1
|
Choi GH, Cho SH, An HJ, Park HS, Lee JY, Ko EJ, Oh SH, Kim OJ, Kim NK. Association between PAI-1 Polymorphisms and Ischemic Stroke in a South Korean Case-Control Cohort. Int J Mol Sci 2023; 24:8041. [PMID: 37175749 PMCID: PMC10178745 DOI: 10.3390/ijms24098041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Stroke is the second leading cause of death in the world. Approximately 80% of strokes are ischemic in origin. Many risk factors have been linked to stroke, including an increased level of plasminogen activator inhibitor-1 (PAI-1). PAI-1 levels increase and remain elevated in blood during the acute phase of ischemic stroke, which can impair fibrinolytic activity, leading to coronary artery disease and arterial thrombotic disorders. Here, we present a case-control study of 574 stroke patients and 425 controls seen for routine health examination or treatment for nonspecific dizziness, nonorganic headache, or anxiety for positive family history of stroke at the Bundang Medical Center in South Korea. Polymorphisms in PAI-1 were identified by polymerase chain reaction/restriction fragment length polymorphism analysis using genomic DNA. Specifically, three variations (-675 4G>5G, 10692T>C, and 12068G>A) were linked to a higher overall prevalence of stroke as well as a higher prevalence of certain stroke subtypes. Haplotype analyses also revealed combinations of these variations (-844G>A, -675 4G>5G, 43G>A, 9785A>G, 10692T>C, 11053T>G, and 12068G>A) that were significantly associated with a higher prevalence of ischemic stroke. To the best of our knowledge, this is the first strong evidence that polymorphic sites in PAI-1 promoter and 3'-UTR regions are associated with higher ischemic stroke risk. Furthermore, the PAI-1 genotypes and haplotypes identified here have potential as clinical biomarkers of ischemic stroke and could improve the prognosis and future management of stroke patients.
Collapse
Affiliation(s)
- Gun Ho Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
- College of Medicine, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Republic of Korea
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Seung Hun Oh
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
2
|
Que Y, Yang Y, Zafar H, Wang D. Tetracycline-grafted mPEG-PLGA micelles for bone-targeting and osteoporotic improvement. Front Pharmacol 2022; 13:993095. [PMID: 36188546 PMCID: PMC9515468 DOI: 10.3389/fphar.2022.993095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Aim: We aimed to create a nano drug delivery system with tetracycline (TC)-grafted methoxy poly-(ethylene-glycol)‒poly-(D, L-lactic-co-glycolic acid) (mPEG‒PLGA) micelles (TC‒mPEG‒PLGA) with TC and mPEG‒PLGA for potential bone targeting. Prospectively, TC‒mPEG‒PLGA aims to deliver bioactive compounds, such as astragaloside IV (AS), for osteoporotic therapy. Methods: Preparation and evaluation of TC‒mPEG‒PLGA were accomplished via nano-properties, cytotoxicity, uptake by MC3T3-E1 cells, ability of hydroxyapatite targeting and potential bone targeting in vivo, as well as pharmacodynamics in a rat model. Results: The measured particle size of AS-loaded TC‒mPEG‒PLGA micelles was an average of 52.16 ± 2.44 nm, which exhibited a sustained release effect compared to that by free AS. The TC‒mPEG‒PLGA demonstrated low cytotoxicity and was easily taken by MC3T3-E1 cells. Through assaying of bone targeting in vitro and in vivo, we observed that TC‒mPEG‒PLGA could effectively increase AS accumulation in bone. A pharmacodynamics study in mice suggested potentially increased bone mineral density by AS-loaded TC‒mPEG‒PLGA in ovariectomized rats compared to that by free AS. Conclusion: The nano drug delivery system (TC‒mPEG‒PLGA) could target bone in vitro and in vivo, wherein it may be used as a novel delivery method for the enhancement of therapeutic effects of drugs with osteoporotic activity.
Collapse
Affiliation(s)
- Yunduan Que
- Department of Orthopedics, Nanjing Gaochun People’s Hospital, Gaochun Economic Development Zone, Nanjing, China
| | - Yuhang Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hajra Zafar, ; Dongming Wang,
| | - Dongming Wang
- Department of Orthopedics, Nanjing Gaochun People’s Hospital, Gaochun Economic Development Zone, Nanjing, China
- *Correspondence: Hajra Zafar, ; Dongming Wang,
| |
Collapse
|
3
|
Xiong Y, He Y, Peng Y, Geng Y. Association of IL-6 and TGF-β Gene Polymorphisms with the Risk of Thoracolumbar Osteoporotic Vertebral Compression Fractures. Pharmgenomics Pers Med 2022; 15:351-358. [PMID: 35469148 PMCID: PMC9034889 DOI: 10.2147/pgpm.s351372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
Purpose Osteoporotic vertebral compression fracture (OVCF) is a common disease in the elderly, and genetic factors play a key role in its occurrence. The present study was conducted to investigate the association between interleukin-6 (IL-6) and the transforming growth factor (TGF-β) gene polymorphisms and the occurrence of thoracolumbar OVCF. Patients and Methods This case–control study recruited 146 patients with OVCF and 144 osteoporosis patients as the control group. Genotypes of the IL-6 rs1800796 and TGF-β rs1982073 were analyzed by sequencing. Genotype distribution and allelic frequencies were investigated by the χ2 test. Odds ratios (OR) and 95% confidence intervals (CI) evaluated the relationship of IL-6 or TGF-β polymorphism and OVCF susceptibility. Results Allele G and genotype GG of IL-6 rs1800796 was more frequent in patients with OVCF (40.07% vs.28.47%; 19.18% vs.7.64%) compared with controls. GG genotype (OR=3.394, 95% CI=1.560–7.385, P < 0.001) and G allele (OR=1.680, 95% CI=1.187–2.376, P < 0.001) of IL-6 rs1800796 was significantly associated with increased risk of OVCF. What is more, CT and TT genotypes (41.78 vs.51.39; 19.86 vs.26.39) and allele T (40.75 vs 52.08) of TGF-β rs1982073 were less frequent in OVCFs, more common in controls and protective against OVCF risk (OR=0.436, 95% CI=0.228–0.835, P = 0.012; OR=0.615, 95% CI=0.443–0.855, P = 0.004). Conclusion Our results suggest that the G allele and GG genotype of IL-6 rs1800796 may contribute to increased susceptibility to OVCF in elderly Chinese. In contrast, CT and TT genotypes and the T allele of TGF-β rs1982073 may contribute to lower susceptibility of OVCF.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Orthopaedic, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, People’s Republic of China
| | - Ye He
- Department of Preventive Treatment of Diseases,Shaanxi Meixian Hospital of Traditional Chinese Medicine, Shaanxi, People’s Republic of China
| | - Yan Peng
- Department of Medical Examination, Yili Kazak Autonomous Prefecture Hospital of Traditional Chinese Medicine, Xinjiang, People’s Republic of China
| | - Yun Geng
- Department of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, People’s Republic of China
- Correspondence: Yun Geng, Tel/Fax +86-531-59556066, Email
| |
Collapse
|
4
|
Making Sense of the Highly Variable Effects of Alcohol on Bone. Clin Rev Bone Miner Metab 2021. [DOI: 10.1007/s12018-021-09277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
The Synergistic Effect of Plasminogen Activator Inhibitor-1 (PAI-1) Polymorphisms and Metabolic Syndrome on Coronary Artery Disease in the Korean Population. J Pers Med 2020; 10:jpm10040257. [PMID: 33260749 PMCID: PMC7711432 DOI: 10.3390/jpm10040257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/24/2023] Open
Abstract
The most common type of cardiovascular disease is coronary artery disease (CAD), in which a plaque builds up inside the coronary arteries that can lead to a complete blockage of blood flow to the heart, resulting in a heart attack. The CAD may be affected by various factors including age, gender, and lipoprotein disposition as well as genetic factors and metabolic syndrome. In this study, we investigated whether three PAI-1 polymorphisms (−844 G > A, −675 4G > 5G, and +43 G > A) and CAD-related clinical parameters are associated with CAD susceptibility. Genotyping of 463 CAD patients and 401 controls was performed using polymerase chain reaction restriction fragment length polymorphism analysis. We report that the 4G5G genotype (crude odds ratio(COR), 1.392; 95% confidence interval (CI), 1.036–1.871; p = 0.028) and dominant model (4G4G vs. 4G5G + 5G5G; COR, 1.401; 95% CI, 1.060–1.850; p = 0.018; adjust odds ratio, 1.371; 95% CI, 1.027–1.831; p = 0.032) of PAI-1 −675 polymorphisms were associated with increased CAD risk. Haplotype and genotype combinations of PAI-1 −675 and +43 polymorphisms show an increased risk of CAD according to alterations of the −675 polymorphism allele or genotype. Moreover, the PAI-1 -675 polymorphisms show a synergistic effect with the metabolic syndrome component of CAD risk. This study suggests that polymorphisms in the PAI-1 genes along with the metabolic syndrome component of CAD can be useful biomarkers for CAD diagnosis and treatment.
Collapse
|
6
|
Wang S, Wang H, Niu L. Clinical efficacy of PVP and PKP in the treatment of OVCFs after bilateral resection of ovarian cancer. Oncol Lett 2018; 16:151-156. [PMID: 29928396 PMCID: PMC6006388 DOI: 10.3892/ol.2018.8658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
The clinical efficacy of percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures after bilateral resection of ovarian cancer was investigated. Eighty-six patients with osteoporotic vertebral compression fractures after bilateral resection of ovarian cancer admitted to the Second People's Hospital of Hefei from September, 2015 to August, 2016 were selected and randomly divided into control group (n=43) and observation group (n=43). The control group was treated with PVP, while the observation group received PKP. The operation time, fluoroscopy times, bone cement volume and leakage rate of patients in the two groups were recorded; the postoperative pain of patients was compared using Short-form McGill Pain Questionnaire; the changes in height of injured vertebra and Cobb angle of patients in two groups were compared; the efficacy of patients in the two groups was compared in accordance with Oswestry dysfunction index (ODI) and Japanese Orthopedic Association (JOA) low back pain scoring; and the quality of life was compared. The fluoroscopy times and bone cement leakage were significantly less in observation group than those in control group (P<0.05). After operation, the scores of ODI, MPQ and JOA in the two groups were significantly improved (P<0.05). The postoperative height of injured vertebra and the Cobb angle of patients in two groups were significantly different than those before the operation (P<0.05). The quality of life of patients in the observation group was higher than that in the control group one year after operation (P<0.05). In conclusion, PKP and PVP are effective in the treatment of osteoporotic vertebral compression fractures after bilateral resection of ovarian cancer; however, PKP is more conducive to lumbar stability and maintenance of intervertebral height thus greatly correcting the kyphosis, which is beneficial to improving the quality of life of patients.
Collapse
Affiliation(s)
- Shaoqian Wang
- Department of Micro-Orthopaedics, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Hui Wang
- Department of Micro-Orthopaedics, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Lei Niu
- Department of Micro-Orthopaedics, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| |
Collapse
|
7
|
Wan A, Liu D. Role of plasminogen activator inhibitor-1 gene polymorphisms in osteoporosis: A study in Chinese post-menopausal women. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218767292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a chronic multifactorial disease characterized by deterioration of bone mass and is vulnerable to bone fracture. Plasminogen activator inhibitor-1 (PAI-1) is an important molecule for maintenance of optimum bone mass. Several single-nucleotide polymorphisms (SNPs) in PAI-1 have been reported to alter PAI-1 expression and/or the translational level. In this report, we explored the possible role of common PAI-1 gene polymorphisms on predisposition to osteoporosis in a Chinese cohort. A total of 364 post-menopausal Chinese women diagnosed of having osteoporosis and 350 healthy females hailing from similar areas were enrolled in this study. Five common SNPs (−844G > A, −6754G/5G, +43G > A, +9785G > A and +11053T > G) were genotyped by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP). Relative expression of PAI-1 mRNA and plasma PAI-1 levels were quantified by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Prevalence of homozygous mutant (5G/5G) and minor allele (5G) of PAI-1 (−675 4G/5G) polymorphism was significantly more frequent in patients than in healthy controls (5G/5G: P < 0.0001, odds ratio (OR) = 3.18; 5G: P < 0.0001, OR = 1.65). Both plasma PAI-1 and relative mRNA expression levels were significantly lower in patients compared to healthy controls. Interestingly, the quantity of plasma PAI-1 and mRNA expression was correlated with PAI-1 (−675 4G/5G) polymorphism: subjects with 4G/4G genotype had elevated PAI-1 in comparison to homozygous mutant, and displayed lower quantity of PAI-1 protein and mRNA values. PAI-1 (−675 4G/5G) mutant is associated with susceptibility to development of osteoporosis in post-menopausal Chinese women. Furthermore, this variant in the promoter region alters plasma protein levels and relative expression of PAI-1.
Collapse
Affiliation(s)
- An Wan
- Department of Orthopaedic, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical College of Yangtze University, Jingzhou, China
| | - Daodong Liu
- Department of Orthopaedic, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical College of Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
3'-UTR Polymorphisms of MTHFR and TS Associated with Osteoporotic Vertebral Compression Fracture Susceptibility in Postmenopausal Women. Int J Mol Sci 2018. [PMID: 29534533 PMCID: PMC5877685 DOI: 10.3390/ijms19030824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postmenopausal osteoporosis is one of the most prominent diseases in postmenopausal women and it is increasing in prevalence with the aging population. Furthermore, osteoporosis and osteoporotic vertebral compression fractures (OVCFs) are related to mortality and decreased quality of life. Therefore, searching for biomarkers that are able to identify postmenopausal women who are at high risk of developing OVCFs is an effective strategy for improving the quality of life of patients and alleviating social and economic burdens. In this study, we investigated methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) gene polymorphisms in postmenopausal women with OVCF. We recruited 301 postmenopausal women and performed genotyping for the presence of MTHFR 2572C>A, 4869C>G and TS 1100C>T, 1170A>G. Genotyping was analyzed using the polymerization chain reaction restriction fragment length polymorphism assay. MTHFR 2572C>A and TS 1100C>T were associated with the prevalence of osteoporosis (MTHFR 2572CC versus CA+AA: odd ratio [OR] adjusted age, hypertention [HTN], and diabetes mellitus [DM] = 0.49, p = 0.012) and the occurrence of OVCFs (MTHFR 2572CC versus CA+AA: OR adjusted age, HTN, and DM = 0.38, p = 0.013; TS 1100CC versus CT+TT: OR adjusted age, HTN, and DM = 0.46, p = 0.02). Our novel finding is the identification of MTHFR and TS genetic variants that decrease susceptibility to OVCFs. Our findings suggest that polymorphisms in the MTHFR and TS genes are associated with susceptibility to osteoporosis and OVCFs in postmenopausal women.
Collapse
|
9
|
Jin G, Aobulikasimu A, Piao J, Aibibula Z, Koga D, Sato S, Ochi H, Tsuji K, Nakabayashi T, Miyata T, Okawa A, Asou Y. A small-molecule PAI-1 inhibitor prevents bone loss by stimulating bone formation in a murine estrogen deficiency-induced osteoporosis model. FEBS Open Bio 2018; 8:523-532. [PMID: 29632806 PMCID: PMC5881535 DOI: 10.1002/2211-5463.12390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a progressive bone disease caused by an imbalance between bone resorption and formation. Recently, plasminogen activator inhibitor-1 (PAI-1) was shown to play an important role in bone metabolism using PAI-1-deficient mice. In this study, we evaluated the therapeutic benefits of novel, orally available small-molecule PAI-1 inhibitor (iPAI-1) in an estrogen deficiency-induced osteoporosis model. Eight-week-old C57BL/6J female mice were divided into three groups: a sham + vehicle (Sham), ovariectomy + vehicle (OVX + v), and OVX + iPAI-1 (OVX + i) group. iPAI-1 was administered orally each day for 6 weeks starting the day after the operation. Six weeks of iPAI-1 treatment prevented OVX-induced trabecular bone loss in both the femoral bone and lumbar spine. Bone formation activity was significantly higher in the OVX + i group than in the OVX + v and Sham groups. Unexpectedly, OVX-induced osteoclastogenesis was partially, but significantly reduced. Fluorescence-activated cell sorting analyses indicated that the number of bone marrow stromal cells was higher in the OVX + i group than that in the OVX + v group. A colony-forming unit-osteoblast assay indicated enhanced mineralized nodule formation activity in bone marrow cells isolated from iPAI-1-treated animals. Bone marrow ablation analysis indicated that the remodeled trabecular bone volume was significantly higher in the iPAI-1-treated group than that in the control group. In conclusion, our results suggest PAI-1 blockade via a small-molecule inhibitor is a new therapeutic approach for the anabolic treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Guangwen Jin
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan.,Department of Orthopaedic Surgery Yanbian University Hospital Yanji City Jilin Province China
| | | | - Jinying Piao
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| | - Zulipiya Aibibula
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| | - Daisuke Koga
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| | - Shingo Sato
- Department of Physiology and Cell Biology Tokyo Medical and Dental University Japan
| | - Hiroki Ochi
- Department of Physiology and Cell Biology Tokyo Medical and Dental University Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration Tokyo Medical and Dental University Japan
| | - Tetsuo Nakabayashi
- Department of Molecular Medicine and Therapy United Centers for Advanced Research and Translational Medicine Tohoku University Graduate School of Medicine Miyagi Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy United Centers for Advanced Research and Translational Medicine Tohoku University Graduate School of Medicine Miyagi Japan
| | - Atsushi Okawa
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| | - Yoshinori Asou
- Department of Orthopedics Surgery Tokyo Medical and Dental University Japan
| |
Collapse
|