1
|
Cheng X, Jin S, Feng M, Miao Y, Dong Q, He B. The Role of Herbal Medicine in Modulating Bone Homeostasis. Curr Top Med Chem 2024; 24:634-643. [PMID: 38333981 DOI: 10.2174/0115680266286931240201131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Osteoporosis and other bone diseases are a major public health concern worldwide. Current pharmaceutical treatments for bone disorders have limitations, driving interest in complementary herbal medicines that can help maintain bone health. This review summarizes the scientific evidence for medicinal herbs that modulate bone cell activity and improve bone mass, quality and strength. Herbs with osteogenic, anti-osteoporotic, and anti-osteoclastic effects are discussed, including compounds and mechanisms of action. Additionally, this review examines the challenges and future directions for translational research on herbal medicines for osteoporosis and bone health. While preliminary research indicates beneficial bone bioactivities for various herbs, rigorous clinical trials are still needed to verify therapeutic efficacy and safety. Further studies should also elucidate synergistic combinations, bioavailability of active phytochemicals, and precision approaches to match optimal herbs with specific etiologies of bone disease. Advancing evidence- based herbal medicines may provide novel alternatives for promoting bone homeostasis and treating skeletal disorders.
Collapse
Affiliation(s)
- Xinnan Cheng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Shanshan Jin
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| | - Yunfeng Miao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
- Shaanxi, University of Chinese Medicine, Xian Yang, 710000, China
| | - Qi Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710054, China
| |
Collapse
|
2
|
Zhongheng DU, Wenjie C, Kejing T, Qiqi Z, Zhiwei S, Yong C, Su Y, Chunwu Z, Tianshen YE. Electroacupuncture stimulating Zusanli (ST36), Sanyinjiao (SP6) in mice with collagen-induced arthritis leads to adenosine A2A receptor-mediated alteration of p38α mitogen-activated protein kinase signaling and inhibition of osteoclastogenesis. J TRADIT CHIN MED 2023; 43:1103-1109. [PMID: 37946472 PMCID: PMC10623259 DOI: 10.19852/j.cnki.jtcm.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To observe the effect of electroacupuncture (EA) stimulating Zusanli (ST36), Sanyinjiao (SP6) on inhibition of osteoclastogenesis and the role of the adenosine A2A receptor (A2AR) and the p38α Mitogen-Activated Protein Kinase (MAPK) signaling pathway in mediating this effect. METHODS Mice with collagen induced arthritis (CIA) received different treatments. Immunohistochemistry and western blotting were used to determine the levels of multiple signaling molecules in these joints [receptor activator of nuclear transcription factor-κB (NF-κB) ligand (RANKL), receptor activator of NF-κB (RANK), tumor necrosis factor receptor associated factor 6 (TRAF6), p38α, NF-κB, and nuclear factor of activated T cells C1 (NFATc1)]. Osteoclasts were identified using tartrate-resistant acid phosphatase (TRAP) staining. RESULTS The immunohistochemistry results indicated upregulation of p38α, NF-κB, and NFATc1 in the CIA-control and CIA-EA-SCH58261 groups, but reduced levels in the CIA-EA group. Western blotting indicated upregulation of RANKL, RANK, TRAF6, p38α, NF-κB, and NFATc1 in the CIA-control and CIA-EA-SCH58261 groups, but reduced expression in the CIA-EA group. Osteoclasts were more abundant in the CIA-control and CIA-EA-SCH58261 groups than in the CIA-EA group. CONCLUSIONS EA treatment enhanced the A2AR activity and inhibited osteoclast formation by inhibition of RANKL, RANK, TRAF6, p38α, NF-κB, and NFATc1. SCH58261 reversed the effect of EA. These results suggest that EA regulated p38α-MAPK signaling by increasing A2AR activity, which inhibited osteoclastogenesis.
Collapse
Affiliation(s)
- D U Zhongheng
- Department of Acupuncture, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cong Wenjie
- Department of Acupuncture, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Tang Kejing
- Department of Acupuncture, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zheng Qiqi
- Department of Acupuncture, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Song Zhiwei
- Department of Acupuncture, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Yong
- Department of Acupuncture, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yang Su
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhang Chunwu
- Department of Traditional Chinese Orthopedics & Traumatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Y E Tianshen
- Department of Acupuncture, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
3
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Zhang Q, Hu S, Wu J, Sun P, Zhang Q, Wang Y, Zhao Q, Han T, Qin L, Zhang Q. Nystose attenuates bone loss and promotes BMSCs differentiation to osteoblasts through BMP and Wnt/β-catenin pathway in ovariectomized mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Jiao Y, Wang X, Wang Q, Geng Q, Cao X, Zhang M, Zhao L, Deng T, Xu Y, Xiao C. Mechanisms by which kidney-tonifying Chinese herbs inhibit osteoclastogenesis: Emphasis on immune cells. Front Pharmacol 2023; 14:1077796. [PMID: 36814488 PMCID: PMC9939464 DOI: 10.3389/fphar.2023.1077796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a crucial role in regulating osteoclast formation and function and has significance for the occurrence and development of immune-mediated bone diseases. Kidney-tonifying Chinese herbs, based on the theory of traditional Chinese medicine (TCM) to unify the kidney and strengthen the bone, have been widely used in the prevention and treatment of bone diseases. The common botanical drugs are tonifying kidney-yang and nourishing kidney-yin herbs, which are divided into two parts: one is the compound prescription of TCM, and the other is the single preparation of TCM and its active ingredients. These botanical drugs regulate osteoclastogenesis directly and indirectly by immune cells, however, we have limited information on the differences between the two botanical drugs in osteoimmunology. In this review, the mechanism by which kidney-tonifying Chinese herbs inhibiting osteoclastogenesis was investigated, emphasizing the immune response. The differences in the mechanism of action between tonifying kidney-yang herbs and nourishing kidney-yin herbs were analysed, and the therapeutic value for immune-mediated bone diseases was evaluated.
Collapse
Affiliation(s)
- Yi Jiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qishun Geng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| | - Cheng Xiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China,Department of Emergency, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| |
Collapse
|
6
|
Wu Y, Yang Y, Wang L, Chen Y, Han X, Sun L, Chen H, Chen Q. Effect of Bifidobacterium on osteoclasts: TNF-α/NF-κB inflammatory signal pathway-mediated mechanism. Front Endocrinol (Lausanne) 2023; 14:1109296. [PMID: 36967748 PMCID: PMC10034056 DOI: 10.3389/fendo.2023.1109296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Osteoporosis is a systemic multifactorial bone disease characterized by low bone quality and density and bone microstructure damage, increasing bone fragility and fracture vulnerability. Increased osteoclast differentiation and activity are important factors contributing to bone loss, which is a common pathological manifestation of bone diseases such as osteoporosis. TNF-a/NF-κB is an inflammatory signaling pathway with a key regulatory role in regulating osteoclast formation, and the classical pathway RANKL/RANK/OPG assists osteoclast formation. Activation of this inflammatory pathway promotes the formation of osteoclasts and accelerates the process of osteoporosis. Recent studies and emerging evidence have consistently demonstrated the potential of probiotics to modulate bone health. Secretions of Bifidobacterium, a genus of probiotic bacteria in the phylum Actinobacteria, such as short-chain fatty acids, equol, and exopolysaccharides, have indicated beneficial effects on bone health. This review discusses the molecular mechanisms of the TNF-a/NF-κB inflammatory pathway in regulating osteoclast formation and describes the secretions produced by Bifidobacterium and their potential effects on bone health through this pathway, opening up new directions for future research.
Collapse
Affiliation(s)
- Yue Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjiao Yang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Wang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiding Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuke Han
- College of Acupuncture & Tuina, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lisha Sun
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huizhen Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiu Chen,
| |
Collapse
|
7
|
Wu P, Jiao F, Huang H, Liu D, Tang W, Liang J, Chen W. Morinda officinalis polysaccharide enable suppression of osteoclastic differentiation by exosomes derived from rat mesenchymal stem cells. PHARMACEUTICAL BIOLOGY 2022; 60:1303-1316. [PMID: 35801991 PMCID: PMC9272931 DOI: 10.1080/13880209.2022.2093385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Morinda officinalis F.C. How. (MO) (Rubiaceae) can strengthen bone function. OBJECTIVE To examine the functional mechanism and effect of MO polysaccharides (MOPs) in rats with glucocorticoid-induced osteoporosis (GIOP). MATERIALS AND METHODS Rats with GIOP were treated with 5, 15 or 45 mL/kg of MOP [n = 15 for each dose, intraperitoneal (i.p.) injection every other day for 8 weeks]. The body weight of rats and histomorphology of bone tissues were examined. Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (Exo) were collected and identified. Bone marrow-derived macrophages (BMMs) were induced to differentiate into osteoclasts and treated with BMSC-Exo for in vitro studies. RESULTS MOP reduced the body weight (5, 15, or 45 mg/kg MOP vs. phosphate-buffered saline: 8%, 15% and 25%, p < 0.01), elevated the bone volume to tissue volume (BV/TV), mean trabecular thickness (Tb.Th), mean trabecular number (Tb.N) and mean connectivity density (Conn.D) (40-86%, p < 0.01), decreased the mean trabecular separation/spacing (Tb.Sp) (22-37%, p < 0.01), increased the cortical bone continuity (35-90%, p < 0.01) and elevated RUNX family transcription factor 2 and RANK levels (5-12%, p < 0.01), but suppressed matrix metallopeptidase 9 and cathepsin K levels (9-20%, p < 0.01) in femur tissues. BMSC-Exo from MOP-treated rats (MOP-Exo) suppressed osteoclastic differentiation and proliferation of BMMs. The downregulation of microRNA-101-3p (miR-101-3p) or the upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) blocked the functions of MOP-Exo. DISCUSSION AND CONCLUSIONS MOP inhibits osteoclastic differentiation and could potentially be used for osteoporosis management. This suppression may be enhanced by the upregulation of miR-101-3p or the inhibition of PTGS2.
Collapse
Affiliation(s)
- Peiyu Wu
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
- CONTACT Peiyu Wu Wen Chen Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, No. 87, Yingbin Road, Huadu District, Guangzhou510800, Guangdong, PR China
| | - Feng Jiao
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - He Huang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - Donghua Liu
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - Wang Tang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - Jie Liang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
| | - Wen Chen
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, PR China
- CONTACT Peiyu Wu Wen Chen Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, No. 87, Yingbin Road, Huadu District, Guangzhou510800, Guangdong, PR China
| |
Collapse
|
8
|
Yang Y, Cheng R, Liu J, Fang J, Wang X, Cui Y, Zhang P, Du B. Linarin Protects against Cadmium-Induced Osteoporosis Via Reducing Oxidative Stress and Inflammation and Altering RANK/RANKL/OPG Pathway. Biol Trace Elem Res 2022; 200:3688-3700. [PMID: 34674107 DOI: 10.1007/s12011-021-02967-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) contamination in the environment is a major public health concern since it has been linked to osteoporosis and other bone deformities. Linarin is a flavonoid glycoside, and it can promote osteoblastogenesis. This research aimed to investigate the potential role of linarin against Cd-exposed bone deformations in mice model. In our research, male mice were randomly allocated into four groups: control, Cd-exposed, and Cd + linarin (20 and 40mg/kg/bw, respectively). Linarin prevented body weight loss, increased serum calcium (Ca) and phosphorus (P), and bone alkaline phosphatase (BAP) levels in Cd-exposed groups. Furthermore, linarin treatment at 20 and 40mg/kg/bw significantly decreased RANK and OPG, resulting in an increase in RANKL mRNA levels and protein distribution in the bone of Cd-exposed mice. In addition, the bone of Cd-exposed mice administered with linarin showed higher TRAP, NFATc1, MMP9, and RUNX2 mRNA levels and protein distribution. Linarin significantly decreased oxidative stress in Cd-exposed mice bone by decreasing MDA, a lipid peroxidation product. Moreover, linarin protects Cd-exposed mice antioxidant enzymes by increasing bone SOD, CAT, and GPx levels. Besides, linarin suppresses alterations in the inflammatory system, i.e., NF-κB p65/IKKβ, by reducing NF-κB p65, IKKβ, IL-6, and TNF-α in the bone of Cd-exposed animals. This study concluded that linarin has potential to cure osteoporosis in Cd-exposed mice by reducing oxidative stress and inflammation and modulating the RANK/RANKL/OPG pathway.
Collapse
Affiliation(s)
- Yating Yang
- Xi'an Jiao Tong University, Xi'an, Shaanxi, 710049, China
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Ruining Cheng
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Jingyun Liu
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Jing Fang
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Xiaojing Wang
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Yingxue Cui
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Pan Zhang
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Bin Du
- Xi'an Jiao Tong University, Xi'an, Shaanxi, 710049, China.
- Department of Orthopaedics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
9
|
Zhao Z, Nian M, Lv H, Yue J, Qiao H, Yang X, Zheng X. Advances in Anti-Osteoporosis Polysaccharides Derived from Medicinal Herbs and Other Edible Substances. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:441-470. [PMID: 35021963 DOI: 10.1142/s0192415x22500173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Osteoporosis is a common metabolic bone disease, and treatment is required for the prevention of low bone mass, deterioration of microstructural bone tissue, and fragility fractures. Osteoporosis therapy includes calcium, vitamin D, and drugs with antiresorptive or anabolic action on the bone. Therapy for osteoporosis does not include taking non-steroidal anti-inflammatory drugs (NSAID), but pain associated with osteoporotic fractures can be treated by taking non-steroidal anti-inflammatory drugs (NSAID). Recently, polysaccharides extracted from medicinal herbs and edible substances (PsMHES) have attracted attention on account of their safety and promising anti-osteoporosis effects, whereas a systematic review about their potential in anti-osteoporosis is vacant to date. Herein, we reviewed the recent progress of PsMHES with anti-osteoporosis activities, looking to introduce the advances in the various pharmacological mechanisms and targets involved in the anti-osteoporosis effects, extraction methods, main mechanism involved in Wnt/[Formula: see text]-catenin pathways and RANKL (Receptor Activator for NF[Formula: see text]B ligand or TNFSF25) pathways, and Structure-Activity Relationships (SAR) analysis of PsMHES. Typical herbs likeAchyranthes bidentate and Morinda officinalis used for the treatment of osteoporosis are introduced; their traditional uses in traditional Chinese medicine (TCM) are discussed in this paper as well. This review will help to the recognition of the value of PsMHES in anti-osteoporosis and provide guidance for the research and development of new anti-osteoporosis agents in clinic.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Meng Nian
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Hong Lv
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Haifa Qiao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Xiaohang Yang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, P. R. China
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province Northwest University, 229 Taibai Road, Xi'an 710069, P. R. China
| |
Collapse
|
10
|
Sun H, Cai Y, Shen J, Ma E, Zhao Z, Yang D, Yang X, Xu X. Chemical Fingerprint Analysis and Quantitative Analysis of Saccharides in Morindae Officinalis Radix by HPLC-ELSD. Molecules 2021; 26:7242. [PMID: 34885827 PMCID: PMC8659033 DOI: 10.3390/molecules26237242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 01/06/2023] Open
Abstract
A method based on high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for the quantitative analysis of three active compounds and chemical fingerprint analyses of saccharides in Morindae officinalis radix. Ten batches of Morindae officinalis radix were collected from different plantations in the Guangdong region of China and used to establish the fingerprint. The samples were separated with a COSMOIL Sugar-D column (4.6 mm × 250 mm, 5 μm) by using gradient elution with water (A) and acetonitrile (B). In addition, Trapped-Ion-Mobility (tims) Time-Of-Flight (tims TOF) was used to identify saccharides of Morindae officinalis radix. Fingerprint chromatogram presented 26 common characteristic peaks in the roots of Morinda officinalis How, and the similarities were more than 0.926. In quantitative analysis, the three compounds showed good regression (r = 0.9995-0.9998) within the test ranges, and the recoveries of the method were in the range of 96.7-101.7%. The contents of sucrose, kestose and nystose in all samples were determined as 1.21-7.92%, 1.02-3.37%, and 2.38-6.55%, respectively. The developed HPLC fingerprint method is reliable and was validated for the quality control and identification of Morindae officinalis radix and can be successfully used to assess the quality of Morindae officinalis radix.
Collapse
Affiliation(s)
- Hongmei Sun
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
- Infinitus (China) Co., Ltd., Jiangmen 529100, China
| | - Yini Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.C.); (J.S.); (Z.Z.); (D.Y.)
| | - Jie Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.C.); (J.S.); (Z.Z.); (D.Y.)
| | - Enyao Ma
- Guangzhou Caizhilin Pharmaceutical Co., Ltd., Guangzhou 510360, China;
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.C.); (J.S.); (Z.Z.); (D.Y.)
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.C.); (J.S.); (Z.Z.); (D.Y.)
| | - Xiuwei Yang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
| | - Xinjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.C.); (J.S.); (Z.Z.); (D.Y.)
| |
Collapse
|
11
|
Lyu YH, Lin CY, Xie SH, Li T, Liu Q, Ling W, Lu YQ, Cao SM, Lin AH. Association Between Traditional Herbal Diet and Nasopharyngeal Carcinoma Risk: A Prospective Cohort Study in Southern China. Front Oncol 2021; 11:715242. [PMID: 34745941 PMCID: PMC8566915 DOI: 10.3389/fonc.2021.715242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Prospective evidence for herbal diet and nasopharyngeal carcinoma (NPC) development is absent. We therefore evaluated the associations of herbal soup and herbal tea with NPC in a prospective cohort study in southern China. Methods Based on an NPC screening cohort established in 2008-2015, information on herbal diet consumption, potential confounding factors, and Epstein-Barr virus (EBV) antibody levels were collected from 10,179 individuals aged 30-69 years in Sihui city, southern China. Cox regression models were performed to examine herbal diet with NPC risk, and logistic regression models were used to examine herbal diet with EBV reactivation. Results During a median of 7.54 years of follow-up, 69 participants developed NPC. Herbal soup consumption was associated with decreased NPC risk, with HRs of 0.31 (95% confidence interval (CI): 0.15-0.62) for the highest intake frequency and 0.29 (95% CI: 0.16-0.51) for a longer duration. However, herbal tea was not significantly associated. Moreover, we identified herbal soup was inversely associated with EBV seropositivity among all the participants at baseline, with the adjusted ORs being 0.78 (95% CI: 0.65-0.93) for immunoglobulin A antibodies against EBV capsid antigens (VCA-IgA) and 0.76 (95% CI: 0.64-0.91) for nuclear antigen 1 (EBNA1-IgA) in those with the highest frequency and 0.70 (95% CI: 0.59-0.84) for VCA-IgA and 0.64 (95% CI: 0.54-0.77) for EBNA1-IgA in those with the longer duration. Inverse associations were also observed in non-NPC individuals. Conclusions With inhibition of EBV reactivation by plants, herbal soup could significantly decrease the risk of NPC in endemic areas.
Collapse
Affiliation(s)
- Yun-Hong Lyu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Chu-Yang Lin
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shang-Hang Xie
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tong Li
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qing Liu
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei Ling
- Sihui Cancer Institute, Sihui, China
| | | | - Su-Mei Cao
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ai-Hua Lin
- School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
12
|
Analysis of Molecular Mechanism of Erxian Decoction in Treating Osteoporosis Based on Formula Optimization Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6641838. [PMID: 34239693 PMCID: PMC8238601 DOI: 10.1155/2021/6641838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Osteoporosis (OP) is a highly prevalent orthopedic condition in postmenopausal women and the elderly. Currently, OP treatments mainly include bisphosphonates, receptor activator of nuclear factor kappa-B ligand (RANKL) antibody therapy, selective estrogen receptor modulators, teriparatide (PTH1-34), and menopausal hormone therapy. However, increasing evidence has indicated these treatments may exert serious side effects. In recent years, Traditional Chinese Medicine (TCM) has become popular for treating orthopedic disorders. Erxian Decoction (EXD) is widely used for the clinical treatment of OP, but its underlying molecular mechanisms are unclear thanks to its multiple components and multiple target features. In this research, we designed a network pharmacology method, which used a novel node importance calculation model to identify critical response networks (CRNs) and effective proteins. Based on these proteins, a target coverage contribution (TCC) model was designed to infer a core active component group (CACG). This approach decoded the mechanisms underpinning EXD's role in OP therapy. Our data indicated that the drug response network mediated by the CACG effectively retained information of the component-target (C-T) network of pathogenic genes. Functional pathway enrichment analysis showed that EXD exerted therapeutic effects toward OP by targeting PI3K-Akt signaling (hsa04151), calcium signaling (hsa04020), apoptosis (hsa04210), estrogen signaling (hsa04915), and osteoclast differentiation (hsa04380) via JNK, AKT, and ERK. Our method furnishes a feasible methodological strategy for formula optimization and mechanism analysis and also supplies a reference scheme for the secondary development of the TCM formula.
Collapse
|
13
|
Li X, Jin L, Tan Y. Different roles of matrix metalloproteinase 2 in osteolysis of skeletal dysplasia and bone metastasis (Review). Mol Med Rep 2020; 23:70. [PMID: 33236155 PMCID: PMC7716421 DOI: 10.3892/mmr.2020.11708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023] Open
Abstract
Matrix metalloproteinase 2 (MMP2) is a well-characterized protein that is indispensable for extracellular matrix remodeling and other pathological processes, such as tumor progression and skeletal dysplasia. Excessive activation of MMP2 promotes osteolytic metastasis and bone destruction in late-stage cancers, while its loss-of-function mutations result in the decreased bone mineralization and generalized osteolysis occurring progressively in skeletal developmental disorders, particularly in multicentric osteolysis, nodulosis and arthropathy (MONA). Either upregulation or downregulation of MMP2 activity can result in the same osteolytic effects. Thus, different functions of MMP2 have been recently identified that could explain this observation. While MMP2 can degrade bone matrix, facilitate osteoclastogenesis and amplify various signaling pathways that enhance osteolysis in bone metastasis, its role in maintaining the number of bone cells, supporting osteocytic canalicular network formation and suppressing leptin-mediated inhibition of bone formation has been implicated in osteolytic disorders caused by MMP2 deficiency. Furthermore, the proangiogenic activity of MMP2 is one of the potential mechanisms that are associated with both pathological situations. In the present article, the latest research on MMP2 in bone homeostasis is reviewed and the mechanisms underlying the role of this protein in skeletal metastasis and developmental osteolysis are discussed.
Collapse
Affiliation(s)
- Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Libin Jin
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanbin Tan
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
14
|
Zhang D, Zhang S, Jiang K, Li T, Yan C. Bioassay-guided isolation and evaluation of anti-osteoporotic polysaccharides from Morinda officinalis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113113. [PMID: 32668320 DOI: 10.1016/j.jep.2020.113113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 11/11/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morinda officinalis is a well-known Chinese tonic herb that has shown clinical efficacy in the treatment of bone disease. However, its anti-osteoporotic potential and the M. officinalis polysaccharides (MOPs) responsible for activity require further investigation. AIM OF THE STUDY This study aimed to investigate the anti-osteoporotic effects of different MOP fractions in ovariectomized (OVX) rats, and to identify the osteoprotective components by bioassay-guided isolation. MATERIALS AND METHODS MOPs were prepared by hot water and alkali extraction, separated into three fractions (MO50, MO70, and MOB) and evaluated in the classic OVX rat model and in MC3T3-E1 cells for anti-osteoporotic activity. RESULTS Administration of MOPs (400 mg/kg/day) provided significant protection against ovariectomy-induced bone loss and biomechanical dysfunction in rats. Treated animals exhibited reduced deterioration of trabecular microarchitecture and lower levels of bone turnover markers. Bioactivity-guided fractionation led to the isolation of two inulin-type fructans from MO50, MOW50-1 and MOP50-2, with potential anti-osteoporotic activities. These consisted of (2 → 1)-linked β-D-fructosyl residues with degrees of polymerization (DP) of 7 and 13, respectively. Furthermore, MOW50-1 promoted osteogenic differentiation of MC3T3-E1 cells by increasing alkaline phosphatase activity. CONCLUSIONS These data suggest very strongly that MOPs, especially MO50 and MOW50-1, may play important roles in the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Osteoporosis, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, China
| | - Shaojie Zhang
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Keming Jiang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Tianyu Li
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Chunyan Yan
- Center for Clinical Precision Medication, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Neuroprotective Effects of OMO within the Hippocampus and Cortex in a D-Galactose and A β 25-35-Induced Rat Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1067541. [PMID: 33101436 PMCID: PMC7569426 DOI: 10.1155/2020/1067541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/30/2020] [Accepted: 09/27/2020] [Indexed: 11/29/2022]
Abstract
Morinda officinalis F.C. How. (Rubiaceae) is a herbal medicine. It has been recorded that its oligosaccharides have neuroprotective properties. In order to understand the oligosaccharides extracted from Morinda officinalis (OMO), a systematic study was conducted to provide evidence that supports its use in neuroprotective therapies for Alzheimer's disease (AD). AD rat models were prepared with D-galactose and Aβ25–35. The following groups were used in the present experiment: normal control group, sham-operated group, model group, Aricept group, OMO low-dose group, OMO medium-dose group, and OMO high-dose group. The effects on behavioral tests, antioxidant levels, energy metabolism, neurotransmitter levels, and AD-related proteins were detected with corresponding methodologies. AD rats administered with different doses of OMO all exhibited a significant (P < 0.05) decrease in latency and an increase (P < 0.05) in the ratio of swimming distance to total distance in a dose-dependent manner in the Morris water maze. There was a significant (P < 0.05) increase in antioxidant enzyme activities (SOD, GSH-Px, and CAT), neurotransmitter levels (acetylcholine, γ-GABA, and NE and DA), energy metabolism (Na+/K+-ATPase), and relative synaptophysin (SYP) expression levels in AD rats administered with OMO. Furthermore, there was a significant (P < 0.05) decrease in MDA levels and relative expression levels of APP, tau, and caspase-3 in AD rats with OMO. The present research suggests that OMO protects against D-galactose and Aβ25–35-induced neurodegeneration, which may provide a novel strategy for improving AD in clinic.
Collapse
|
16
|
Nakagawa S, Omori K, Nakayama M, Mandai H, Yamamoto S, Kobayashi H, Sako H, Sakaida K, Yoshimura H, Ishii S, Ibaragi S, Hirai K, Yamashiro K, Yamamoto T, Suga S, Takashiba S. The fungal metabolite (+)-terrein abrogates osteoclast differentiation via suppression of the RANKL signaling pathway through NFATc1. Int Immunopharmacol 2020; 83:106429. [PMID: 32222639 DOI: 10.1016/j.intimp.2020.106429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Pathophysiological bone resorption is commonly associated with periodontal disease and involves the excessive resorption of bone matrix by activated osteoclasts. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) signaling pathways have been proposed as targets for inhibiting osteoclast differentiation and bone resorption. The fungal secondary metabolite (+)-terrein is a natural compound derived from Aspergillus terreus that has previously shown anti-interleukin-6 properties related to inflammatory bone resorption. However, its effects and molecular mechanism of action on osteoclastogenesis and bone resorption remain unclear. In the present study, we showed that 10 µM synthetic (+)-terrein inhibited RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner and without cytotoxicity. RANKL-induced messenger RNA expression of osteoclast-specific markers including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), the master regulator of osteoclastogenesis, cathepsin K, tartrate-resistant acid phosphatase (Trap) was completely inhibited by synthetic (+)-terrein treatment. Furthermore, synthetic (+)-terrein decreased RANKL-induced NFATc1 protein expression. This study revealed that synthetic (+)-terrein attenuated osteoclast formation and bone resorption by mediating RANKL signaling pathways, especially NFATc1, and indicated the potential effect of (+)-terrein on inflammatory bone resorption including periodontal disease.
Collapse
Affiliation(s)
- Saki Nakagawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Japan.
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Hiroki Mandai
- Department of Medical Technology, School of Health Science, Gifu University of Medical Science, Japan.
| | - Satoshi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Japan.
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Hidefumi Sako
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Kyosuke Sakaida
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Hiroshi Yoshimura
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Japan.
| | - Satoki Ishii
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Japan.
| | - Soichiro Ibaragi
- Department of Oral Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Kimito Hirai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Keisuke Yamashiro
- Department of Periodontics and Endodontics, Okayama University Hospital, Japan.
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Japan.
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| |
Collapse
|
17
|
The chemical character of polysaccharides from processed Morindae officinalis and their effects on anti-liver damage. Int J Biol Macromol 2019; 141:410-421. [DOI: 10.1016/j.ijbiomac.2019.08.213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/21/2019] [Accepted: 08/24/2019] [Indexed: 02/08/2023]
|
18
|
Yang X, Hu G, Lv L, Liu T, Qi L, Huang G, You D, Zhao J. Regulation of P-glycoprotein by Bajijiasu in vitro and in vivo by activating the Nrf2-mediated signalling pathway. PHARMACEUTICAL BIOLOGY 2019; 57:184-192. [PMID: 30929555 PMCID: PMC6450468 DOI: 10.1080/13880209.2019.1582679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CONTEXT Bajijiasu (BJJS), a main bioactive compound from Morinda officinalis F.C. How. (Rubiaceae), is widely administered concomitantly with other drugs for treating male impotence, female infertility, fatigue, chronic rheumatism, depression, etc. Objective: This study investigates the regulation of P-glycoprotein (P-gp) by BJJS in vitro and in vivo. MATERIAL AND METHODS HepG2 cells were incubated with BJJS (10, 20 or 40 μM) for 48 h. C57 mice were orally treated with BJJS (25, 50 or 100 mg/kg) for 2 weeks. The protein and mRNA levels of P-gp were measured by using Western blot and real-time PCR, respectively. siNrf2 RNA was used to explore the mediation effects of Nrf2 on the P-gp expression. The efflux activity of P-gp was tested via a flow cytometry. RESULTS Incubation of HepG2 cells with BJJS at 10, 20, and 40 μM up-regulated the P-gp protein expression by 12.3%, 82.9%, and 134.3%, respectively. Treatment of C57 mice with BJJS at 25, 50 and 100 mg/kg increased the P-gp protein expression by 49.3%, 75.8% and 106.0%, respectively. Incubation of the cells with BJJS at 10, 20 and 40 μM up-regulated the total Nrf2 protein levels by 34.3%, 93.1% and 118.6%, respectively, and also increased the nuclear Nrf2 protein levels by 14.8%, 44.4% and 59.25%, respectively. The total Nrf2 protein levels were increased by 46.3%, 66.5%, and 87.4%, respectively, in the mice exposed to BJJS at 25, 50, and 100 mg/kg. Inhibition of Nrf2 by siRNA diminished the P-gp induction by 25.0%, 33.4%, and 38.7%, respectively, in the cells. In addition, BJJS enhanced the efflux activity of P-gp by 9.6%, 37.1%, and 48.1%, respectively, in the cells. CONCLUSIONS BJJS activates Nrf2 to induce P-gp expression, and enhanced the efflux activity of P-gp. The possibility of potential herb-drug interactions when BJJS is co-administered with other P-gp substrate drugs should be carefully monitored.
Collapse
Affiliation(s)
- Xin Yang
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
- CONTACT Xin Yang Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou510700, China
| | - Guoyan Hu
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Lijuan Lv
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ting Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Longkai Qi
- Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangzhou, China
| | - Guozhan Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Dongqing You
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Jun Zhao
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
- Jun Zhao Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
19
|
He J, Li X, Wang Z, Bennett S, Chen K, Xiao Z, Zhan J, Chen S, Hou Y, Chen J, Wang S, Xu J, Lin D. Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Front Pharmacol 2019; 10:1344. [PMID: 31824310 PMCID: PMC6886594 DOI: 10.3389/fphar.2019.01344] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a bone disease characterized by increasing osseous fragility and fracture due to the reduced bone mass and microstructural degradation. Primary pharmacological strategies for the treatment of osteoporosis, hormone replacement treatment (HRT), and alendronate therapies may produce adverse side-effects and may not be recommended for long-term usage. Some classic and bone-specific natural Chinese medicine are very popularly used to treat osteoporosis and bone fracture effectively in clinical with their potential value in bone growth and development, but with few adverse side-effects. Current evidence suggests that the treatments appear to improve bone metabolism and attenuate the osteoporotic imbalance between bone formation and bone resorption at a cellular level by promoting osteoblast activity and inhibiting the effects of osteoclasts. The valuable therapies might, therefore, provide an effective and safer alternative to primary pharmacological strategies. Therefore, the purpose of this article is to comprehensively review these classic and bone-specific drugs in natural Chinese medicines for the treatment of osteoporosis that had been deeply and definitely studied and reported with both bone formation and antiresorption effects, including Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer (syn. Morinda officinalis F.C.How), Curculigo orchioides Gaertn., Psoralea corylifolia (L.) Medik Eucommia ulmoides Oliv., Dipsacus inermis Wall. (syn. Dipsacus asperoides C.Y.Cheng & T.M.Ai), Cibotium barometz (L.) J. Sm., Velvet Antler, Cistanche deserticola Ma, Cuscuta chinensis Lam., Cnidium monnieri (L.) Cusson, Epimedium brevicornum Maxim, Pueraria montana (Lour.) Merr. and Salvia miltiorrhiza Bunge., thus providing evidence for the potential use of alternative Chinese medicine therapies to effectively treat osteoporosis.
Collapse
Affiliation(s)
- Jianbo He
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaojuan Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ziyi Wang
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Samuel Bennett
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Kai Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Zhifeng Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shudong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Junhao Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Shaofang Wang
- Centre for Legumes in Mediterranean Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Dingkun Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Lin C, Cao SM, Chang ET, Liu Z, Cai Y, Zhang Z, Chen G, Huang QH, Xie SH, Zhang Y, Yun J, Jia WH, Zheng Y, Liao J, Chen Y, Lin L, Liu Q, Ernberg I, Huang G, Zeng Y, Zeng YX, Adami HO, Ye W. Chinese nonmedicinal herbal diet and risk of nasopharyngeal carcinoma: A population-based case-control study. Cancer 2019; 125:4462-4470. [PMID: 31544233 DOI: 10.1002/cncr.32458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND An association between a nonmedicinal herbal diet and nasopharyngeal carcinoma (NPC) has often been hypothesized but never thoroughly investigated. METHODS This study enrolled a total of 2469 patients with incident NPC and 2559 population controls from parts of Guangdong and Guangxi Provinces in southern China between 2010 and 2014. Questionnaire information was collected on the intake of traditional herbal tea and herbal soup as well as the specific herbal plants used in soups and other potentially confounding lifestyle factors. Multivariate logistic regression models were used to estimate odds ratios (ORs) with 95% confidence intervals (CIs) for the NPC risk in association with herbal tea and soup intake. RESULTS Ever consumption of herbal tea was not associated with NPC risk (OR, 1.03; 95% CI, 0.91-1.17). An inverse association was observed for NPC among ever drinkers of herbal soup (OR, 0.78; 95% CI, 0.67-0.90) but without any monotonic trend with an increasing frequency or duration of herbal soup consumption. Inverse associations with NPC risk were detected with 9 herbal plants used in herbal soup, including Ziziphus jujuba, Fructus lycii, Codonopsis pilosula, Astragalus membranaceus, Semen coicis, Smilax glabra, Phaseolus calcaratus, Morinda officinalis, and Atractylodes macrocephala (OR range, 0.31-0.79). CONCLUSIONS Consuming herbal soups including specific plants, but not herbal tea, was inversely associated with NPC. If replicated, these results might provide potential for NPC prevention in endemic areas.
Collapse
Affiliation(s)
- Chuyang Lin
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China.,School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Su-Mei Cao
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ellen T Chang
- Center for Health Sciences, Exponent, Inc, Menlo Park, California.,Stanford Cancer Institute, Stanford, California
| | - Zhiwei Liu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Yonglin Cai
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, China.,Wuzhou Health System Key Laboratory for Nasopharyngeal Carcinoma Etiology and Molecular Mechanism, Wuzhou, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Guomin Chen
- State Key Laboratory for Infectious Diseases Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | - Shang-Hang Xie
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuming Zheng
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, China.,Wuzhou Health System Key Laboratory for Nasopharyngeal Carcinoma Etiology and Molecular Mechanism, Wuzhou, China
| | - Jian Liao
- Cangwu Institute for Nasopharyngeal Carcinoma Control and Prevention, Wuzhou, China
| | - Yufeng Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Longde Lin
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Qing Liu
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yi Zeng
- State Key Laboratory for Infectious Diseases Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Beijing Hospital, Beijing, China
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Weimin Ye
- Department of Cancer Prevention Center, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Sobacchi C, Menale C, Villa A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front Immunol 2019; 10:629. [PMID: 30984193 PMCID: PMC6450200 DOI: 10.3389/fimmu.2019.00629] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification of Receptor activator of nuclear factor kappa B ligand (RANKL) and its cognate receptor Receptor activator of nuclear factor kappa B (RANK) during a search for novel tumor necrosis factor receptor (TNFR) superfamily members has dramatically changed the scenario of bone biology by providing the functional and biochemical proof that RANKL signaling via RANK is the master factor for osteoclastogenesis. In parallel, two independent studies reported the identification of mouse RANKL on activated T cells and of a ligand for osteoprotegerin on a murine bone marrow-derived stromal cell line. After these seminal findings, accumulating data indicated RANKL and RANK not only as essential players for the development and activation of osteoclasts, but also for the correct differentiation of medullary thymic epithelial cells (mTECs) that act as mediators of the central tolerance process by which self-reactive T cells are eliminated while regulatory T cells are generated. In light of the RANKL-RANK multi-task function, an antibody targeting this pathway, denosumab, is now commonly used in the therapy of bone loss diseases including chronic inflammatory bone disorders and osteolytic bone metastases; furthermore, preclinical data support the therapeutic application of denosumab in the framework of a broader spectrum of tumors. Here, we discuss advances in cellular and molecular mechanisms elicited by RANKL-RANK pathway in the bone and thymus, and the extent to which its inhibition or augmentation can be translated in the clinical arena.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Ciro Menale
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Anna Villa
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Metabolomics profiling provides valuable insights into the underlying mechanisms of Morinda officinalis on protecting glucocorticoid-induced osteoporosis. J Pharm Biomed Anal 2019; 166:336-346. [DOI: 10.1016/j.jpba.2019.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/27/2018] [Accepted: 01/12/2019] [Indexed: 11/21/2022]
|
23
|
Qu B, Gong K, Yang H, Li Y, Jiang T, Zeng Z, Cao Z, Pan X. SIRT1 suppresses high glucose and palmitate-induced osteoclast differentiation via deacetylating p66Shc. Mol Cell Endocrinol 2018; 474:97-104. [PMID: 29486220 DOI: 10.1016/j.mce.2018.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/23/2018] [Indexed: 01/11/2023]
Abstract
Findings concerning the role of diabetes mellitus (DM) in osteoclast differentiation are contradictory in vivo and in vitro. Sirtuin 1 (SIRT1) can inhibit RANKL-induced osteoclastogenesis and deacetylate p66Shc suppress its phosphorylation in high glucose (HG)-stimulated human umbilical vein endothelial cells. This study aimed to investigate the role and mechanism of SIRT1 in DM-related osteoclast differentiation. Osteoclast precursors were cultured with HG and palmitate (PA), with or without resveratrol/sirtinol. TRAP staining was used to evaluate osteoclast formation. The expression of SIRT1, RANK, RANKL, OPG, NFATc1, TRAP, c-fos, p66Shc, phospho-p66Shc (S36), phospho-NF-κBp65 (p-p65), and IκB was determined by real-time PCR or western blotting. Lysine acetylation of p66Shc was assayed by immunoprecipitation. Reactive oxygen species (ROS) production was analyzed by DCFH-DA fluorescence. p66Shc siRNA and PDTC were used to confirm the mechanism of SIRT1 in osteoclastogenesis. We found HG and PA enhanced osteoclast differentiation, decreased SIRT1 and OPG expression, and increased levels of RANK, RANKL, NFATc1, TRAP, and c-fos. Upregulation of SIRT1 by resveratrol inhibited HG- and PA-induced osteoclast differentiation, whereas sirtinol further enhanced it. Resveratrol suppressed lysine acetylation and S36 phosphorylation of p66Shc, ROS production, and NF-κB activation induced by HG and PA, while sirtinol boosted these processes. p66Shc siRNA abrogated HG- and PA-induced ROS production and NF-κB activation. In addition, p66Shc siRNA and PDTC greatly suppressed the expression of RANK and RANKL induced by HG and PA. In conclusion, this study confirms the role of DM in osteoclast differentiation in vitro. SIRT1 suppresses HG- and PA-induced osteoclast differentiation via p66Shc/ROS/NF-κB signaling.
Collapse
Affiliation(s)
- Bo Qu
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China; Center for Disease Control and Prevention of the Chengdu Military Command, Chengdu 610000, Sichuan Province, China
| | - Kai Gong
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu 610000, Sichuan Province, China
| | - Hongsheng Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Yugang Li
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Zhimou Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Zongrui Cao
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China
| | - Xianming Pan
- Department of Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610000, Sichuan Province, China.
| |
Collapse
|
24
|
He L, Hong G, Zhou L, Zhang J, Fang J, He W, Tickner J, Han X, Zhao L, Xu J. Asiaticoside, a component of Centella asiatica attenuates RANKL-induced osteoclastogenesis via NFATc1 and NF-κB signaling pathways. J Cell Physiol 2018; 234:4267-4276. [PMID: 30146787 DOI: 10.1002/jcp.27195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
Identification of natural compounds that inhibit osteoclastogenesis will facilitate the development of antiresorptive treatment of osteolytic bone diseases. Asiaticoside is a triterpenoid derivative isolated from Centella asiatica, which exhibits varying biological effects like angiogenesis, anti-inflammation, wound healing, and osteogenic differentiation. However, its role in osteoclastogenesis remains unknown. Here, we show that Asiaticoside can suppress RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner. Asiaticoside attenuated the expression of osteoclast marker genes including Ctsk, Atp6v0d2, Nfatc1, Acp5, and Dc-stamp. Furthermore, Asiaticoside inhibited RANKL-mediated NF-κB and NFATc1 activities, and RANKL-induced calcium oscillation. Collectively, this study demonstrates that Asiaticoside inhibited osteoclast formation and function through attenuating RANKL-induced key signaling pathways, which may indicate that Asiaticoside is a potential antiresorptive agent against osteoclast-related osteolytic bone diseases.
Collapse
Affiliation(s)
- Lilei He
- Department of Orthopaedics, Affiliated Foshan Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China.,The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Guoju Hong
- National Key Discipline and Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Orthopedic Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin Zhou
- Department of Rheumatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianguo Zhang
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Fang
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei He
- National Key Discipline and Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Xiaorui Han
- Department of Radiography, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong, China
| | - Lilian Zhao
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiake Xu
- National Key Discipline and Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
25
|
Lin YH, Chen CY, Chou LY, Chen CH, Kang L, Wang CZ. Enhancement of Bone Marrow-Derived Mesenchymal Stem Cell Osteogenesis and New Bone Formation in Rats by Obtusilactone A. Int J Mol Sci 2017; 18:ijms18112422. [PMID: 29140298 PMCID: PMC5713390 DOI: 10.3390/ijms18112422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
The natural pure compound obtusilactone A (OA) was identified in Cinnamomum kotoense Kanehira & Sasaki, and shows effective anti-cancer activity. We studied the effect of OA on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). OA possesses biocompatibility, stimulates Alkaline Phosphatase (ALP) activity and facilitates mineralization of BMSCs. Expression of osteogenesis markers BMP2, Runx2, Collagen I, and Osteocalcin was enhanced in OA-treated BMSCs. An in vivo rat model with local administration of OA via needle implantation to bone marrow-residing BMSCs revealed that OA increased the new bone formation and trabecular bone volume in tibias. Micro-CT images and H&E staining showed more trabecular bone at the needle-implanted site in the OA group than the normal saline group. Thus, OA confers an osteoinductive effect on BMSCs via induction of osteogenic marker gene expression, such as BMP2 and Runx2 expression and subsequently elevates ALP activity and mineralization, followed by enhanced trabecular bone formation in rat tibias. Therefore, OA is a potential osteoinductive drug to stimulate new bone formation by BMSCs.
Collapse
Affiliation(s)
- Yi-Hsiung Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chung-Yi Chen
- School of Medical and Health Sciences, Fooyin University, Kaohsiung 807, Taiwan.
| | - Liang-Yin Chou
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
26
|
Schiffner R, Reiche J, Brodt S, Brinkmann O, Bungartz M, Matziolis G, Schmidt M. A Simple Procedure for the Evaluation of Bone Vitality by Staining with a Tetrazolium Salt. Int J Mol Sci 2017; 18:ijms18081646. [PMID: 28788079 PMCID: PMC5578036 DOI: 10.3390/ijms18081646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022] Open
Abstract
Presently, no intra-operative method for a direct assessment of bone vitality exists. Therefore, we set out to test the applicability of tetrazolium-based staining on bone samples. The explanted femoral heads of 37 patients were used to obtain either cancellous bone fragments or bone slices. Samples were stained with 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (thiazolyl blue, MTT) at different times (one to twelve hours) after explantation. Staining was quantified either spectrophotometrically after extraction of the dyes or by densitometric image analysis. TTC-staining of cancellous bone fragments and bone slices, respectively, indicated the detectability of vital cells in both types of samples in a window of up to six hours after explantation. Staining intensity at later time-points was indistinguishable from the staining of untreated samples or sodium azide treated samples, which represent dead cells. In contrast, MTT-staining of bone slices revealed intense unspecific staining, which obscured the evaluation of the vitality of the samples. The lack of a detectable increase of colour intensity in TTC-stained bone samples, which were treated more than six hours after explantation, corresponds to reduced fracture healing. The described simple procedure could provide a basis for an intraoperative decision by the orthopaedic surgeon.
Collapse
Affiliation(s)
- René Schiffner
- Orthopaedic Department, Jena University Hospital-Friedrich Schiller University, Campus Eisenberg, Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| | - Juliane Reiche
- Institute for Biochemistry II, Jena University Hospital-Friedrich Schiller University, Nonnenplan 4, 07743 Jena, Germany.
| | - Steffen Brodt
- Orthopaedic Department, Jena University Hospital-Friedrich Schiller University, Campus Eisenberg, Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| | - Olaf Brinkmann
- Orthopaedic Department, Jena University Hospital-Friedrich Schiller University, Campus Eisenberg, Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| | - Matthias Bungartz
- Orthopaedic Department, Jena University Hospital-Friedrich Schiller University, Campus Eisenberg, Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| | - Georg Matziolis
- Orthopaedic Department, Jena University Hospital-Friedrich Schiller University, Campus Eisenberg, Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital-Friedrich Schiller University, Nonnenplan 4, 07743 Jena, Germany.
| |
Collapse
|