussed in the present review, since they yielded promising results in terms of follicle pool protection.
Collapse
Affiliation(s)
- Luciana Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Prof. Emeritus, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
21
|
Lee S, Ozkavukcu S, Ku SY. Current and Future Perspectives for Improving Ovarian Tissue Cryopreservation and Transplantation Outcomes for Cancer Patients. Reprod Sci 2021; 28:1746-1758. [PMID: 33791995 PMCID: PMC8144135 DOI: 10.1007/s43032-021-00517-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Although advances in cancer treatment and early diagnosis have significantly improved cancer survival rates, cancer therapies can cause serious side effects, including ovarian failure and infertility, in women of reproductive age. Infertility following cancer treatment can have significant adverse effects on the quality of life. However, established methods for fertility preservation, including embryo or oocyte cryopreservation, are not always suitable for female cancer patients because of complicated individual conditions and treatment methods. Ovarian tissue cryopreservation and transplantation is a promising option for fertility preservation in pre-pubertal girls and adult patients with cancer who require immediate treatment, or who are not eligible to undergo ovarian stimulation. This review introduces various methods and strategies to improve ovarian tissue cryopreservation and transplantation outcomes, to help patients and clinicians choose the best option when considering the potential complexity of a patient's situation. Effective multidisciplinary oncofertility strategies, involving the inclusion of a highly skilled and experienced oncofertility team that considers cryopreservation methods, thawing processes and devices, surgical procedures for transplantation, and advances in technologies, are necessary to provide high-quality care to a cancer patient.
Collapse
Affiliation(s)
- Sanghoon Lee
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA.
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Sinan Ozkavukcu
- Center for Assisted Reproduction, Department of Obstetrics and Gynecology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Li Y, Hu Y, Zhu S, Tuo Y, Cai B, Long T, Zhao W, Ye X, Lu X, Long L. Protective Effects of Reduced Glutathione and Ulinastatin on Xeno-transplanted Human Ovarian Tissue Against Ischemia and Reperfusion Injury. Cell Transplant 2021; 30:963689721997151. [PMID: 33784205 PMCID: PMC8013881 DOI: 10.1177/0963689721997151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recently, transplantation of cryopreserved ovarian tissue is the method for fertility preservation for oncologic and nononcologic reasons. The main challenge of ovarian cryopreservation followed by transplantation is that ischemia reperfusion injury (IRI) induced the loss of follicles. The aim of this study was to evaluate the effects of glutathione (GSH), ulinastatin (UTI) or both (GSH+UTI) on preventing ischemia reperfusion-induced follicles depletion in ovarian grafts. Ovarian fragments were collected from 20 women aged 29±6 years. Frozen-thawed human ovarian tissue was xenografted into SCID mice, at the same time GSH, UTI and GSH+UTI was administrated respectively. The ovarian grafts were collected at the 1st, 3rd, 7th, 14th, 28th, 56th, and 85th day after xenotransplantation. Follicle survival rate was measured by H&E staining and Live/Dead staining. Angiogenic activity and macrophage recruitment was evidenced by immunohistochemical staining. The oxidative stress and inflammatory cytokines in human ovarian xenografts were measured by real-time PCR. The results indicated that after the treatments of GSH, UTI and GSH+UTI in the hosts, follicular survival in ovarian grafts were improved. The level of VEGF, CD31, and antioxidant enzymes superoxide dismutase 1 and superoxide dismutase 2 in ovarian grafts were increased. Accumulation of macrophages, level of IL6 and TNF-α, as well as malondialdehyde was decreased in ovarian grafts from treated groups. In conclusion, administration of GSH, UTI and GSH+UTI decreased the depletion of follicles in human grafts post-transplantation by inhibiting IRI-induced antiangiogenesis, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yubin Li
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- These authors contributed equally to this work
| | - Yue Hu
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- These authors contributed equally to this work
| | - Shunye Zhu
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Tuo
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bin Cai
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tengfei Long
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guanghzou, China
| | - Wen Zhao
- The Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxin Ye
- University of New South Wales, Sydney, High St. Kensington, New South Wales, Australia
| | - XiaoFang Lu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- These authors contributed equally to this work
- XiaoFang Lu, Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Lingli Long
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- These authors contributed equally to this work
- Lingli Long, Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
23
|
Abstract
Advanced maternal age is associated with the natural oocyte depletion, leading to low oocyte yield, high infertility treatment cancellation rates, and eventual decreases in pregnancy rates. Various innovative interventions have been introduced to improve the outcome of infertility treatment for aging patients. Numerous published data demonstrated that early follicle development was regulated by intraovarian growth factors through autocrine or paracrine mechanisms. Platelet-rich plasma (PRP), a plasma fraction of peripheral blood with a high concentration of platelets, has been implemented in regenerative medicine in the last decade. The plasma contains a variety of growth factors that were suggested to be able to enhance angiogenesis regeneration and the cell proliferation process. The initial report showed that an intraovarian injection of PRP improved the hormonal profile and increased the number of retrieved oocytes in patients with diminished ovarian reserve. Subsequently, several studies with larger sample sizes have reported that this approach resulted in several healthy live births with no apparent complications. However, the use of ovarian PRP treatment needs to be fully investigated, because no randomized controlled trial has yet been performed to confirm its efficacy.
Collapse
|
24
|
Souza SS, Alves BG, Alves KA, Brandão FAS, Brito DCC, Gastal MO, Rodrigues APR, Figueireod JR, Teixeira DIA, Gastal EL. Heterotopic autotransplantation of ovarian tissue in a large animal model: Effects of cooling and VEGF. PLoS One 2020; 15:e0241442. [PMID: 33147235 PMCID: PMC7641372 DOI: 10.1371/journal.pone.0241442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Heterotopic and orthotopic ovarian tissue autotransplantation techniques, currently used in humans, will become promising alternative methods for fertility preservation in domestic and wild animals. Thus, this study describes for the first time the efficiency of a heterotopic ovarian tissue autotransplantation technique in a large livestock species (i.e., horses) after ovarian fragments were exposed or not to a cooling process (4°C/24 h) and/or VEGF before grafting. Ovarian fragments were collected in vivo via an ultrasound-guided biopsy pick-up method and surgically autografted in a subcutaneous site in both sides of the neck in each mare. The blood flow perfusion at the transplantation site was monitored at days 2, 4, 6, and 7 post-grafting using color-Doppler ultrasonography. Ovarian grafts were recovered 7 days post-transplantation and subjected to histological analyses. The exposure of the ovarian fragments to VEGF before grafting was not beneficial to the quality of the tissue; however, the cooling process of the fragments reduced the acute hyperemia post-grafting. Cooled grafts compared with non-cooled grafts contained similar values for normal and developing preantral follicles, vessel density, and stromal cell apoptosis; lower collagen type III fibers and follicular density; and higher stromal cell density, AgNOR, and collagen type I fibers. In conclusion, VEGF exposure before autotransplantation did not improve the quality of grafted tissues. However, cooling ovarian tissue for at least 24 h before grafting can be beneficial because satisfactory rates of follicle survival and development, stromal cell survival and proliferation, as well as vessel density, were obtained.
Collapse
Affiliation(s)
- Samara S. Souza
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Benner G. Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Kele A. Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Fabiana A. S. Brandão
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Danielle C. C. Brito
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Melba O. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Ana P. R. Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - José R. Figueireod
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Dárcio I. A. Teixeira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Eduardo L. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| |
Collapse
|
25
|
Altered expression of activator proteins that control follicle reserve after ovarian tissue cryopreservation/transplantation and primordial follicle loss prevention by rapamycin. J Assist Reprod Genet 2020; 37:2119-2136. [PMID: 32651677 DOI: 10.1007/s10815-020-01875-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE We investigated whether expression of activator proteins that control follicle reserve and growth change after ovarian tissue vitrification and re-transplantation. Moreover, we assessed whether inhibition of mTOR signaling pathway by rapamycin would protect primordial follicle reserve after ovarian tissue freezing/thawing and re-transplantation. METHODS Fresh control, frozen/thawed, fresh-transplanted, frozen/thawed and transplanted, rapamycin/control, rapamycin fresh-transplanted, and rapamycin frozen-thawed and transplanted groups were established in rats. After freezing and thawing process, two ovaries were transplanted into the back muscle of the same rat. After 2 weeks, grafts were harvested, fixed, and embedded into paraffin block. Normal and atretic primordial/growing follicle count was performed in all groups. Ovarian tissues were evaluated for the dynamic expressions of Gdf-9, Bmp-15, KitL, Lif, Fgf-2, and p-s6K using immunohistochemistry, and H-score analyses were done. RESULTS Primordial follicle reserve reduced almost 50% after ovarian tissue re-transplantation. Expression of Gdf-9 and Lif increased significantly in primordial and growing follicles in frozen-thawed, fresh-transplanted, and frozen/thawed and transplanted groups, whereas expression of Bmp-15, KitL, and Fgf-2 decreased in primordial follicles. Freezing and thawing of ovarian tissue solely significantly increased p-s6K expression in primordial follicles, and on the other hand, suppression of mTORC1 pathway using rapamycin preserved the primordial follicle pool. CONCLUSION Altered expressions of activator proteins that regulate primordial follicle reserve and growth may lead to primordial follicle loss and rapamycin treatment can protect ovarian reserve after ovarian tissue cryopreservation/transplantation.
Collapse
|
26
|
Liu P, Zhang X, Hu J, Cui L, Zhao S, Jiao X, Qin Y. Dysregulated cytokine profile associated with biochemical premature ovarian insufficiency. Am J Reprod Immunol 2020; 84:e13292. [PMID: 32564444 PMCID: PMC7539985 DOI: 10.1111/aji.13292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Problem Premature ovarian insufficiency (POI) imposes great challenge on female reproduction. Whether immune disturbance in ovarian environment was implicated in POI remains unclear. We aimed to characterize the cytokine profile in follicular fluid (FF) and paired serum in patients with biochemical POI (bPOI). Method of study Multiplex immunoassay containing 45 cytokines was performed for individual FF and paired serum samples from 35 bPOI patients and 37 matched controls. Cytokine profiles were compared between the two groups and cytokines correlated to ovarian reserve, and the rates of day‐3 good‐quality embryos were further analyzed. Results In FF, significantly elevated level of chemokines MIP‐1α (P = .043), CXCL8 (P = .024), IP‐10 (P = .041), and eotaxin‐1 (P = .015) as well as growth factors VEGF‐D (P = .047), BDNF (P = .043), LIF (P = .002), and bFGF (P = .046) was found in bPOI patients compared to controls. Yet RANTES manifested an opposite trend with reduced levels among bPOI patients (P = .006). All these chemokines and growth factors in FF were significantly correlated with ovarian reserve (P < .05). In paired serum, cytokine signature was not likely accordant with that in FF between two groups, except for increased IP‐10 (P = .032) in bPOI patients and its significant correlation to FSH and AFC (P < .05). Among all differentially expressed cytokines, RANTES in FF was correlated with the rate of day‐3 good‐quality embryos (P = .035). Conclusion Altered cytokine profile characterized by increased chemokines and growth factors was associated with early stage of POI, which may fuel the progression of the disease or even play a crucial role in the development of ovarian insufficiency.
Collapse
Affiliation(s)
- Peihao Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Xiruo Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Jingmei Hu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Xue Jiao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| |
Collapse
|
27
|
Pinto Y, Alves KA, Alves BG, Souza SS, Brandão FAS, Lima LF, Freitas VJF, Rodrigues APR, Figueiredo JR, Gastal EL, Teixeira DIA. Heterotopic ovarian allotransplantation in goats: Preantral follicle viability and tissue remodeling. Anim Reprod Sci 2020; 215:106310. [PMID: 32216933 DOI: 10.1016/j.anireprosci.2020.106310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 11/25/2022]
Abstract
An appropriate implantation site favors angiogenesis and avoids ovarian tissue damage after tissue grafting. The objective of this study was to evaluate the effects of intramuscular (IM) and subcutaneous (SC) sites for ovarian grafts in goats by evaluating follicular morphology and activation, preantral follicle and stromal cell densities, tissue DNA fragmentation, collagen types I and III depositions, and graft revascularizations. Ovarian cortical tissue was transplanted in IM or SC sites and recovered 7 or 15 days post-transplantation. There was a greater percentage of developing follicles and lesser follicular and stromal cell densities in all grafted tissues as compared to ovarian tissues of the control group. The stromal cell density and percentage of normal follicles were positively associated. At 15 days post-transplantation, tissues at the SC and IM sites had similar amounts of DNA fragmentation and type III collagen content. In contrast, tissues at the SC, as compared with IM site, had greater abundances of collagen type I. Furthermore, there was a positive association between collagen type I and percentage of morphologically normal follicles post-transplantation. In addition to a marked decrease in follicular density 15 days post-transplantation in ovarian grafts at the SC and IM sites, low percentages of normal follicles and follicular activation were observed similarly in both transplantation sites. There were also positive associations of stromal cell density and abundance of type I collagen fibers with the percentage of intact follicles in grafted ovarian tissues.
Collapse
Affiliation(s)
- Yago Pinto
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Kele A Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Benner G Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Samara S Souza
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Fabiana A S Brandão
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Vicente J F Freitas
- Laboratory of Physiology and Control of Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Ana Paula R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA.
| | - Dárcio I A Teixeira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
28
|
Zhang S, Di N, Tayier B, Guan L, Wang G, Lu H, Yan F, Mu Y. Early evaluation of survival of the transplanted ovaries through ultrasound molecular imaging via targeted nanobubbles. Biomater Sci 2020; 8:5402-5414. [PMID: 32996915 DOI: 10.1039/d0bm01125h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schematic of AMH-targeted nanobubbles (NBAMH) and their targeting ability to rat ovarian granulosa cells expressing AMH.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Echocardiography
- First Affiliated Hospital of Xinjiang Medical University
- Urumqi
- China
| | - Na Di
- Department of Echocardiography
- First Affiliated Hospital of Xinjiang Medical University
- Urumqi
- China
- Department of Ultrasound
| | - Baihetiya Tayier
- Department of Echocardiography
- First Affiliated Hospital of Xinjiang Medical University
- Urumqi
- China
| | - Lina Guan
- Department of Echocardiography
- First Affiliated Hospital of Xinjiang Medical University
- Urumqi
- China
| | - Guodong Wang
- Department of Echocardiography
- First Affiliated Hospital of Xinjiang Medical University
- Urumqi
- China
| | - Hanbing Lu
- Department of Echocardiography
- First Affiliated Hospital of Xinjiang Medical University
- Urumqi
- China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology
- Shenzhen Institute of Synthetic Biology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen
| | - Yuming Mu
- Department of Echocardiography
- First Affiliated Hospital of Xinjiang Medical University
- Urumqi
- China
| |
Collapse
|
29
|
Celik S, Celikkan FT, Ozkavukcu S, Can A, Celik-Ozenci C. Expression of inhibitor proteins that control primordial follicle reserve decreases in cryopreserved ovaries after autotransplantation. J Assist Reprod Genet 2018; 35:615-626. [PMID: 29497951 DOI: 10.1007/s10815-018-1140-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/14/2018] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Even with 86 live births reported globally so far, the mechanism of primordial follicle loss following autotransplantation of the frozen-thawed ovarian tissue needs further evaluation. Pten, Tsc1, p27, and Amh are the inhibitor proteins that play crucial roles in suppressing the transition from the primordial follicle to primary state, maintaining the primordial follicle reserve. In this study, we aimed to evaluate whether the expression patterns of these proteins change and it may be related to the global primordial follicle loss after autotransplantation of the frozen-thawed ovarian tissue. METHODS Four groups were established in rats: fresh-control, frozen/thawed, fresh-transplanted, and frozen/thawed and transplanted. After slow freezing and thawing process, two ovarian pieces were transplanted into the back muscle of the same rat. After 2 weeks, grafts were harvested, fixed, and embedded into the paraffin block. Normal and atretic primordial/growing follicle count was performed in all groups. Ovarian tissues were evaluated for the dynamic expressions of the Pten, Tsc1, p27, and Amh proteins using immunohistochemistry, and H-score analyses were done. RESULTS Ovarian tissue cryopreservation does not change the expression patterns of inhibitory proteins that control ovarian reserve. Both in fresh and frozen/thawed autotransplanted groups, the expression of inhibitory proteins and Amh decreased significantly in primordial follicles and in growing follicles, respectively. In control group and in frozen/thawed group, primordial follicle counts were similar but decreased by almost half in both fresh-transplanted and frozen/thawed and transplanted groups. CONCLUSIONS One of the causes of primordial follicle loss after transplantation of ovarian graft may be decreased expression of the inhibitory proteins that guard the ovarian reserve and transplantation itself seems to be the major cause for disruption of inhibitory molecular signaling. Our findings highlight important molecular aspects for future clinical applications for fertility preservation in humans.
Collapse
Affiliation(s)
- Soner Celik
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070, Antalya, Turkey
| | - Ferda Topal Celikkan
- Department of Histology and Embryology, Ankara University School of Medicine, 06100, Ankara, Turkey
| | - Sinan Ozkavukcu
- Department of Obstetrics and Gynecology, Centre for Assisted Reproduction, School of Medicine, Ankara University, 06100, Ankara, Turkey
| | - Alp Can
- Department of Histology and Embryology, Ankara University School of Medicine, 06100, Ankara, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
30
|
"Positive Regulation of RNA Metabolic Process" Ontology Group Highly Regulated in Porcine Oocytes Matured In Vitro: A Microarray Approach. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2863068. [PMID: 29546053 PMCID: PMC5818922 DOI: 10.1155/2018/2863068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/10/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
The cumulus-oocyte complexes (COCs) growth and development during folliculogenesis and oogenesis are accompanied by changes involving synthesis and accumulation of large amount of RNA and proteins. In this study, the transcriptomic profile of genes involved in “oocytes RNA synthesis” in relation to in vitro maturation in pigs was investigated for the first time. The RNA was isolated from oocytes before and after in vitro maturation (IVM). Interactions between differentially expressed genes/proteins belonging to “positive regulation of RNA metabolic process” ontology group were investigated by STRING10 software. Using microarray assays, we found expression of 12258 porcine transcripts. Genes with fold change higher than |2| and with corrected p value lower than 0.05 were considered as differentially expressed. The ontology group “positive regulation of RNA metabolic process” involved differential expression of AR, INHBA, WWTR1, FOS, MEF2C, VEGFA, IKZF2, IHH, RORA, MAP3K1, NFAT5, SMARCA1, EGR1, EGR2, MITF, SMAD4, APP, and NR5A1 transcripts. Since all of the presented genes were downregulated after IVM, we suggested that they might be significantly involved in regulation of RNA synthesis before reaching oocyte MII stage. Higher expression of “RNA metabolic process” related genes before IVM indicated that they might be recognized as important markers and specific “transcriptomic fingerprint” of RNA template accumulation and storage for further porcine embryos growth and development.
Collapse
|
31
|
Kong HS, Lee J, Youm HW, Kim SK, Lee JR, Suh CS, Kim SH. Effect of treatment with angiopoietin-2 and vascular endothelial growth factor on the quality of xenografted bovine ovarian tissue in mice. PLoS One 2017; 12:e0184546. [PMID: 28915249 PMCID: PMC5600380 DOI: 10.1371/journal.pone.0184546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/26/2017] [Indexed: 01/10/2023] Open
Abstract
Cryopreservation and transplantation of ovarian tissue (OT) represents a method for fertility preservation. However, as the transplantation is performed without vessel anastomosis, unavoidable ischemic damage occurs. To reduce this ischemic damage and improve outcomes after transplantation, we used two kind of angiogenic factors, angiopoietin-2 (ang-2) and vascular endothelial growth factor (VEGF). Fresh or vitrified-warmed bovine OTs were prepared for xenotransplantation (XT). Fresh OTs were immediately xenografted into nude mice (XT-Fresh). Vitrified-warmed OTs were xenografted into four subgroups of mice, which were injected intraperitoneally before XT with saline (XT-Vitri), Ang-2 (XT-Ang-2), VEGF (XT-VEGF), and a combination of Ang-2 and VEGF (XT-Combined). Seven or 28 days post-grafting, grafted OTs and blood samples were collected for evaluation. Follicle normality was higher in the angiogenic factor-treated groups than in the XT-Vitri group. The XT-VEGF and the XT-Combined showed higher (P<0.05) follicular density than the XT-Vitri group. The highest apoptotic follicle ratio was observed in the XT-Vitri group on day 7; this was decreased (P<0.05) in the XT-Combined group. Microvessel densities were higher in the angiogenic factor-treated groups than in the XT-Vitri group. The largest fibrotic area was showed in the XT-Vitri group on day 28, and it was decreased (P<0.05) in the XT-combined group. Based on these results, administration of Ang-2 and VEGF to recipients prior to XT appeared to alleviate ischemic damage by enhancing angiogenesis, which resulted in the maintenance of follicle integrity and density, and reduced follicle apoptosis and OT fibrosis.
Collapse
Affiliation(s)
- Hyun Sun Kong
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Gumi-dong, Bundang-gu, Seongnam, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jaewang Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Gumi-dong, Bundang-gu, Seongnam, Korea
| | - Hye Won Youm
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Gumi-dong, Bundang-gu, Seongnam, Korea
| | - Seul Ki Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Gumi-dong, Bundang-gu, Seongnam, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Gumi-dong, Bundang-gu, Seongnam, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (JRL); (CSS)
| | - Chang Suk Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
- * E-mail: (JRL); (CSS)
| | - Seok Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Gastal GDA, Alves BG, Alves KA, Souza MEM, Vieira AD, Varela AS, Figueiredo JR, Feugang JM, Lucia T, Gastal EL. Ovarian fragment sizes affect viability and morphology of preantral follicles during storage at 4°C. Reproduction 2017; 153:577-587. [PMID: 28246309 DOI: 10.1530/rep-16-0621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 01/06/2023]
Abstract
The method of transportation and the conditions imposed on the ovarian tissue are pivotal aspects for the success of ovarian tissue cryopreservation (OTC). The aim of this study was to evaluate the effect of the size of the ovarian tissue (e.g. whole ovary, biopsy size and transplant size) during different times of storage (0, 6, 12 and 24 h) on the structural integrity of equine ovarian tissue transported at 4°C. Eighteen pairs of ovaries from young mares (<10 years old) were harvested in a slaughterhouse and processed to simulate the fragment sizes (biopsy and transplant size groups) or kept intact (whole ovary group) and stored at 4°C for up to 24 h in α-MEM-enriched solution. The effect of the size of the ovarian tissue was observed on the morphology of preantral follicles, stromal cell density, DNA fragmentation and mitochondrial membrane potential. The results showed that (i) biopsy size fragments had more morphologically normal preantral follicles after 24 h of storage at 4°C; (ii) mitochondrial membrane potential was the lowest during each storage time when the whole ovary was used; (iii) DNA fragmentation rate in the ovarian cells of all sizes of fragments increased as storage was prolonged and (iv) transplant size fragments had increased stromal cell density during storage at cool temperature. In conclusion, the biopsy size fragment was the best to preserve follicle morphology for long storage (24 h); however, transportation/storage should be prior determined according to the distance (time of transportation) between patient and reproduction centers/clinics.
Collapse
Affiliation(s)
- G D A Gastal
- Department of Animal ScienceFood and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - B G Alves
- Department of Animal ScienceFood and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - K A Alves
- Department of Animal ScienceFood and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - M E M Souza
- Department of Animal ScienceFood and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - A D Vieira
- Laboratory of Animal ReproductionFaculty of Veterinary Medicine
| | - A S Varela
- Institute of Biological SciencesFederal University of Pelotas, Capão do Leão, Rio Grande do Sul, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral FolliclesFaculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceará, Brazil
| | - J M Feugang
- Department of Animal and Dairy SciencesMississippi State University, Mississippi State, Mississippi, USA
| | - T Lucia
- Laboratory of Animal ReproductionFaculty of Veterinary Medicine
| | - E L Gastal
- Department of Animal ScienceFood and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|