1
|
Zhang CT, Qin DL, Cao XY, Kan JS, Huang XX, Gao DS, Gao J. Dephosphorylation of Six2Y129 protects tyrosine hydroxylase-positive cells in SNpc by regulating TEA domain 1 expression. iScience 2023; 26:107049. [PMID: 37534182 PMCID: PMC10391717 DOI: 10.1016/j.isci.2023.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/03/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). We recently reported that Six2 could reverse the degeneration of DA neurons in a dephosphorylation state. Here we further identified that Eya1 was the phosphatase of Six2 that could dephosphorylate the tyrosine 129 (Y129) site by forming a complex with Six2 in damaged DA cells. Dephosphorylated Six2 then translocates from the cytoplasm to the nucleus. Using ChIP-qPCR and dual luciferase assay, we found that dephosphorylated Six2 down-regulates TEA domain1 (Tead1) expression, thus inhibiting 6-hydroxydopamine (6-OHDA)-induced apoptosis in DA cells. Furthermore, we showed Six2Y129F/Tead1 signaling could protect against the loss of SNpc tyrosine hydroxylase-positive (TH+) cells and improve motor function in PD model rats. Our results demonstrate a dephosphorylation-dependent mechanism of Six2 that restores the degeneration of DA neurons, which could represent a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Can-tang Zhang
- Department of Respiratory and Critical Care, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Deng-li Qin
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xia-yin Cao
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jia-shuo Kan
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-xing Huang
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dian-shuai Gao
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jin Gao
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
2
|
Choi HS, Baek KH. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Cell Mol Life Sci 2022; 79:117. [PMID: 35118522 PMCID: PMC11071826 DOI: 10.1007/s00018-022-04132-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Although damaged cells can be repaired, cells that are considered unlikely to be repaired are eliminated through apoptosis, a type of predicted cell death found in multicellular organisms. Apoptosis is a structured cell death involving alterations to the cell morphology and internal biochemical changes. This process involves the expansion and cracking of cells, changes in cell membranes, nuclear fragmentation, chromatin condensation, and chromosome cleavage, culminating in the damaged cells being eaten and processed by other cells. The ubiquitin-proteasome system (UPS) is a major cellular pathway that regulates the protein levels through proteasomal degradation. This review proposes that apoptotic proteins are regulated through the UPS and describes a unique direction for cancer treatment by controlling proteasomal degradation of apoptotic proteins, and small molecules targeted to enzymes associated with UPS.
Collapse
Affiliation(s)
- Hae-Seul Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
3
|
Shi M, Chen X, Li H, Zheng L. δ-tocotrienol suppresses the migration and angiogenesis of trophoblasts in preeclampsia and promotes their apoptosis via miR-429/ ZEB1 axis. Bioengineered 2021; 12:1861-1873. [PMID: 34002673 PMCID: PMC8806315 DOI: 10.1080/21655979.2021.1923238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia (PE) is a severe medical disorder during pregnancy and there has been controversy about the effects of vitamin E on PE. This research intended to explore if δ-tocotrienol (δ-TT), an isomer of vitamin E, could impact PE. Preeclamptic and normal placentas were obtained and total RNA was extracted. The expression of different genes was analyzed through quantitative real-time polymerase chain reaction (qRT-PCR) and Pearson correlation analysis was conducted. After that, HTR-8/SVneo cells (human trophoblasts) were chosen and they were subjected to δ-tocotrienol treatment and then Cell Counting Kit-8 was used to test cell viability. To assess the effects of δ-TT on trophoblasts, wound healing assay and Transwell invasion assay were performed. How miR-429 interacts with ZEB1 was examined via dual luciferase reporter assay. Also, protein expression was evaluated via Western blotting. Our results have shown that δ-TT can impair the viability of trophoblasts and induce their apoptosis. Additionally, it can repress the growth, migration, epithelial-mesenchymal transition (EMT), invasion and angiogenesis in trophoblasts. Mechanistically, δ-TT exerts these effects on trophoblasts via downregulating miR-429 and upregulating ZEB1. Furthermore, miR-429 can bind ZEB1 directly. Clinical sample analysis has revealed that miR-429 expression in preeclamptic placenta is higher than that in normal placenta, but ZEB1 expression in preeclamptic placenta is downregulated. Also, there is a negative association between miR-429 and ZEB1 expression in preeclamptic placentas. These discoveries imply that δ-TT may be hazardous to pregnancy and should not be used in preeclamptic patients. In addition, targeting miR-429 might treat PE.
Collapse
Affiliation(s)
- Mei Shi
- Department of Delivery Room, Jinan Second Maternal and Child Health Hospital, Jinan City, Shandong Province, China
| | - Xiuyun Chen
- Department of ICU, Jinan Second Maternal and Child Health Hospital, Jinan City, Shandong Province, China
| | - Hui Li
- Department of VIP Ward, Jinan Second Maternal and Child Health Hospital, Jinan City, Shandong Province, China
| | - Lixia Zheng
- Department of Delivery Room, Jinan Second Maternal and Child Health Hospital, Jinan City, Shandong Province, China
| |
Collapse
|
4
|
Fratini L, Jaeger M, de Farias CB, Brunetto AT, Brunetto AL, Shaw L, Roesler R. Oncogenic functions of ZEB1 in pediatric solid cancers: interplays with microRNAs and long noncoding RNAs. Mol Cell Biochem 2021; 476:4107-4116. [PMID: 34292482 DOI: 10.1007/s11010-021-04226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The transcription factor Zinc finger E-box binding 1 (ZEB1) displays a range of regulatory activities in cell function and embryonic development, including driving epithelial-mesenchymal transition. Several aspects of ZEB1 function can be regulated by its functional interactions with noncoding RNA types, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Increasing evidence indicates that ZEB1 importantly influences cancer initiation, tumor progression, metastasis, and resistance to treatment. Cancer is the main disease-related cause of death in children and adolescents. Although the role of ZEB1 in pediatric cancer is still poorly understood, emerging findings have shown that it is expressed and regulates childhood solid tumors including osteosarcoma, retinoblastoma, neuroblastoma, and central nervous system tumors. Here, we review the evidence supporting a role for ZEB1, and its interplays with miRNAs and lncRNAs, in pediatric cancers.
Collapse
Affiliation(s)
- Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Lisa Shaw
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
5
|
Xiong X, Tang B, Ji T, Li X, Bai S. Ameliorative effects of miR-186 on cisplatin-triggered acute kidney injury via targeting ZEB1. Am J Transl Res 2021; 13:4296-4308. [PMID: 34150015 PMCID: PMC8205703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Cisplatin is a commonly used chemotherapy drug in cancers, which can lead to acute kidney injury (AKI). AKI can occur in almost one third of tumor patients, who receive cisplatin treatment. microRNAs (miRNAs) are significant tools in regulating the expression of crucial factors in multiple diseases, but little is known about their biological roles in AKI. As exhibited, miR-186 has been observed to be down-regulated in tumors. Our study concentrated on the function of miR-186 in cisplatin-triggered AKI. Here, we reported miR-186 was considerably decreased in the serum samples from AKI patients compared with those from the healthy controls. Additionally, we found in NRK-52E cells exposed to 6 mM cisplatin, miR-186 was greatly decreased time-dependently. Meanwhile, an AKI model in rats was successfully set in our study. Levels of serum creatinine and blood urea nitrogen were significantly induced by cisplatin exposure. In AKI rat models, miR-186 exhibited a rapid decrease in both the serum and the kidney tissues. Then, miR-186 overexpression improved NRK-52E cell proliferation and protected NRK-52E cells against cisplatin-triggered apoptosis. Furthermore, ZEB1 was identified and confirmed as a target gene of miR-186. It has been demonstrated that ZEB1 exerts crucial roles in the development of AKI. As evidenced in our current study, ZEB1 was remarkably elevated in AKI patients and AKI rat models. Moreover, ZEB1 was induced by indicated doses of cisplatin in different time periods in NRK-52E cells. ZEB1 inhibition rescued the reduced proliferation and increased apoptosis of NRK-52E cells. In conclusion, loss miR-186 expression contributed to cisplatin-induced AKI, partly through targeting ZEB1. miR-186 might be provided as an effective biomarker for AKI via targeting ZEB1.
Collapse
Affiliation(s)
- Xiaoyan Xiong
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Qingpu District, Shanghai 201700, P. R. China
| | - Bo Tang
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Qingpu District, Shanghai 201700, P. R. China
| | - Tingting Ji
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Qingpu District, Shanghai 201700, P. R. China
| | - Xiaoying Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Qingpu District, Shanghai 201700, P. R. China
| | - Shoujun Bai
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University Qingpu District, Shanghai 201700, P. R. China
| |
Collapse
|
6
|
Expression and Function of ZEB1 in the Cornea. Cells 2021; 10:cells10040925. [PMID: 33923743 PMCID: PMC8074155 DOI: 10.3390/cells10040925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is an important transcription factor for epithelial to mesenchymal transition (EMT) and in the regulation of cell differentiation and transformation. In the cornea, ZEB1 presents in all three layers: the epithelium, the stroma and the endothelium. Mutations of ZEB1 have been linked to multiple corneal genetic defects, particularly to the corneal dystrophies including keratoconus (KD), Fuchs endothelial corneal dystrophy (FECD), and posterior polymorphous corneal dystrophy (PPCD). Accumulating evidence indicates that dysfunction of ZEB1 may affect corneal stem cell homeostasis, and cause corneal cell apoptosis, stromal fibrosis, angiogenesis, squamous metaplasia. Understanding how ZEB1 regulates the initiation and progression of these disorders will help us in targeting ZEB1 for potential avenues to generate therapeutics to treat various ZEB1-related disorders.
Collapse
|
7
|
Rizzo M. Mechanisms of docetaxel resistance in prostate cancer: The key role played by miRNAs. Biochim Biophys Acta Rev Cancer 2020; 1875:188481. [PMID: 33217485 DOI: 10.1016/j.bbcan.2020.188481] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
One of the main problems with the treatment of metastatic prostate cancer is that, despite an initial positive response, the majority of patients develop resistance and progress. In particular, the resistance to docetaxel, the gold standard therapy for metastatic prostate cancer since 2010, represents one of the main factors responsible for the failure of prostate cancer therapy. According to the present knowledge, different processes contribute to the appearance of docetaxel resistance and non-coding RNA seems to play a relevant role in them. In this review, a comprehensive overview of the miRNA network involved in docetaxel resistance is described, highlighting the pathway/s affected by their activity.
Collapse
Affiliation(s)
- Milena Rizzo
- Non-coding RNA Group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.
| |
Collapse
|
8
|
ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of prostate cancer by sponging miR-4739 to upregulate MEF2D. Biomed Pharmacother 2019; 122:109557. [PMID: 31918265 DOI: 10.1016/j.biopha.2019.109557] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is a destructive malignancy with a bad prognosis. LncRNA VPS9D1-AS1 has recently been delineated as an oncogene in some kinds of tumor, whereas, the function of VPS9D1-AS1 in PCa remains to be clarified. In this study, we researched its underlying role in PCa. The expression of VPS9D1-AS1 was conspicuously upregulated in PCa tissues and cells. And absence of VPS9D1-AS1 inhibited cell proliferation, migration and invasion, and promoted cell apoptosis in PCa. In addition, VPS9D1-AS1 overexpression led to opposite results. Furthermore, VPS9D1-AS1/MEF2D could sponge with miR-4739. VPS9D1-AS1/MEF2D and miR-4739 were inversely correlated in tumor cells. And the expression of miR-4739 is markedly downregulated in PCa, meanwhile, that of MEF2D exhibited the opposite tendency. However, MEF2D was positively regulated by VPS9D1-AS1. Moreover, MEF2D upregulation offset the suppressive effects of VPS9D1-AS1 deficiency on cell proliferation, migration and invasion in PCa. Additionally, ZEB1 contained the binding sites of VPS9D1-AS1 promoter, and there existed positive relation between them. Taken together, above results illustrated that ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of PCa by sponging miR-4739 to upregulate MEF2D, which offering a new useful reference for studying the development process of PCa.
Collapse
|
9
|
Pan P, Weisenberger DJ, Zheng S, Wolf M, Hwang DG, Rose-Nussbaumer JR, Jurkunas UV, Chan MF. Aberrant DNA methylation of miRNAs in Fuchs endothelial corneal dystrophy. Sci Rep 2019; 9:16385. [PMID: 31705138 PMCID: PMC6841734 DOI: 10.1038/s41598-019-52727-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Homeostatic maintenance of corneal endothelial cells is essential for maintenance of corneal deturgescence and transparency. In Fuchs endothelial corneal dystrophy (FECD), an accelerated loss and dysfunction of endothelial cells leads to progressively severe visual impairment. An abnormal accumulation of extracellular matrix (ECM) is a distinctive hallmark of the disease, however the molecular pathogenic mechanisms underlying this phenomenon are not fully understood. Here, we investigate genome-wide and sequence-specific DNA methylation changes of miRNA genes in corneal endothelial samples from FECD patients. We discover that miRNA gene promoters are frequent targets of aberrant DNA methylation in FECD. More specifically, miR-199B is extensively hypermethylated and its mature transcript miR-199b-5p was previously found to be almost completely silenced in FECD. Furthermore, we find that miR-199b-5p directly and negatively regulates Snai1 and ZEB1, two zinc finger transcription factors that lead to increased ECM deposition in FECD. Taken together, these findings suggest a novel epigenetic regulatory mechanism of matrix protein production by corneal endothelial cells in which miR-199B hypermethylation leads to miR-199b-5p downregulation and thereby the increased expression of its target genes, including Snai1 and ZEB1. Our results support miR-199b-5p as a potential therapeutic target to prevent or slow down the progression of FECD disease.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Siyu Zheng
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - David G Hwang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Jennifer R Rose-Nussbaumer
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Ula V Jurkunas
- Department of Ophthalmology, Harvard Medical School, and Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA. .,Francis I. Proctor Foundation, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
ZEB1 insufficiency causes corneal endothelial cell state transition and altered cellular processing. PLoS One 2019; 14:e0218279. [PMID: 31194824 PMCID: PMC6564028 DOI: 10.1371/journal.pone.0218279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
The zinc finger e-box binding homeobox 1 (ZEB1) transcription factor is a master regulator of the epithelial to mesenchymal transition (EMT), and of the reverse mesenchymal to epithelial transition (MET) processes. ZEB1 plays an integral role in mediating cell state transitions during cell lineage specification, wound healing and disease. EMT/MET are characterized by distinct changes in molecular and cellular phenotype that are generally context-independent. Posterior polymorphous corneal dystrophy (PPCD), associated with ZEB1 insufficiency, provides a new biological context in which to understand and evaluate the classic EMT/MET paradigm. PPCD is characterized by a cadherin-switch and transition to an epithelial-like transcriptomic and cellular phenotype, which we study in a cell-based model of PPCD generated using CRISPR-Cas9-mediated ZEB1 knockout in corneal endothelial cells (CEnCs). Transcriptomic and functional studies support the hypothesis that CEnC undergo a MET-like transition in PPCD, termed endothelial to epithelial transition (EnET), and lead to the conclusion that EnET may be considered a corollary to the classic EMT/MET paradigm.
Collapse
|
11
|
Kowtharapu BS, Prakasam RK, Murín R, Koczan D, Stahnke T, Wree A, Jünemann AGM, Stachs O. Role of Bone Morphogenetic Protein 7 (BMP7) in the Modulation of Corneal Stromal and Epithelial Cell Functions. Int J Mol Sci 2018; 19:ijms19051415. [PMID: 29747422 PMCID: PMC5983782 DOI: 10.3390/ijms19051415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
In the cornea, healing of the wounded avascular surface is an intricate process comprising the involvement of epithelial, stromal and neuronal cell interactions. These interactions result to the release of various growth factors that play prominent roles during corneal wound healing response. Bone morphogenetic proteins (BMPs) are unique multi-functional potent growth factors of the transforming growth factor-beta (TGF-β) superfamily. Treatment of corneal epithelial cells with substance P and nerve growth factor resulted to an increase in the expression of BMP7 mRNA. Since BMP7 is known to modulate the process of corneal wound healing, in this present study, we investigated the influence of exogenous rhBMP7 on human corneal epithelial cell and stromal cell (SFs) function. To obtain a high-fidelity expression profiling of activated biomarkers and pathways, transcriptome-wide gene-level expression profiling of epithelial cells in the presence of BMP7 was performed. Gene ontology analysis shows BMP7 stimulation activated TGF-β signaling and cell cycle pathways, whereas biological processes related to cell cycle, microtubule and intermediate filament cytoskeleton organization were significantly impacted in corneal epithelial cells. Scratch wound healing assay showed increased motility and migration of BMP7 treated epithelial cells. BMP7 stimulation studies show activation of MAPK cascade proteins in epithelial cells and SFs. Similarly, a difference in the expression of claudin, Zink finger E-box-binding homeobox 1 was observed along with phosphorylation levels of cofilin in epithelial cells. Stimulation of SFs with BMP7 activated them with increased expression of α-smooth muscle actin. In addition, an elevated phosphorylation of epidermal growth factor receptor following BMP7 stimulation was also observed both in corneal epithelial cells and SFs. Based on our transcriptome analysis data on epithelial cells and the results obtained in SFs, we conclude that BMP7 contributes to epithelial-to-mesenchymal transition-like responses and plays a role equivalent to TGF-β in the course of corneal wound healing.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Ruby Kala Prakasam
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Radovan Murín
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dirk Koczan
- Institute for Immunology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Thomas Stahnke
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute for Anatomy, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Anselm G M Jünemann
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| |
Collapse
|
12
|
Srivastava RK, Bulte JWM, Walczak P, Janowski M. Migratory potential of transplanted glial progenitors as critical factor for successful translation of glia replacement therapy: The gap between mice and men. Glia 2017; 66:907-919. [PMID: 29266673 DOI: 10.1002/glia.23275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Neurological disorders are a major threat to public health. Stem cell-based regenerative medicine is now a promising experimental paradigm for its treatment, as shown in pre-clinical animal studies. Initial attempts have been on the replacement of neuronal cells only, but glial progenitors (GPs) are now becoming strong alternative cellular therapeutic candidates to replace oligodendrocytes and astrocytes as knowledge accumulates about their important emerging role in various disease processes. There are many examples of successful therapeutic outcomes for transplanted GPs in small animal models, but clinical translation has proved to be challenging due to the 1,000-fold larger volume of the human brain compared to mice. Human GPs transplanted into the mouse brain migrate extensively and can induce global cell replacement, but a similar extent of migration in the human brain would only allow for local rather than global cell replacement. We review here the mechanisms that govern cell migration, which could potentially be exploited to enhance the migratory properties of GPs through cell engineering pre-transplantation. We furthermore discuss the (dis)advantages of the various cell delivery routes that are available, with particular emphasis on intra-arterial injection as the most suitable route for achieving global cell distribution in the larger brain. Now that therapeutic success has proven to be feasible in small animal models, future efforts will need to be directed to enhance global cell delivery and migration to make bench-to-bedside translation a reality.
Collapse
Affiliation(s)
- Rohit K Srivastava
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff W M Bulte
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Piotr Walczak
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of NeuroRepair, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Minuth WW. Concepts for a therapeutic prolongation of nephrogenesis in preterm and low-birth-weight babies must correspond to structural-functional properties in the nephrogenic zone. Mol Cell Pediatr 2017; 4:12. [PMID: 29218481 PMCID: PMC5721096 DOI: 10.1186/s40348-017-0078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Numerous investigations are dealing with anlage of the mammalian kidney and primary development of nephrons. However, only few information is available about the last steps in kidney development leading at birth to a downregulation of morphogen activity in the nephrogenic zone and to a loss of stem cell niches aligned beyond the organ capsule. Surprisingly, these natural changes in the developmental program display similarities to processes occurring in the kidneys of preterm and low-birth-weight babies. Although those babies are born at a time with a principally intact nephrogenic zone and active niches, a high proportion of them suffers on impairment of nephrogenesis resulting in oligonephropathy, formation of atypical glomeruli, and immaturity of parenchyma. The setting points out that up to date not identified noxae in the nephrogenic zone hamper primary steps of parenchyma development. In this situation, a possible therapeutic aim is to prolong nephrogenesis by medications. However, actual data provide information that administration of drugs is problematic due to an unexpectedly complex microanatomy of the nephrogenic zone, in niches so far not considered textured extracellular matrix and peculiar contacts between mesenchymal cell projections and epithelial stem cells via tunneling nanotubes. Thus, it remains to be figured out whether disturbance of morphogen signaling altered synthesis of extracellular matrix, disturbed cell-to-cell contacts, or modified interstitial fluid impair nephrogenic activity. Due to most unanswered questions, search for eligible drugs prolonging nephrogenesis and their reliable administration is a special challenge for the future.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
14
|
Okello DO, Iyyanar PPR, Kulyk WM, Smith TM, Lozanoff S, Ji S, Nazarali AJ. Six2 Plays an Intrinsic Role in Regulating Proliferation of Mesenchymal Cells in the Developing Palate. Front Physiol 2017; 8:955. [PMID: 29218017 PMCID: PMC5704498 DOI: 10.3389/fphys.2017.00955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/09/2017] [Indexed: 02/04/2023] Open
Abstract
Cleft palate is a common congenital abnormality that results from defective secondary palate (SP) formation. The Sine oculis-related homeobox 2 (Six2) gene has been linked to abnormalities of craniofacial and kidney development. Our current study examined, for the first time, the specific role of Six2 in embryonic mouse SP development. Six2 mRNA and protein expression were identified in the palatal shelves from embryonic days (E)12.5 to E15.5, with peak levels during early stages of palatal shelf outgrowth. Immunohistochemical staining (IHC) showed that Six2 protein is abundant throughout the mesenchyme in the oral half of each palatal shelf, whereas there is a pronounced decline in Six2 expression by mesenchyme cells in the nasal half of the palatal shelf by stages E14.5-15.5. An opposite pattern was observed in the surface epithelium of the palatal shelf. Six2 expression was prominent at all stages in the epithelial cell layer located on the nasal side of each palatal shelf but absent from the epithelium located on the oral side of the palatal shelf. Six2 is a putative downstream target of transcription factor Hoxa2 and we previously demonstrated that Hoxa2 plays an intrinsic role in embryonic palate formation. We therefore investigated whether Six2 expression was altered in the developing SP of Hoxa2 null mice. Reverse transcriptase PCR and Western blot analyses revealed that Six2 mRNA and protein levels were upregulated in Hoxa2-/- palatal shelves at stages E12.5-14.5. Moreover, the domain of Six2 protein expression in the palatal mesenchyme of Hoxa2-/- embryos was expanded to include the entire nasal half of the palatal shelf in addition to the oral half. The palatal shelves of Hoxa2-/- embryos displayed a higher density of proliferating, Ki-67 positive palatal mesenchyme cells, as well as a higher density of Six2/Ki-67 double-positive cells. Furthermore, Hoxa2-/- palatal mesenchyme cells in culture displayed both increased proliferation and elevated Cyclin D1 expression relative to wild-type cultures. Conversely, siRNA-mediated Six2 knockdown restored proliferation and Cyclin D1 expression in Hoxa2-/- palatal mesenchyme cultures to near wild-type levels. Our findings demonstrate that Six2 functions downstream of Hoxa2 as a positive regulator of mesenchymal cell proliferation during SP development.
Collapse
Affiliation(s)
- Dennis O Okello
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul P R Iyyanar
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - William M Kulyk
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tara M Smith
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.,Med-life Discoveries LP, Saskatoon, SK, Canada
| | - Scott Lozanoff
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Shaoping Ji
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, China
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Minuth W. Reading First Coordinates from the Nephrogenic Zone in Human Fetal Kidney. Nephron Clin Pract 2017; 138:137-146. [DOI: 10.1159/000481441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/11/2017] [Indexed: 01/15/2023] Open
|
16
|
Zakharevich M, Kattan JM, Chen JL, Lin BR, Cervantes AE, Chung DD, Frausto RF, Aldave AJ. Elucidating the molecular basis of PPCD: Effects of decreased ZEB1 expression on corneal endothelial cell function. Mol Vis 2017; 23:740-752. [PMID: 29046608 PMCID: PMC5644665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/12/2017] [Indexed: 11/01/2022] Open
Abstract
PURPOSE To investigate the functional role that the zinc e-box binding homeobox 1 (ZEB1) gene, which underlies the genetic basis of posterior polymorphous corneal dystrophy 3 (PPCD3), plays in corneal endothelial cell proliferation, apoptosis, migration, and barrier function. METHODS A human corneal endothelial cell line (HCEnC-21T) was transfected with siRNA targeting ZEB1 mRNA. Cell proliferation, apoptosis, migration, and barrier assays were performed: Cell proliferation was assessed with cell counting using a hemocytometer; cell apoptosis, induced by either ultraviolet C (UVC) radiation or doxorubicin treatment, was quantified by measuring cleaved caspase 3 (cCASP3) protein levels; and cell migration and barrier function were monitored with electric cell-substrate impedance sensing (ECIS). RESULTS ZEB1 knockdown in HCEnC-21T cells transfected with siRNA targeting ZEB1 did not result in a significant difference in cell proliferation when compared with control. Although knockdown of ZEB1 in HCEnC-21T cells sensitized the cells to UV-induced apoptosis, ZEB1 knockdown did not alter the cells' susceptibility to doxorubicin-induced apoptosis, as measured with cCASP3 protein levels, compared with controls. Similarly, no difference was observed in cell migration following ZEB1 knockdown. However, cell barrier function increased significantly following ZEB1 knockdown. CONCLUSIONS The corneal endothelium in PPCD3 is characterized by morphologic, anatomic, and molecular features that are more consistent with an epithelial-like rather than an endothelial-like phenotype. Although these characteristics have been well documented, we demonstrate for the first time that susceptibility to UV-induced apoptosis and cell barrier function are significantly altered in the setting of reduced ZEB1. The significance of an altered cellular response to apoptotic stimuli and increased cell barrier function in the pathobiology of PPCD remains to be fully elucidated.
Collapse
|
17
|
Li G, Luo W, Abdalla BA, Ouyang H, Yu J, Hu F, Nie Q, Zhang X. miRNA-223 upregulated by MYOD inhibits myoblast proliferation by repressing IGF2 and facilitates myoblast differentiation by inhibiting ZEB1. Cell Death Dis 2017; 8:e3094. [PMID: 28981085 PMCID: PMC5682648 DOI: 10.1038/cddis.2017.479] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022]
Abstract
Skeletal muscle differentiation can be regulated by various transcription factors and non-coding RNAs. In our previous work, miR-223 is differentially expressed in the skeletal muscle of chicken with different growth rates, but its role, expression and action mechanism in muscle development still remains unknown. Here, we found that MYOD transcription factor can upregulate miR-223 expression by binding to an E-box region of the gga-miR-223 gene promoter during avian myoblast differentiation. IGF2 and ZEB1 are two target genes of miR-223. The target inhibition of miR-223 on IGF2 and ZEB1 are dynamic from proliferation to differentiation of myoblast. miR-223 inhibits IGF2 expression only in the proliferating myoblast, whereas it inhibits ZEB1 mainly in the differentiating myoblast. The inhibition of IGF2 by miR-223 resulted in the repression of myoblast proliferation. During myoblast differentiation, miR-223 would be upregulated owing to the promoting effect of MYOD, and the upregulation of miR-223 would inhibit ZEB1 to promote myoblast differentiation. These results not only demonstrated that the well-known muscle determination factor MYOD can promote myoblast differentiation by upregulate miR-223 transcription, but also identified that miR-223 can influence myoblast proliferation and differentiation by a dynamic manner regulates the expression of its target genes.
Collapse
Affiliation(s)
- Guihuan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Bahareldin A Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Jiao Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Fan Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| |
Collapse
|
18
|
Wu G, Wang J, Chen G, Zhao X. microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1). Am J Transl Res 2017; 9:3599-3610. [PMID: 28861151 PMCID: PMC5575174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Epigenetic gene inactivation by microRNAs (miRNAs) is crucial in malignant transformation, prevention of apoptosis, development of drug resistance, and metastasis. miR-204 dysregulation has been reported in prostate cancer (PC). It is considered to exert tumor suppressor functions and is associated with the development of chemoresistance. However, the detailed mechanisms underlying the role of miR-204 in PC, particularly in chemoresistance, remain to be fully elucidated. In this study, analysis using miRNA microarray showed that miR-204 is downregulated in chemoresistant PC tissues with respect to its expression in chemosensitive PC tissues and benign prostatic hyperplasia tissues. Microarray results were validated via qPCR. The changes in miR-204 expression levels were also observed in vitro. Forced overexpression of miR-204 evidently attenuated docetaxel chemoresistance and promoted apoptosis in PC-3-R cells, whereas miR-204 knockdown effectively reduced docetaxel-induced cell death and inhibited cell apoptosis. Mechanistically, miR-204 directly targets the 3'-untranslated region of zinc-finger E-box-binding homeobox 1 (ZEB1) and inhibits its protein expression via translational repression. Furthermore, suppression of ZEB1 could effectively improve miR-204 deficiency-triggered chemoresistance in PC cells. Our results collectively indicate that miR-204 expression is downregulated in chemoresistant PC tissues and cells and that miR-204/ZEB1 could potentially be used as adjunct therapy for patients with advanced/chemoresistant PC.
Collapse
Affiliation(s)
- Guanlin Wu
- Department of Urology, Qinghai University Affiliated HospitalQinghai 810000, P. R. China
| | - Jian Wang
- Department of Urology, Qinghai University Affiliated HospitalQinghai 810000, P. R. China
| | - Guojun Chen
- Department of Urology, Qinghai University Affiliated HospitalQinghai 810000, P. R. China
| | - Xing Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing 100730, P. R. China
| |
Collapse
|