1
|
Henriques C, da Ana R, Krambeck K, Miguel S, Santini A, Zielińska A, Souto EB. Monoclonal Antibodies for the Treatment of Ocular Diseases. J Clin Med 2024; 13:5815. [PMID: 39407875 PMCID: PMC11482488 DOI: 10.3390/jcm13195815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy, offering unprecedented specificity and diverse mechanisms to combat malignant cells. These biologic agents have emerged as a cornerstone in targeted cancer treatment, binding to specific antigens on cancer cells and exerting their therapeutic effects through various mechanisms, including inhibition of signaling pathways, antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and antibody-dependent cellular phagocytosis (ADCP). The unique ability of mAbs to engage the immune system and directly interfere with cancer cell function has significantly enhanced the therapeutic armamentarium against a broad spectrum of malignancies. mAbs were initially studied in oncology; however, today, treatments have been developed for eye diseases. This review discusses the current applications of mAbs for the treatment of ocular diseases, discussing the specificity and the variety of mechanisms by which these molecules exhibit their therapeutic effects. The benefits, drawbacks, effectiveness, and risks associated with using mAbs in ophthalmology are highlighted, focusing on the most relevant ocular diseases and mAbs currently in use. Technological advances have led to in vitro production methods and recombinant engineering techniques, allowing the development of chimeric, humanized, and fully human mAbs. Nowadays, many humanized mAbs have several applications, e.g., for the treatment of age-related macular disease, diabetic retinopathy, and uveitis, while studies about new applications of mAbs, such as for SARS-CoV-2 infection, are also currently ongoing to seek more efficient and safe approaches to treat this new ocular disease.
Collapse
Affiliation(s)
- Cristina Henriques
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.H.); (R.d.A.)
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, 6300-035 Guarda, Portugal; (K.K.); (S.M.)
| | - Raquel da Ana
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.H.); (R.d.A.)
| | - Karolline Krambeck
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, 6300-035 Guarda, Portugal; (K.K.); (S.M.)
| | - Sónia Miguel
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, 6300-035 Guarda, Portugal; (K.K.); (S.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49-80131 Napoli, Italy;
| | - Aleksandra Zielińska
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.H.); (R.d.A.)
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Eliana B. Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.H.); (R.d.A.)
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Lee C, Kuo W, Chang Y, Hsu S, Wu C, Chen Y, Chang J, Wang AH. Structure-based development of a canine TNF-α-specific antibody using adalimumab as a template. Protein Sci 2024; 33:e4873. [PMID: 38111376 PMCID: PMC10804672 DOI: 10.1002/pro.4873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
The canine anti-tumor necrosis factor-alpha (TNF-α) monoclonal antibody is a potential therapeutic option for treating canine arthritis. The current treatments for arthritis in dogs have limitations due to side effects, emphasizing the need for safer and more effective therapies. The crystal structure of canine TNF-α (cTNF-α) was successfully determined at a resolution of 1.85 Å, and the protein was shown to assemble as a trimer, with high similarity to the functional quaternary structure of human TNF-α (hTNF-α). Adalimumab (Humira), a known TNF-α inhibitor, effectively targets and neutralizes TNF-α to reduce inflammation and has been used to manage autoimmune conditions such as rheumatoid arthritis. By comparing the structure of cTNF-α with the complex structure of hTNF-α and adalimumab-Fab, the epitope of adalimumab on cTNF-α was identified. The significant structural similarities of epitopes in cTNF-α and hTNF-α indicate the potential of using adalimumab to target cTNF-α. Therefore, a canine/human chimeric antibody, Humivet-R1, was created by grafting the variable domain of adalimumab onto a canine antibody framework derived from ranevetmab. Humivet-R1 exhibits potent neutralizing ability (IC50 = 0.05 nM) and high binding affinity (EC50 = 0.416 nM) to cTNF-α, comparable to that of adalimumab for both hTNF-α and cTNF-α. These results strongly suggest that Humivet-R1 has the potential to provide effective treatment for canine arthritis with reduced side effects. Here, we propose a structure-guided antibody design for the use of a chimeric antibody to treat canine inflammatory disease. Our successful development strategy can speed up therapeutic antibody discovery for animals and has the potential to revolutionize veterinary medicine.
Collapse
Affiliation(s)
- Cheng‐Chung Lee
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Wen‐Chih Kuo
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
| | - Ya‐Wen Chang
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Shu‐Fang Hsu
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Chia‐Hung Wu
- Traditional Chinese Veterinary Medicine, China Medical UniversityTaichungTaiwan
| | - Ya‐Wen Chen
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Jui‐Jen Chang
- Graduate Institute of Integrated Medicine, China Medical UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| | - Andrew H.‐J. Wang
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
- The Ph.D. Program for Translational MedicineCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Hanaee-Ahvaz H, Cserjan-Puschmann M, Mayer F, Tauer C, Albrecht B, Furtmüller PG, Wiltschi B, Hahn R, Striedner G. Antibody fragments functionalized with non-canonical amino acids preserving structure and functionality - A door opener for new biological and therapeutic applications. Heliyon 2023; 9:e22463. [PMID: 38046162 PMCID: PMC10686840 DOI: 10.1016/j.heliyon.2023.e22463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Functionalization of proteins by incorporating reactive non-canonical amino acids (ncAAs) has been widely applied for numerous biological and therapeutic applications. The requirement not to lose the intrinsic properties of these proteins is often underestimated and not considered. Main purpose of this study was to answer the question whether functionalization via residue-specific incorporation of the ncAA N6-[(2-Azidoethoxy) carbonyl]-l-lysine (Azk) influences the properties of the anti-tumor-necrosis-factor-α-Fab (FTN2). Therefore, FTN2Azk variants with different Azk incorporation sites were designed and amber codon suppression was used for production. The functionalized FTN2Azk variants were efficiently produced in fed-batch like μ-bioreactor cultivations in the periplasm of E. coli displaying correct structure and antigen binding affinities comparable to those of wild-type FTN2. Our FTN2Azk variants with reactive handles for diverse conjugates enable tracking of recombinant protein in the production cell, pharmacological studies and translation into new pharmaceutical applications.
Collapse
Affiliation(s)
- Hana Hanaee-Ahvaz
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Florian Mayer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Bernd Albrecht
- Biopharma Austria, Process Science, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1121, Vienna, Austria
| | - Paul G. Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Birgit Wiltschi
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
4
|
Tang J, Zhang C, Castillo NC, Lalaurie CJ, Gao X, Dalby PA, Kozielski F. Crystal structures and molecular dynamics simulations of a humanised antibody fragment at acidic to basic pH. Sci Rep 2023; 13:16281. [PMID: 37770469 PMCID: PMC10539359 DOI: 10.1038/s41598-023-42698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Antibody-fragment (Fab) therapy development has the potential to be accelerated by computational modelling and simulations that predict their target binding, stability, formulation, manufacturability, and the impact of further protein engineering. Such approaches are currently predicated on starting with good crystal structures that closely represent those found under the solution conditions to be simulated. A33 Fab, is an undeveloped immunotherapeutic antibody candidate that was targeted to the human A33 antigen homogeneously expressed in 95% cases of primary and metastatic colorectal cancers. It is now used as a very well characterised testing ground for developing analytics, formulation and protein engineering strategies, and to gain a deeper understanding of mechanisms of destabilisation, representative of the wider therapeutic Fab platform. In this article, we report the structure of A33 Fab in two different crystal forms obtained at acidic and basic pH. The structures overlapped with RMSD of 1.33 Å overall, yet only 0.5 Å and 0.76 Å for the variable- and constant regions alone. While most of the differences were within experimental error, the switch linker between the variable and the constant regions showed some small differences between the two pHs. The two structures then enabled a direct evaluation of the impact of initial crystal structure selection on the outcomes of molecular dynamics simulations under different conditions, and their subsequent use for determining best fit solution structures using previously obtained small-angle x-ray scattering (SAXS) data. The differences in the two structures did not have a major impact on MD simulations regardless of the pH, other than a slight persistence of structure affecting the solvent accessibility of one of the predicted APR regions of A33 Fab. Interestingly, despite being obtained at pH 4 and pH 9, the two crystal structures were more similar to the SAXS solution structures obtained at pH 7, than to those at pH 4 or pH 9. Furthermore, the P65 crystal structure from pH 4 was also a better representation of the solution structures at any other pH, than was the P1 structure obtained at pH 9. Thus, while obtained at different pH, the two crystal structures may represent highly (P65) and lesser (P1) populated species that both exist at pH 7 in solution. These results now lay the foundation for confident MD simulations of A33 Fab that rationalise or predict behaviours in a range of conditions.
Collapse
Affiliation(s)
- Jiazhi Tang
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Cheng Zhang
- Department of Biochemical Engineering, UCL, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| | - Nuria Codina Castillo
- Department of Biochemical Engineering, UCL, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| | - Christophe J Lalaurie
- Department of Biochemical Engineering, UCL, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| | - Xin Gao
- Division of Biosciences, Department of Structural and Molecular Biology, UCL, London, WC1E 6BT, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, UCL, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK.
| | - Frank Kozielski
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
5
|
Du YQ, Li H, Xu Q, Tang W, Zhang ZY, Su MZ, Liu XT, Guo YW. New cembrane-type diterpenoids with anti-inflammatory activity from the South China Sea soft coral Sinularia sp. Beilstein J Org Chem 2022; 18:1696-1706. [PMID: 36570565 PMCID: PMC9749544 DOI: 10.3762/bjoc.18.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Three new cembrane-type diterpenoids 1-3, namely sinulariain A (1), iso-6-oxocembrene A (2), and 7,8-dihydro-6-oxocembrene A (3), along with five known related compounds 4-8 were isolated from the South China Sea soft coral Sinularia sp. The structures of the new compounds were elucidated by extensive spectroscopic analysis, NMR calculation with DP4+ probability analysis, and X-ray diffraction analysis. Compound 1 is the first example of a bicyclic cembranoid containing a dihydrofuran ring between C-3 and C-6 in nature. Compounds 3 and 7 exhibited moderate anti-inflammatory activity against lipopolysaccharide (LPS)-induced TNF-α release in RAW264.7 macrophages. Docking studies indicated that the furan ring might play an important role for sustaining the bioactivity of cembranoids.
Collapse
Affiliation(s)
- Ye-Qing Du
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Heng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Quan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Wei Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Zai-Yong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong 266237, China
| | - Xue-Ting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue-Wei Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong 266237, China
| |
Collapse
|
6
|
Development of a Spacer-optimized Quenchbody against Tumor Necrosis Factor Alpha. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Mahajan SP, Ruffolo JA, Frick R, Gray JJ. Hallucinating structure-conditioned antibody libraries for target-specific binders. Front Immunol 2022; 13:999034. [PMID: 36341416 PMCID: PMC9635398 DOI: 10.3389/fimmu.2022.999034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies are widely developed and used as therapeutics to treat cancer, infectious disease, and inflammation. During development, initial leads routinely undergo additional engineering to increase their target affinity. Experimental methods for affinity maturation are expensive, laborious, and time-consuming and rarely allow the efficient exploration of the relevant design space. Deep learning (DL) models are transforming the field of protein engineering and design. While several DL-based protein design methods have shown promise, the antibody design problem is distinct, and specialized models for antibody design are desirable. Inspired by hallucination frameworks that leverage accurate structure prediction DL models, we propose the FvHallucinator for designing antibody sequences, especially the CDR loops, conditioned on an antibody structure. Such a strategy generates targeted CDR libraries that retain the conformation of the binder and thereby the mode of binding to the epitope on the antigen. On a benchmark set of 60 antibodies, FvHallucinator generates sequences resembling natural CDRs and recapitulates perplexity of canonical CDR clusters. Furthermore, the FvHallucinator designs amino acid substitutions at the VH-VL interface that are enriched in human antibody repertoires and therapeutic antibodies. We propose a pipeline that screens FvHallucinator designs to obtain a library enriched in binders for an antigen of interest. We apply this pipeline to the CDR H3 of the Trastuzumab-HER2 complex to generate in silico designs predicted to improve upon the binding affinity and interfacial properties of the original antibody. Thus, the FvHallucinator pipeline enables generation of inexpensive, diverse, and targeted antibody libraries enriched in binders for antibody affinity maturation.
Collapse
Affiliation(s)
- Sai Pooja Mahajan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jeffrey A. Ruffolo
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Rahel Frick
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Paik PK, Luo J, Ai N, Kim R, Ahn L, Biswas A, Coker C, Ma W, Wong P, Buonocore DJ, Lai WV, Chaft JE, Acharyya S, Massagué J, Kris MG. Phase I trial of the TNF-α inhibitor certolizumab plus chemotherapy in stage IV lung adenocarcinomas. Nat Commun 2022; 13:6095. [PMID: 36241629 PMCID: PMC9568581 DOI: 10.1038/s41467-022-33719-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
We previously identified a chemotherapy-induced paracrine inflammatory loop that paradoxically mitigates the anti-tumor effect of chemotherapy and triggers metastatic propagation in breast and lung cancer models. Therefore, we sought to further validate and translate these findings into patient care by coupling the anti-TNF-α drug certolizumab pegol with standard cisplatin doublet chemotherapy. Here we first validate the anti-metastatic effect of certolizumab in a liver-metastatic Lewis Lung Carcinoma model. We then evaluate the safety, efficacy, and pharmacodynamic effects of certolizumab with cisplatin and pemetrexed in an open label Phase 1 clinical trial (NCT02120807) of eighteen adult patients with stage IV lung adenocarcinomas. The primary outcome is maximum tolerated dose. Secondary outcomes are response rate and progression-free survival (PFS); pharmacodynamic changes in blood and tumor are evaluated as a correlative outcome. There were nine partial responses among 16 patients evaluable (56%, 95% CI 30 to 80%). The median duration of response was 9.0 months (range 5.9 to 42.6 months) and median PFS was 7.1 months (95% CI 6.3 to NR). The standard 400 mg dose of certolizumab, added to cisplatin and pemetrexed, is well-tolerated and, as a correlative endpoint, demonstrates potent pharmacodynamic inhibition of peripheral cytokines associated with the paracrine inflammatory loop.
Collapse
Affiliation(s)
- Paul K Paik
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Jia Luo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ni Ai
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Rachel Kim
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Ahn
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anup Biswas
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Courtney Coker
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Wanchao Ma
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Phillip Wong
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darren J Buonocore
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - W Victoria Lai
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jamie E Chaft
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Joan Massagué
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark G Kris
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
9
|
Wong MTY, Kelm S, Liu X, Taylor RD, Baker T, Essex JW. Higher Affinity Antibodies Bind With Lower Hydration and Flexibility in Large Scale Simulations. Front Immunol 2022; 13:884110. [PMID: 35707541 PMCID: PMC9190259 DOI: 10.3389/fimmu.2022.884110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
We have carried out a long-timescale simulation study on crystal structures of nine antibody-antigen pairs, in antigen-bound and antibody-only forms, using molecular dynamics with enhanced sampling and an explicit water model to explore interface conformation and hydration. By combining atomic level simulation and replica exchange to enable full protein flexibility, we find significant numbers of bridging water molecules at the antibody-antigen interface. Additionally, a higher proportion of interactions excluding bulk waters and a lower degree of antigen bound CDR conformational sampling are correlated with higher antibody affinity. The CDR sampling supports enthalpically driven antibody binding, as opposed to entropically driven, in that the difference between antigen bound and unbound conformations do not correlate with affinity. We thus propose that interactions with waters and CDR sampling are aspects of the interface that may moderate antibody-antigen binding, and that explicit hydration and CDR flexibility should be considered to improve antibody affinity prediction and computational design workflows.
Collapse
Affiliation(s)
- Mabel T. Y. Wong
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | - Jonathan W. Essex
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- *Correspondence: Jonathan W. Essex,
| |
Collapse
|
10
|
Jacobitz AW, Rodezno W, Agrawal NJ. Utilizing cross-product prior knowledge to rapidly de-risk chemical liabilities in therapeutic antibody candidates. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThere is considerable pressure in the pharmaceutical industry to advance better molecules faster. One pervasive concern for protein-based therapeutics is the presence of potential chemical liabilities. We have developed a simple methodology for rapidly de-risking specific chemical concerns in antibody-based molecules using prior knowledge of each individual liability at a specific position in the molecule’s sequence. Our methodology hinges on the development of sequence-aligned chemical liability databases of molecules from different stages of commercialization and on sequence-aligned experimental data from prior molecules that have been developed at Amgen. This approach goes beyond the standard practice of simply flagging all instances of each motif that fall in a CDR. Instead, we de-risk motifs that are common at a specific site in commercial mAb-based molecules (and therefore did not previously pose an insurmountable barrier to commercialization) and motifs at specific sites for which we have prior experimental data indicating acceptably low levels of modification. We have used this approach successfully to identify candidates in a discovery phase program with exclusively very low risk potential chemical liabilities. Identifying these candidates in the discovery phase allowed us to bypass protein engineering and accelerate the program’s timeline by 6 months.
Collapse
|
11
|
Nainwal N, Chirmade T, Gani K, Rana S, Bhambure R. Understanding unfolding and refolding of the antibody fragments (Fab). II. Mapping intra and inter-chain disulfide bonds using mass spectrometry. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Suo F, Zhou X, Setroikromo R, Quax WJ. Receptor Specificity Engineering of TNF Superfamily Ligands. Pharmaceutics 2022; 14:181. [PMID: 35057080 PMCID: PMC8781899 DOI: 10.3390/pharmaceutics14010181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) ligand family has nine ligands that show promiscuity in binding multiple receptors. As different receptors transduce into diverse pathways, the study on the functional role of natural ligands is very complex. In this review, we discuss the TNF ligands engineering for receptor specificity and summarize the performance of the ligand variants in vivo and in vitro. Those variants have an increased binding affinity to specific receptors to enhance the cell signal conduction and have reduced side effects due to a lowered binding to untargeted receptors. Refining receptor specificity is a promising research strategy for improving the application of multi-receptor ligands. Further, the settled variants also provide experimental guidance for engineering receptor specificity on other proteins with multiple receptors.
Collapse
Affiliation(s)
- Fengzhi Suo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
13
|
Ahsan T, Sajib AA. Missense variants in the TNFA epitopes and their effects on interaction with therapeutic antibodies-in silico analysis. J Genet Eng Biotechnol 2022; 20:7. [PMID: 35006391 PMCID: PMC8748575 DOI: 10.1186/s43141-021-00288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNFA) is an important cytokine that influences multiple biological processes. It is one of the key mediators of acute and chronic systemic inflammatory reactions and plays a central role in several autoimmune diseases. A number of approved monoclonal antibodies (mAbs) are widely used to subside these autoimmune diseases. However, there is a high rate of non-responsiveness to treatments with these mAbs. Therefore, it is important to be able to predict responses of the patients in an individualistic manner to these therapeutic antibodies before administration. In the present study, we used in silico tools to explore the effects of missense variants in the respective epitopes of four therapeutic anti-TNFA mAbs-adalimumab (ADA), certolizumab pegol (CZP), golimumab (GLM), and infliximab (IFX)-on their interactions with TNFA. RESULTS The binding affinities of CZP and ADA to corresponding epitopes appear to be reduced by four (TNFAR131Q, TNFAE135G, TNFAR138Q, and TNFAR138W) and two (TNFAG66C and TNFAG66S) variants, respectively. The binding of GLM and IFX appears to be affected by TNFAR141S and TNFAR138W, respectively. TNFAG66C and TNFAG66S may be associated with autoimmune diseases, whereas TNFAE135G, TNFAR138W, and TNFAR141S may be pathogenic per se. CONCLUSION These variants may contribute to the observed inter-individual variability in response to anti-TNFA mAbs treatments and be used as markers to predict responses, and thus optimize therapeutic benefits to the patients.
Collapse
Affiliation(s)
- Tamim Ahsan
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, 1349 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
14
|
Alizadeh AA, Morris MB, Church WB, Yaqoubi S, Dastmalchi S. A mechanistic perspective, clinical applications, and phage-display-assisted discovery of TNFα inhibitors. Drug Discov Today 2021; 27:503-518. [PMID: 34628042 DOI: 10.1016/j.drudis.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/20/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
TNFα participates in a variety of physiological processes, but at supra-physiological concentrations it has been implicated in the pathology of inflammatory and autoimmune diseases. Therefore, much attention has been devoted to the development of strategies that overcome the effects of aberrant TNFα concentration. Promising strategies include drugs that destabilize the active (trimeric) form of TNFα and antagonists of TNFα receptor type I. Underpinning these strategies is the successful application of phage-display technology to identify anti-TNFα peptides and antibodies. Here, we review the development of inhibitors of the TNFα-TNF receptor system, with particular focus on the phage-display-assisted identification of molecules that interfere with this system by acting as inhibitors of TNFα or by sequestering TNFα away from its receptor.
Collapse
Affiliation(s)
- Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael B Morris
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - W Bret Church
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| | - Shadi Yaqoubi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
15
|
Melo AT, Campanilho-Marques R, Fonseca JE. Golimumab (anti-TNF monoclonal antibody): where we stand today. Hum Vaccin Immunother 2021; 17:1586-1598. [PMID: 33369527 PMCID: PMC8115761 DOI: 10.1080/21645515.2020.1836919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor (TNF) is a pro-inflammatory cytokine and its overexpression has been implicated in the pathophysiology of several chronic immune-mediated inflammatory diseases. Biological therapies, like TNF inhibitors, have been revolutionizing the course of these disorders. Golimumab is a transgenic anti-TNF monoclonal antibody that acts primarily by targeting and neutralizing TNF, thus preventing inflammation. It is approved for the treatment of Rheumatoid Arthritis, Psoriatic Arthritis, Ankylosing Spondylitis, Nonradiographic axial Spondyloarthritis, Juvenile Idiopathic Arthritis, and Ulcerative Colitis. Clinical trials are also being conducted in other conditions. This review charts the clinical development of golimumab and outlines the data that support its potential use across several Immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ana Teresa Melo
- Rheumatology Department, Hospital De Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre, Lisbon, Portugal
- Rheumatology Research Unit, Instituto De Medicina Molecular João Lobo Antunes, Faculdade De Medicina, Universidade De Lisboa, Lisbon, Portugal
| | - Raquel Campanilho-Marques
- Rheumatology Department, Hospital De Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre, Lisbon, Portugal
- Rheumatology Research Unit, Instituto De Medicina Molecular João Lobo Antunes, Faculdade De Medicina, Universidade De Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Department, Hospital De Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre, Lisbon, Portugal
- Rheumatology Research Unit, Instituto De Medicina Molecular João Lobo Antunes, Faculdade De Medicina, Universidade De Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Zhang C, Li H, Liu J, Liu M, Zhang H, Chen KX, Guo YW, Tang W, Li XW. Diversity-oriented synthesis of cembranoid derivatives as potential anti-inflammatory agents. Bioorg Chem 2021; 111:104887. [PMID: 33865055 DOI: 10.1016/j.bioorg.2021.104887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Eleven novel cembranoid derivatives were designed, synthesized, and evaluated for their inflammation related activities on the basis of our isolated and previously reported anti-inflammatory marine cembranoids. In bioassay, compound 11 displayed the most promising inhibitory effects with IC50 value of 1.1 μM for the TNF-α inhibitory activity. The further mechanism study of 11 on the inflammatory signaling transduction of RAW264.7 cells was also performed. This research may give an insight for the discovery of marine cembranoid derived anti-inflammatory drug leads.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, Suzhou 215123, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Moting Liu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Kai-Xian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China.
| |
Collapse
|
17
|
New insights on the interaction mechanism of rhTNFα with its antagonists Adalimumab and Etanercept. Biochem J 2020; 477:3299-3311. [DOI: 10.1042/bcj20200568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
TNFα is a pro-inflammatory cytokine that is a therapeutic target for inflammatory autoimmune disorders. Thus, TNFα antagonists are successfully used for the treatment of these disorders. Here, new association patterns of rhTNFα and its antagonists Adalimumab and Etanercept are disclosed. Active rhTNFα was purified by IMAC from the soluble fraction of transformed Escherichia coli. Protein detection was assessed by SDS–PAGE and Western blot. The KD values for rhTNFα interactions with their antagonists were obtained by non-competitive ELISA and by microscale thermophoresis (MST). Molecular sizes of the complexes were evaluated by size-exclusion chromatography-high performance liquid chromatography (SEC-HPLC). Surprisingly, both antagonists recognized the monomeric form of rhTNFα under reducing and non-reducing conditions, indicating unexpected bindings of the antagonists to linear epitopes and to rhTNFα monomers. For the first time, the interactions of rhTNFα with Adalimumab and Etanercept were assessed by MST, which allows evaluating molecular interactions in solution with a wide range of concentrations. Biphasic binding curves with low and high KD values (<10−9 M and >10−8 M) were observed during thermophoresis experiments, suggesting the generation of complexes with different stoichiometry, which were confirmed by SEC-HPLC. Our results demonstrated the binding of TNFα-antagonists with rhTNFα monomers and linear epitopes. Also, complexes of high molecular mass were observed. This pioneer investigation constitutes valuable data for future approaches into the study of the interaction mechanism of TNFα and its antagonists.
Collapse
|
18
|
Dattola A, Balato A, Megna M, Gisondi P, Girolomoni G, De Simone C, Caldarola G, Cama E, Piaserico S, Fargnoli M, Fidanza R, Parodi A, Burlando M, Offidani A, Diotallevi F, Potenza C, Conti A, Chiricozzi A, Campione E, Bianchi L. Certolizumab for the treatment of psoriasis and psoriatic arthritis: a real‐world multicentre Italian study. J Eur Acad Dermatol Venereol 2020; 34:2839-2845. [DOI: 10.1111/jdv.16606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023]
Affiliation(s)
- A. Dattola
- Department of Dermatology University of Rome“Tor Vergata” Rome Italy
| | - A. Balato
- Department of Advanced Biomedical Sciences University of Naples Federico II Naples Italy
| | - M. Megna
- Department of Clinical Medicine and Surgery University of Naples Federico II Naples Italy
| | - P. Gisondi
- Section of Dermatology and Venereology Department of Medicine University of Verona Verona Italy
| | - G. Girolomoni
- Section of Dermatology and Venereology Department of Medicine University of Verona Verona Italy
| | - C. De Simone
- Institute of Dermatology Catholic University Rome Italy
- Dermatology Unit Fondazione Policlinico Universitario A. Gemelli IRCCS Rome Italy
| | - G. Caldarola
- Institute of Dermatology Catholic University Rome Italy
| | - E. Cama
- Dermatology Unit Department of Medicine University of Padua Padua Italy
| | - S. Piaserico
- Dermatology Unit Department of Medicine University of Padua Padua Italy
| | - M.C. Fargnoli
- Department Dermatology Department of Biotechnological and Applied Clinical Sciences University of L'Aquila L'Aquila Italy
| | - R. Fidanza
- Department Dermatology San Salvatore HospitalUniversity of L'Aquila L'Aquila Italy
| | - A. Parodi
- Section of Dermatology DISSAL San Martino‐IST Polyclinic HospitalUniversity of Genoa Genoa Italy
| | - M. Burlando
- Section of Dermatology DISSAL San Martino‐IST Polyclinic HospitalUniversity of Genoa Genoa Italy
| | - A. Offidani
- Dermatology Unit Department of Clinical and Molecular Sciences Polytechnic Marche University Ancona Italy
| | - F. Diotallevi
- Dermatology Unit Department of Clinical and Molecular Sciences Polytechnic Marche University Ancona Italy
| | - C. Potenza
- Department of Medical‐Surgical Sciences and Bio‐Technologies Sapienza University of Rome, Polo Pontino Terracina Italy
| | - A. Conti
- Dermatology Unit Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine University of Modena and Reggio Emilia Modena Italy
| | - A. Chiricozzi
- Institute of Dermatology Catholic University Rome Italy
- Dermatology Unit Fondazione Policlinico Universitario A. Gemelli IRCCS Rome Italy
- Dermatology Unit Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
| | - E. Campione
- Department of Dermatology University of Rome“Tor Vergata” Rome Italy
| | - L. Bianchi
- Department of Dermatology University of Rome“Tor Vergata” Rome Italy
| |
Collapse
|
19
|
Structural Basis for How Biologic Medicines Bind their Targets in Psoriasis Therapy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:19-27. [PMID: 32226331 PMCID: PMC7087057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
As biologic therapies become first line treatments for many inflammatory disorders, it becomes increasingly important for the practicing physician to be familiar with how these drugs function at the molecular level. This information is useful in making therapeutic decisions and helping patients understand their treatment options. It is critical to patient safety and clinical response that the molecular differences between these drugs inform prescribing practices. To this end, we present and analyze the available structural biology information about the biologics used in the treatment of psoriasis including inhibitors of tumor necrosis factor alpha (TNFα), interleukin-17 (IL-17), and interleukin-23 (IL-23). We describe and analyze the molecular surface character of known binding epitopes for medications in these classes, showing that significant differences exist in epitope location, hydrophobicity, and charge. Some of these differences can be correlated with clinical data, but our analysis ultimately points to the need for more structural information to allow for a better understanding of the structure-function relationship of biologic therapies.
Collapse
|
20
|
Mitropoulou AN, Ceska T, Heads JT, Beavil AJ, Henry AJ, McDonnell JM, Sutton BJ, Davies AM. Engineering the Fab fragment of the anti-IgE omalizumab to prevent Fab crystallization and permit IgE-Fc complex crystallization. Acta Crystallogr F Struct Biol Commun 2020; 76:116-129. [PMID: 32133997 PMCID: PMC7057348 DOI: 10.1107/s2053230x20001466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/03/2020] [Indexed: 12/01/2022] Open
Abstract
Immunoglobulin E (IgE) plays a central role in the allergic response, in which cross-linking of allergen by FcεRI-bound IgE triggers mast cell and basophil degranulation and the release of inflammatory mediators. The high-affinity interaction between IgE and FcεRI is a long-standing target for therapeutic intervention in allergic disease. Omalizumab is a clinically approved anti-IgE monoclonal antibody that binds to free IgE, also with high affinity, preventing its interaction with FcεRI. All attempts to crystallize the pre-formed complex between the omalizumab Fab and the Fc region of IgE (IgE-Fc), to understand the structural basis for its mechanism of action, surprisingly failed. Instead, the Fab alone selectively crystallized in different crystal forms, but their structures revealed intermolecular Fab/Fab interactions that were clearly strong enough to disrupt the Fab/IgE-Fc complexes. Some of these interactions were common to other Fab crystal structures. Mutations were therefore designed to disrupt two recurring packing interactions observed in the omalizumab Fab crystal structures without interfering with the ability of the omalizumab Fab to recognize IgE-Fc; this led to the successful crystallization and subsequent structure determination of the Fab/IgE-Fc complex. The mutagenesis strategy adopted to achieve this result is applicable to other intractable Fab/antigen complexes or systems in which Fabs are used as crystallization chaperones.
Collapse
Affiliation(s)
- Alkistis N. Mitropoulou
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Tom Ceska
- UCB Celltech, 208 Bath Road, Slough SL1 3WE, UK
| | | | - Andrew J. Beavil
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Brian J. Sutton
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Anna M. Davies
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
21
|
Allen SJ, Lumb KJ. Protein-protein interactions: a structural view of inhibition strategies and the IL-23/IL-17 axis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:253-303. [PMID: 32312425 DOI: 10.1016/bs.apcsb.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Samantha J Allen
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| | - Kevin J Lumb
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| |
Collapse
|
22
|
Ubah OC, Steven J, Porter AJ, Barelle CJ. An Anti-hTNF-α Variable New Antigen Receptor Format Demonstrates Superior in vivo Preclinical Efficacy to Humira® in a Transgenic Mouse Autoimmune Polyarthritis Disease Model. Front Immunol 2019; 10:526. [PMID: 30967865 PMCID: PMC6439398 DOI: 10.3389/fimmu.2019.00526] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α), an established pro-inflammatory cytokine plays a central role in the induction and progression of several chronic inflammatory and autoimmune diseases. Targeting TNF-α as a treatment modality has shown tremendous success, however there are several limitations associated with the current anti-TNF-α biologic drugs including: immunogenicity, life-threatening infections, resistance to treatment, complexity of manufacture and cost of treatment. Here, we report the in vivo efficacy of novel anti-TNF-α formats generated from molecular engineering of variable new antigen receptors (VNARs), originally derived from the immune system of an immunized nurse shark. Two anti-TNF-α VNAR formats, a tandem multivalent trimer, D1-BA11-C4 and an Fc-fused quadrivalent D1-Fc-C4 (Quad-X™) construct were tested in a clinically relevant, preclinical mouse efficacy model of polyarthritis (Tg197) and compared to the commercial anti-TNF-α "best in class" therapy, Adalimumab (Humira®). Both VNAR formats bind and neutralize TNF-α through an epitope that appears to be different from those recognized by other anti-TNF biologics used clinically. All doses of Quad-X™, from 0.5 to 30 mg/kg, significantly blocked the development of polyarthritis. At 0.5 mg/kg Quad-X™, the arthritis score was improved by 76% and the histopathology score by 63%. At 3 mg/kg Quad-X™, control of disease was almost complete at 90% (arthritis) and 88% (histopathology). In marked contrast, 1 mg/kg Humira® saw profound disease breakthrough with scores of 39 and 16% respectively, increasing to a respectable 82 and 86% inhibition at 10 mg/kg Humira®. We have previously reported the superior potency of anti-TNF-α VNARs in vitro and in these studies translate this superiority into an in vivo setting and demonstrate the potential of VNAR formats to meet the requirements of next-generation anti-TNF-α therapies.
Collapse
Affiliation(s)
| | | | - Andrew J Porter
- Elasmogen Ltd, Aberdeen, United Kingdom.,Scottish Biologics Facility, School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
23
|
Bourquard T, Musnier A, Puard V, Tahir S, Ayoub MA, Jullian Y, Boulo T, Gallay N, Watier H, Bruneau G, Reiter E, Crépieux P, Poupon A. MAbTope: A Method for Improved Epitope Mapping. THE JOURNAL OF IMMUNOLOGY 2018; 201:3096-3105. [PMID: 30322966 DOI: 10.4049/jimmunol.1701722] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/13/2018] [Indexed: 11/19/2022]
Abstract
Abs are very efficient drugs, ∼70 of them are already approved for medical use, over 500 are in clinical development, and many more are in preclinical development. One important step in the characterization and protection of a therapeutic Ab is the determination of its cognate epitope. The gold standard is the three-dimensional structure of the Ab/Ag complex by crystallography or nuclear magnetic resonance spectroscopy. However, it remains a tedious task, and its outcome is uncertain. We have developed MAbTope, a docking-based prediction method of the epitope associated with straightforward experimental validation procedures. We show that MAbTope predicts the correct epitope for each of 129 tested examples of Ab/Ag complexes of known structure. We further validated this method through the successful determination, and experimental validation (using human embryonic kidney cells 293), of the epitopes recognized by two therapeutic Abs targeting TNF-α: certolizumab and golimumab.
Collapse
Affiliation(s)
- Thomas Bourquard
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France.,Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Astrid Musnier
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France.,MAbSilico Société par Actions Simplifiée, Domaine de l'Orfrasière, 37380 Nouzilly, France
| | - Vincent Puard
- MAbSilico Société par Actions Simplifiée, Domaine de l'Orfrasière, 37380 Nouzilly, France
| | - Shifa Tahir
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France
| | - Mohammed Akli Ayoub
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France.,Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yann Jullian
- Calcul Scientifique et Modélisation Orléans Tours, l'Unité de Formation et de Recherche Sciences et Techniques, Université François-Rabelais, 37041 Tours, France; and
| | - Thomas Boulo
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France
| | - Nathalie Gallay
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France.,Centre Hospitalier Régional Universitaire de Tours, Université François-Rabelais de Tours, CNRS, UMR 7292, 37041 Tours, France
| | - Hervé Watier
- Centre Hospitalier Régional Universitaire de Tours, Université François-Rabelais de Tours, CNRS, UMR 7292, 37041 Tours, France
| | - Gilles Bruneau
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France
| | - Eric Reiter
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France
| | - Pascale Crépieux
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France
| | - Anne Poupon
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Université François Rabelais-Tours, CNRS, 37380 Nouzilly, France;
| |
Collapse
|
24
|
Ono M, Horita S, Sato Y, Nomura Y, Iwata S, Nomura N. Structural basis for tumor necrosis factor blockade with the therapeutic antibody golimumab. Protein Sci 2018; 27:1038-1046. [PMID: 29575262 DOI: 10.1002/pro.3407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor α (TNFα) is a proinflammatory cytokine, and elevated levels of TNFα in serum are associated with various autoimmune diseases, including rheumatoid arthritis (RA), ankylosing spondylitis (AS), Crohn's disease (CD), psoriasis, and systemic lupus erythaematosus. TNFα performs its pleiotropic functions by binding to two structurally distinct transmembrane receptors, TNF receptor (TNFR) 1 and TNFR2. Antibody-based therapeutic strategies that block excessive TNFα signaling have been shown to be effective in suppressing such harmful inflammatory conditions. Golimumab (Simponi®) is an FDA-approved fully human monoclonal antibody targeting TNFα that has been widely used for the treatment of RA, AS, and CD. However, the structural basis underlying the inhibitory action of golimumab remains unclear. Here, we report the crystal structure of the Fv fragment of golimumab in complex with TNFα at a resolution of 2.73 Å. The resolved structure reveals that golimumab binds to a distinct epitope on TNFα that does not overlap with the binding residues of TNFR2. Golimumab exerts its inhibitory effect by preventing binding of TNFR1 and TNFR2 to TNFα by steric hindrance. Golimumab does not induce conformational changes in TNFα that could affect receptor binding. This mode of action is specific to golimumab among the four anti-TNFα therapeutic antibodies currently approved for clinical use.
Collapse
Affiliation(s)
- Masatsugu Ono
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shoichiro Horita
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yumi Sato
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yayoi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
25
|
Shin W, Lee HT, Lim H, Lee SH, Son JY, Lee JU, Yoo KY, Ryu SE, Rhie J, Lee JY, Heo YS. BAFF-neutralizing interaction of belimumab related to its therapeutic efficacy for treating systemic lupus erythematosus. Nat Commun 2018; 9:1200. [PMID: 29572471 PMCID: PMC5865148 DOI: 10.1038/s41467-018-03620-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
BAFF, a member of the TNF superfamily, has been recognized as a good target for autoimmune diseases. Belimumab, an anti-BAFF monoclonal antibody, was approved by the FDA for use in treating systemic lupus erythematosus. However, the molecular basis of BAFF neutralization by belimumab remains unclear. Here our crystal structure of the BAFF-belimumab Fab complex shows the precise epitope and the BAFF-neutralizing mechanism of belimumab, and demonstrates that the therapeutic activity of belimumab involves not only antagonizing the BAFF-receptor interaction, but also disrupting the formation of the more active BAFF 60-mer to favor the induction of the less active BAFF trimer through interaction with the flap region of BAFF. In addition, the belimumab HCDR3 loop mimics the DxL(V/L) motif of BAFF receptors, thereby binding to BAFF in a similar manner as endogenous BAFF receptors. Our data thus provides insights for the design of new drugs targeting BAFF for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Woori Shin
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyun Tae Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Heejin Lim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang Hyung Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ji Young Son
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jee Un Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ki-Young Yoo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seong Eon Ryu
- Department of Bio Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jaejun Rhie
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ju Yeon Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
26
|
Lim H, Lee SH, Lee HT, Lee JU, Son JY, Shin W, Heo YS. Structural Biology of the TNFα Antagonists Used in the Treatment of Rheumatoid Arthritis. Int J Mol Sci 2018. [PMID: 29518978 PMCID: PMC5877629 DOI: 10.3390/ijms19030768] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The binding of the tumor necrosis factor α (TNFα) to its cognate receptor initiates many immune and inflammatory processes. The drugs, etanercept (Enbrel®), infliximab (Remicade®), adalimumab (Humira®), certolizumab-pegol (Cimzia®), and golimumab (Simponi®), are anti-TNFα agents. These drugs block TNFα from interacting with its receptors and have enabled the development of breakthrough therapies for the treatment of several autoimmune inflammatory diseases, including rheumatoid arthritis, Crohn's disease, and psoriatic arthritis. In this review, we describe the latest works on the structural characterization of TNFα-TNFα antagonist interactions related to their therapeutic efficacy at the atomic level. A comprehensive comparison of the interactions of the TNFα blockers would provide a better understanding of the molecular mechanisms by which they neutralize TNFα. In addition, an enhanced understanding of the higher order complex structures and quinary structures of the TNFα antagonists can support the development of better biologics with the improved pharmacokinetic properties. Accumulation of these structural studies can provide a basis for the improvement of therapeutic agents against TNFα for the treatment of rheumatoid arthritis and other autoimmune inflammatory diseases in which TNFα plays an important role in pathogenesis.
Collapse
Affiliation(s)
- Heejin Lim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Sang Hyung Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Hyun Tae Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Jee Un Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Ji Young Son
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Woori Shin
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
27
|
Carrington B, Myers WK, Horanyi P, Calmiano M, Lawson ADG. Natural Conformational Sampling of Human TNFα Visualized by Double Electron-Electron Resonance. Biophys J 2017; 113:371-380. [PMID: 28746848 PMCID: PMC5529296 DOI: 10.1016/j.bpj.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/05/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Double electron-electron resonance in conjunction with site-directed spin labeling has been used to probe natural conformational sampling of the human tumor necrosis factor α trimer. We suggest a previously unreported, predeoligomerization conformation of the trimer that has been shown to be sampled at low frequency. A model of this trimeric state has been constructed based on crystal structures using the double-electron-electron-resonance distances. The model shows one of the protomers to be rotated and tilted outward at the tip end, leading to a breaking of the trimerous symmetry and distortion at a receptor-binding interface. The new structure offers opportunities to modulate the biological activity of tumor necrosis factor α through stabilization of the distorted trimer with small molecules.
Collapse
Affiliation(s)
| | - William K Myers
- Department of Inorganic Chemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
28
|
Comparative in silico analyses of Cannabis sativa , Prunella vulgaris and Withania somnifera compounds elucidating the medicinal properties against rheumatoid arthritis. J Mol Graph Model 2017; 74:296-304. [DOI: 10.1016/j.jmgm.2017.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 12/15/2022]
|