1
|
Yakut S, Gelen V, Kara H, Özkanlar S, Yeşildağ A. Silver Nanoparticles Loaded With Oleuropein Alleviates LPS-Induced Acute Lung Injury by Modulating the TLR4/P2X7 Receptor-Mediated Inflammation and Apoptosis in Rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:4960-4973. [PMID: 38980228 DOI: 10.1002/tox.24369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024]
Abstract
Toll-like receptor 4 (TLR-4) ligands were initially shown to be the source of lipopolysaccharide (LPS), a gram-negative bacterium's cell wall immunostimulatory component. Oxidative stress, apoptosis, and inflammation are all potential effects of LPS treatment on the lungs. By triggering oxidative stress and inflammation, these negative effects could be avoided. Robust flavonoid oleuropein (OLE) exhibits anti-inflammatory, antiproliferative, and antioxidative properties. A nanodelivery system could improve its low bioavailability, making it more effective and useful in treating chronic human ailments. This study evaluates the effects of AgNP-loaded OLE on LPS-induced lung injury in rats in terms of TLR4/P2X7 receptor-mediated inflammation and apoptosis. Forty-eight male albino rats were randomly divided into eight groups. Drugs were administered to the groups in the doses specified as follows: Control, LPS (8 mg/kg ip), OLE (50 mg/kg) AgNPs (100 mg/kg), OLE + AgNPs (50 mg/kg), LPS + OLE (oleuropein 50 mg/kg ig + LPS 8 mg/kg ip), LPS + AgNPs (AgNPs 100 mg/kg ig + LPS 8 mg/kg ip), and LPS + OLE + AgNPs (OLE + AgNPs 50 mg/kg + LPS 8 mg/kg ip). After the applications, the rats were decapitated under appropriate conditions, and lung tissues were obtained. Oxidative stress (SOD, MDA, and GSH), and inflammation (IL-6, IL-1β, TNF-α, Nrf2, P2X7R, AKT, and TLR4) parameters were evaluated in the obtained lung tissues. Additionally, histopathology studies were performed on lung tissue samples. The data obtained were evaluated by comparison between groups. Both OLE and OLE + AgNPs showed potential in reducing oxidative stress, inflammation, and apoptosis (p < 0.05). These findings were supported by histopathological analysis, which revealed that tissue damage was reduced in OLE and OLE + AgNPs-treated groups. According to the results, LPS-induced lung injury can be reduced by using nanotechnology and producing OLE + AgNP.
Collapse
Affiliation(s)
- Seda Yakut
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Hülya Kara
- Department of Anatomy, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Seçkin Özkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ali Yeşildağ
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| |
Collapse
|
2
|
Luo Y, Cao N, Huang L, Tang L, Liu X, Zhang W, Huang S, Xie X, Yan Y. Structural Characterization, and Antioxidant, Hypoglycemic and Immunomodulatory Activity of Exopolysaccharide from Sanghuangporus sanghuang JM-1. Molecules 2024; 29:4564. [PMID: 39407494 PMCID: PMC11477767 DOI: 10.3390/molecules29194564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Sanghuang as a medicinal fungus in China has a history of more than 2000 years, and is known as the "forest gold". Most notably, the polysaccharides of Sanghuangporus sp. have attracted widespread attention due to their significant bioactivity in recent years. At present, extensive studies are being carried out on the extraction methods, structural characterization, and activity evaluation of polysaccharides. Here, we aimed to evaluate the structure and bioactivity of LEPS-1, an exopolysaccharide derived from the S. sanghuang JM-1 strain. The structure was elucidated by chromatography/spectral methods and hydrolyzation, and the solubility, the antioxidant activity, hypoglycemic activity and immunomodulatory activity were investigated. Results showed that LEPS-1 contained a →2)-α-Manp(1→6)-α-Galp(1→[2)-α-Manp(1→]n→2,6)-α-Manp(1→6,2)-α-Manp(1→3)-α-Manp(1→ backbone substituted at the O-6 and O-2 positions with side chains. These two branching fragments were β-Manp(1→. The molecular weight of LEPS-1 is 36.131 kDa. The results of biological activity analysis suggested that LEPS-1 was easily soluble in water, with reducing capability and DPPH radical scavenging capability. Furthermore, the IC50 values of LEPS-1 against α-amylase and α-glucosidase were 0.96 mg/mL and 1.92 mg/mL. LEPS-1 stimulated RAW264.7 cells to release NO, TNF-α and IL-6 with no cytotoxicity, showing potent potential for immunomodulatory activity. These findings describe a potential natural exopolysaccharide with medicinal value and a basis for the development of S. sanghuang exopolysaccharides.
Collapse
Affiliation(s)
- Yanglan Luo
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Naixin Cao
- Shannxi Tanchi Biotech Co., Ltd., Yulin 718411, China;
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Liling Huang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Lanlan Tang
- Lueyang County Test and Inspection Center for Quality and Safety of Agricultural Products, Hanzhong 724300, China
| | - Xuzhou Liu
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Wenlong Zhang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Shilv Huang
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| | - Xiuchao Xie
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yong Yan
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Y.L.)
- Guangxi Germplasm Resource Bank of National Agricultural Microbial Resource Center, Nanning 530007, China
| |
Collapse
|
3
|
Gao J, Wang N, Song W, Yuan Y, Teng Y, Liu Z. Mechanisms underlying the synergistic effects of chuanxiong combined with Chishao on treating acute lung injury based on network pharmacology and molecular docking combined with preclinical evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117862. [PMID: 38342157 DOI: 10.1016/j.jep.2024.117862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herb pair of Chuanxiong Rhizome (Ligusticum chuanxiong Hort., Chuanxiong in Chinese, CX) and Paeoniae Radix Rubra (Paeonia lactiflora Pall. Or Paeonia veitchii Lynch, Chishao in Chinese, CS) is a famous blood activating and stasis resolving pair that is often found in traditional Chinese medicine (TCM) formulas for the treatment of acute lung injury (ALI). However, the relationship of CX-CS herb pair to ALI and its underlying mechanisms are unclear. AIM OF THE STUDY The study explored the effect and mechanisms of CX-CS herb pair in LPS induced ALI by network pharmacology and molecular docking combined with preclinical evaluation. MATERIALS AND METHODS The related targets of the active compounds of CX-CS herb pair in regulating ALI were screened by network pharmacology. PPI was constructed and the potential pathways were investigated by GO and KEGG. The contribution of each active ingredient of CX-CS herb pair to ALI were calculated by network-based efficacy. The interactions between potential targets and active ingredients were evaluated by molecular docking. LPS stimulated RAW264.7 cells and mice model experiments were adopted to verify the effect of CX-CS herb pair on ALI. RESULTS A total of 25 compounds and 193 targets were identified in the CX-CS herb pair, of which 19 compounds and 64 targets were associated with ALI, and six compounds including baicalin, ellagic acid, baicalein, beta-sitosterol, paeoniflorin and ferulic acid accounted for 93.12% of the total combination index for ALI prevention. The CX-CS herbal pair against ALI was associated with PI3K/AKT and MAPK signaling pathways by GO and KEGG analysis. The screened active compounds showed good affinity for TNF, MAPK, and AKT by molecular docking. In vitro and in vivo tests showed that CX combined with CS synergistically inhibited LPS-induced ALI at 1:3, suppressed the release of TNF-α, IL-1β and IL-6, inhibited the accumulation of ROS, as well as regulated the content of SOD, MDA and GSH. Meanwhile, the herb pair was effective in inhibiting the expression of p38, ERK, IκBα, p65, caspase 3, PARP, and up-regulating the levels of AKT and Bcl-2/Bax. CONCLUSIONS Our study confirmed the synergistic effect of CX-CS herb pair on the prevention of ALI by inhibiting inflammation, oxidative stress, and apoptosis through MAPK/NF-κB and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Junling Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenjuan Song
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yajie Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
4
|
Zhong S, Sun YQ, Huo JX, Xu WY, Yang YN, Yang JB, Wu WJ, Liu YX, Wu CM, Li YG. The gut microbiota-aromatic hydrocarbon receptor (AhR) axis mediates the anticolitic effect of polyphenol-rich extracts from Sanghuangporus. IMETA 2024; 3:e180. [PMID: 38882491 PMCID: PMC11170970 DOI: 10.1002/imt2.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 06/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a significant global health concern. The gut microbiota plays an essential role in the onset and development of IBD. Sanghuangporus (SH), a traditional Chinese medicinal mushroom, has excellent anti-inflammatory effects and is effective at modulating the gut microbiota. Despite these attributes, the specific anticolitic effects of SH and the mechanisms through which the gut microbiota mediates its benefits remain unclear. Herein, we demonstrated that polyphenol-rich extract from SH effectively alleviated the pathological symptoms of dextran sodium sulfate (DSS)-induced colitis in mice by modulating the gut microbiota. Treatment with SH distinctly enriched Alistipes, especially Alistipes onderdonkii, and its metabolite 5-hydroxyindole-3-acetic acid (5HIAA). Oral gavage of live A. onderdonkii or 5HIAA potently mitigated DSS-induced colitis in mice. Moreover, both 5HIAA and SH significantly activated the aromatic hydrocarbon receptor (AhR), and the administration of an AhR antagonist abrogated their protective effects against colitis. These results underscore the potent efficacy of SH in diminishing DSS-induced colitis through the promotion of A. onderdonkii and 5HIAA, ultimately activating AhR signaling. This study unveils potential avenues for developing therapeutic strategies for colitis based on the interplay between SH and the gut microbiota.
Collapse
Affiliation(s)
- Shi Zhong
- Institute of Sericulture and Tea Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Yu-Qing Sun
- Institute of Sericulture and Tea Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Jin-Xi Huo
- Institute of Sericulture and Tea Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Wen-Yi Xu
- Beijing QuantiHealth Technology Co., Ltd. Beijing China
| | - Ya-Nan Yang
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jun-Bo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences Shenzhen Guangdong China
| | - Wei-Jie Wu
- Food Science Institute Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences Shenzhen Guangdong China
| | - Chong-Ming Wu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
| | - You-Gui Li
- Institute of Sericulture and Tea Zhejiang Academy of Agricultural Sciences Hangzhou China
| |
Collapse
|
5
|
Li T, Wang Q, Yang Y, Song D. The mechanism of polysaccharide synthesis of Sanghuangporus sanghuang based on multi-omic analyses and feedback inhibition. Carbohydr Polym 2023; 321:121288. [PMID: 37739500 DOI: 10.1016/j.carbpol.2023.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
S. sanghuang polysaccharide has various biological roles in promoting human health, however, the underlying mechanism of polysaccharide synthesis in S. sanghuang remain elusive. In the present study, the molecular structure of novel polysaccharide in the mutant S. sanghuang strain A130 with high yield of polysaccharide was characterized. The critical genes/proteins and pathways involved in polysaccharide synthesis were investigated via comparative transcriptomic, proteomic, and integrative analysis between wildtype strain SH-1 and A130. An integrated analysis of transcriptomic and proteomic results was also performed to locate potential regulators in the production of polysaccharides. The genes of cellobiohydrolase1 (CBH1) and MutS Homolog 6 (MSH6) related to glycolysis/gluconeogenesis were differentially expressed between A130 and SH-1, suggesting the potential involvement of these genes in regulating the production of polysaccharide. Proteomic analysis revealed that the abundance of Tyrosinase (TYR) and Trehalase (TREH) were substantially different between A130 and SH-1. The potential involvement of TYR in polysaccharide production was confirmed by transcriptomic-proteomic integrated analysis. The biological role of TYR and TREH in polysaccharide production was further verified by feedback inhibition of kojic acid and validamycin A, respectively. Overall, our study provides critical insights for the polysaccharide synthesis and high yield of polysaccharide through genes/pathways regulating in S. sanghuang.
Collapse
Affiliation(s)
- Tingting Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, China; Shanghai University of Medicine & Health Sciences, China
| | - Qin Wang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, China; Shanghai University of Medicine & Health Sciences, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China.
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
6
|
Zhou Z, Liang S, Zou X, Teng Y, Wang W, Fu L. Determination of Phenolic Acids Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole (UHPLC-QqQ) in Fruiting Bodies of Sanghuangporus baumii (Pilát) L.W. Zhou and Y.C. Dai. PLANTS (BASEL, SWITZERLAND) 2023; 12:3565. [PMID: 37896027 PMCID: PMC10609702 DOI: 10.3390/plants12203565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Sanghuangporus, a medicinal mushroom, has gained significant attention due to its beneficial properties. Phenolic acids are among the major bioactive compounds in Sanghuangporus, known for their antioxidant and anti-inflammatory activities. To precisely quantify the phenolic acid content, we developed a method utilizing ultra-high-performance liquid chromatography with triple quadrupole (UHPLC-QqQ). This study optimized the UHPLC-QqQ conditions to simultaneously separate and detect eight phenolic acids in Sanghuangporus baumii (Pilát) L.W. Zhou and Y.C. Dai, including chlorogenic acid, p-coumaric acid, caffeic acid, cryptochlorogenic acid, protocatechuic acid, ferulic acid, sinapic acid, and syringic acid. The separation process utilized a ZORBAX Eclipse Plus C18 column using 0.01% formic acid and 2 mmol/L ammonium formate in water as the aqueous phase and methanol containing 0.01% formic acid and 2 mmol/L ammonium formate as the organic phase. Calibration curves were constructed using standard solutions to quantitatively determine the phenolic acid content. The results showed significant variation in phenolic acid content among S. baumii fruiting bodies, with Protocatechuic acid, p-coumaric acid, and caffeic acid being the most abundant. This method is valuable for quantifying phenolic acid compounds under different cultivation conditions. It provides excellent sensitivity, selectivity, and reproducibility for the quantification of phenolic acids in Sanghuangporus, contributing to a better understanding of its chemical composition and potential health benefits. This approach represents a novel technical means for the simultaneous analysis of compound phenolic acids in Sanghuangporus fruiting bodies.
Collapse
Affiliation(s)
- Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Xiaowei Zou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| | - Yi Teng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.Z.); (S.L.); (Y.T.)
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Lizhong Fu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China;
| |
Collapse
|
7
|
Wei J, Liu L, Yuan X, Wang D, Wang X, Bi W, Yang Y, Wang Y. Transcriptome Analysis Reveals the Putative Polyketide Synthase Gene Involved in Hispidin Biosynthesis in Sanghuangporus sanghuang. MYCOBIOLOGY 2023; 51:360-371. [PMID: 37929012 PMCID: PMC10621269 DOI: 10.1080/12298093.2023.2257999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 11/07/2023]
Abstract
Hispidin is an important styrylpyrone produced by Sanghuangporus sanghuang. To analyze hispidin biosynthesis in S. sanghuang, the transcriptomes of hispidin-producing and non-producing S. sanghuang were determined by Illumina sequencing. Five PKSs were identified using genome annotation. Comparative analysis with the reference transcriptome showed that two PKSs (ShPKS3 and ShPKS4) had low expression levels in four types of media. The gene expression pattern of only ShPKS1 was consistent with the yield variation of hispidin. The combined analyses of gene expression with qPCR and hispidin detection by liquid chromatography-mass spectrometry coupled with ion-trap and time-of-flight technologies (LCMS-IT-TOF) showed that ShPKS1 was involved in hispidin biosynthesis in S. sanghuang. ShPKS1 is a partially reducing PKS gene with extra AMP and ACP domains before the KS domain. The domain architecture of ShPKS1 was AMP-ACP-KS-AT-DH-KR-ACP-ACP. Phylogenetic analysis shows that ShPKS1 and other PKS genes from Hymenochaetaceae form a unique monophyletic clade closely related to the clade containing Agaricales hispidin synthase. Taken together, our data indicate that ShPKS1 is a novel PKS of S. sanghuang involved in hispidin biosynthesis.
Collapse
Affiliation(s)
- Jiansheng Wei
- Haba Snow Mountain Provincial Nature Reserve Management and Protection Bureau, Diqing, P.R. China
- Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland, Kunming, Yunnan, P.R. China
| | - Liangyan Liu
- College of Agronomy and Biotechnology, Yunnan Agriculture University, Kunming, Yunnan, P.R. China
| | - Xiaolong Yuan
- Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland, Kunming, Yunnan, P.R. China
| | - Dong Wang
- Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland, Kunming, Yunnan, P.R. China
| | - Xinyue Wang
- Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland, Kunming, Yunnan, P.R. China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, P.R. China
| | - Wei Bi
- Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland, Kunming, Yunnan, P.R. China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China
| | - Yi Wang
- Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland, Kunming, Yunnan, P.R. China
| |
Collapse
|
8
|
Liu J, Song J, Gao F, Chen W, Zong Y, Li J, He Z, Du R. Extraction, Purification, and Structural Characterization of Polysaccharides from Sanghuangporus vaninii with Anti-Inflammatory Activity. Molecules 2023; 28:6081. [PMID: 37630334 PMCID: PMC10459065 DOI: 10.3390/molecules28166081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In order to obtain homogeneous Sanghuangporus vaninii polysaccharides with antioxidant and anti-inflammatory activities, a response surface method (RSM) was used to compare the polysaccharide extraction rate of hot water extraction and ultrasonic-assisted extraction from Sanghuangporus vaninii. The optimal conditions for ultrasonic-assisted extraction were determined as follows: an extraction temperature of 60 °C, an extraction time of 60 min, a solid-liquid ratio of 40 g/mL, and an ultrasonic power of 70 W. An SVP (Sanghuangporus vaninii polysaccharides) extraction rate of 1.41% was achieved. Five homogeneous monosaccharides were obtained by gradient ethanol precipitation with diethylaminoethyl-cellulose (DEAE) and SephadexG-100 separation and purification. The five polysaccharides were characterized by high performance liquid chromatography, the ultraviolet spectrum, the Fourier transform infrared spectrum, TG (thermogravimetric analysis), the Zeta potential, and SEM (scanning electron microscopy). The five polysaccharides had certain levels of antioxidant activity in vitro. In addition, we the investigated the anti-inflammatory effects of polysaccharides derived from Sanghuangporus vaninii on lipopolysaccharide (LPS)-induced RAW 264.7 cells and Kupffer cells. Further, we found that SVP-60 significantly inhibited the levels of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-induced RAW 264.7 cells and promoted the level of the anti-inflammatory cytokine IL-10 in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Our study provides theoretical support for the potential application of Sanghuangporus vaninii in the field of antioxidant and anti-inflammatory activities in vitro.
Collapse
Affiliation(s)
- Jinze Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.L.); (J.S.); (F.G.); (W.C.); (Y.Z.); (J.L.)
| | - Jinyue Song
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.L.); (J.S.); (F.G.); (W.C.); (Y.Z.); (J.L.)
| | - Fusheng Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.L.); (J.S.); (F.G.); (W.C.); (Y.Z.); (J.L.)
| | - Weijia Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.L.); (J.S.); (F.G.); (W.C.); (Y.Z.); (J.L.)
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.L.); (J.S.); (F.G.); (W.C.); (Y.Z.); (J.L.)
| | - Jianming Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.L.); (J.S.); (F.G.); (W.C.); (Y.Z.); (J.L.)
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.L.); (J.S.); (F.G.); (W.C.); (Y.Z.); (J.L.)
- Engineering Research Center for High Efficiency Breeding and Product Development Technology of Sika Deer, Changchun 130118, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.L.); (J.S.); (F.G.); (W.C.); (Y.Z.); (J.L.)
- Engineering Research Center for High Efficiency Breeding and Product Development Technology of Sika Deer, Changchun 130118, China
| |
Collapse
|
9
|
Zhou Z, Deng Z, Liang S, Zou X, Teng Y, Wang W, Fu L. Quantitative Analysis of Flavonoids in Fruiting Bodies of Sanghuangporus Using Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Molecules 2023; 28:5166. [PMID: 37446827 DOI: 10.3390/molecules28135166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
A rapid, precise, and dependable method for quantifying flavonoids in the fruiting bodies of Sanghuangporus was established using ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS). Separation was achieved using a ZORBAX Eclipse Plus C18 column (1.8 μm, 3.0 mm × 100 mm) with a 15 min gradient of a mobile phase consisting of 0.01% aqueous formic acid and 2 mm/L ammonium formate (mobile phase A), and 0.01% formic acid and 2 mm/L ammonium formate in methanol (mobile phase B). A mass spectrometry analysis was performed using the multiple reaction monitoring (MRM) mode with an electrospray ion source. This method enabled the simultaneous detection of 10 flavonoids (sakuranetin, quercitrin, myricitrin, kaempferol, luteolin, rutin, hyperoside, kaempferol-3-O-rutinoside, catechin, and catechin gallate) in the fruiting bodies of Sanghuangporus. Additionally, we applied this method to analyze the flavonoid content in fruiting bodies of various Sanghuangporus species. The results revealed substantial variations in flavonoid content, up to a 100-fold difference, among different species, with myricitrin, hyperoside, and rutin identified as the most abundant flavonoids. This protocol serves as a valuable tool for quantifying flavonoid compounds in different Sanghuangporus species or under diverse cultivation conditions, particularly for identifying species with high levels of specific flavonoid compounds.
Collapse
Affiliation(s)
- Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaowei Zou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yi Teng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Lizhong Fu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China
| |
Collapse
|
10
|
Al-Harbi NO, Imam F, Al-Harbi MM, Qamar W, Aljerian K, Khalid Anwer M, Alharbi M, Almudimeegh S, Alhamed AS, Alshamrani AA. Effect of Apremilast on LPS-induced immunomodulation and inflammation via activation of Nrf2/HO-1 pathways in rat lungs. Saudi Pharm J 2023; 31:1327-1338. [PMID: 37323920 PMCID: PMC10267521 DOI: 10.1016/j.jsps.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Lipopolysaccharides (LPS), the lipid component of gram-negative bacterial cell wall, is recognized as the key factor in acute lung inflammation and is found to exhibit severe immunologic reactions. Phosphodiesterase-4 (PDE-4) inhibitor: "apremilast (AP)" is an immune suppressant and anti-inflammatory drug which introduced to treat psoriatic arthritis. The contemporary experiment designed to study the protective influences of AP against LPS induced lung injury in rodents. Twenty-four (24) male experimental Wistar rats selected, acclimatized, and administered with normal saline, LPS, or AP + LPS respectively from 1 to 4 groups. The lung tissues were evaluated for biochemical parameters (MPO), Enzyme Linked Immunosorbent Assay (ELISA), flowcytometry assay, gene expressions, proteins expression and histopathological examination. AP ameliorates the lung injuries by attenuating immunomodulation and inflammation. LPS exposure upregulated IL-6, TNF-α, and MPO while downregulating IL-4 which were restored in AP pretreated rats. The changes in immunomodulation markers by LPS were reduced by AP treatment. Furthermore, results from the qPCR analysis represented an upregulation in IL-1β, MPO, TNF-α, and p38 whereas downregulated in IL-10 and p53 gene expressions in disease control animals while AP pretreated rats exhibited significant reversal in these expressions. Western blot analysis suggested an upregulation of MCP-1, and NOS-2, whereas HO-1, and Nrf-2 expression were suppressed in LPS exposed animals, while pretreatment with AP showed down regulation in the expression MCP-1, NOS-2, and upregulation of HO-1, and Nrf-2 expression of the mentioned intracellular proteins. Histological studies further affirmed the toxic influences of LPS on the pulmonary tissues. It is concluded that, LPS exposure causes pulmonary toxicities via up regulation of oxidative stress, inflammatory cytokines and stimulation of IL-1β, MPO, TNF-α, p38, MCP-1, and NOS-2 while downregulation of IL-4, IL-10, p53, HO-1, and Nrf-2 at different expression level. Pretreatment with AP controlled the toxic influences of LPS by modulating these signaling pathways.
Collapse
Affiliation(s)
- Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Matar Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Alharbi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Shen Q, Qi SM, Zhang JT, Li MH, Wang YP, Wang Z, Li W. Platycodin D inhibits HFD/STZ-induced diabetic nephropathy via inflammatory and apoptotic signaling pathways in C57BL/6 mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116596. [PMID: 37146841 DOI: 10.1016/j.jep.2023.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried root of Platycodon grandiflorum (Jacq.) A.DC. (PG) is a traditional herb used in Asian countries and is widely used in formulas for the treatment of diabetes. Platycodin D (PD) is one of the most important components of PG. AIM OF THE STUDY This study aimed to investigate the improvement effects and regulatory mechanisms of PD on kidney injury in a high-fat diet (HFD) combined with streptozotocin (STZ)-induced diabetic nephropathy (DN). MATERIALS AND METHODS Model mice were treated with oral gavage of the PD (2.5, 5 mg/kg) for 8 weeks. Determination of serum lipid and renal function-related indexes creatinine (CRE), and blood urea nitrogen (BUN) levels in mice, and histopathological section analysis of kidney. Molecular docking and molecular dynamics were utilized to study the binding ability of PD to target NF-κB and apoptosis signaling pathway-related proteins. Moreover, western blot was used to test the expressions of NF-κB and apoptosis-related proteins. Vitro experiments were performed to validate the related mechanisms using RAW264.7 cells and HK2 cells cultured by high glucose. RESULTS In vivo experiments, the administration of PD (2.5 and 5.0 mg/kg) reduced fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR) levels in DN mice, while lipid levels and renal function were significantly improved. Furthermore, PD significantly inhibited the development of DN in the model mice by regulating NF-κB and apoptotic signaling pathways, reduced the abnormal elevation of serum inflammatory factors TNF-α and IL-1β, and repaired renal cell apoptosis. In vitro experiments, NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (PDTC) was used to confirm that PD can alleviate high glucose-induced inflammation in RAW264.7 cells and inhibit the release of inflammatory factors. And in HK2 cell experiments, it was verified that PD can inhibit ROS generation, reduce the loss of JC-1 and suppress HK2 cell injury by regulating NF-κB and apoptotic pathways. CONCLUSIONS These data suggested that PD has the potential to prevent and treat DN and is a promising natural nephroprotective agent.
Collapse
Affiliation(s)
- Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Si-Min Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ming-Han Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| |
Collapse
|
12
|
El-Sayed EK, Ibrahim RR, Ahmed AA, Khattab MA, Chen LY, Lai KH, Shaarawy FSE, Tawfik NF, Moharram FA. Quercus coccinea Münchh leaves polyphenols: Appraisal acute lung injury induced by lipopolysaccharide in mice. Biomed Pharmacother 2023:114765. [PMID: 37246132 DOI: 10.1016/j.biopha.2023.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/30/2023] Open
Abstract
Genus Quercus is a well-known source for its polyphenolic content and important biological activity. Plants belonging to the Quercus genus were traditionally used in asthma, inflammatory diseases, wound healing, acute diarrhea, and hemorrhoid. Our work intended to study the polyphenolic profile of the Q. coccinea (QC) leaves and to assess the protective activity of its 80% aqueous methanol extract (AME) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Together, the potential molecular mechanism was investigated. Nineteen polyphenolic compounds (1-18), including tannins, flavone, and flavonol glycosides. Phenolic acids and aglycones were purified and identified from the AME of QC leaves. Treatment with AME of QC showed an anti-inflammatory effect evidenced by a remarkable decline in the count of white blood cells and neutrophils which was in harmony with decreasing the levels of high mobility group box-1, nuclear factor kappa B, tumor necrosis factor-α, and interleukin 1 beta. In addition, the antioxidant activity of QC was documented through the significant reduction in malondialdehyde level and elevation of reduced glutathione level and superoxide dismutase activity. Furthermore, the mechanism involved in the pulmonary protective effect of QC involved the downregulation of the TLR4/MyD88 pathway. The AME of QC showed a protective effect against LPS-induced ALI through the powerful anti-inflammatory and antioxidant activities which are linked to its abundancy with polyphenols.
Collapse
Affiliation(s)
- Elsayed K El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Reham R Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Asmaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Mohamed A Khattab
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Fatheya S El Shaarawy
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Nashwa F Tawfik
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Fatma A Moharram
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
13
|
Wang H, Ma JX, Wu DM, Gao N, Si J, Cui BK. Identifying Bioactive Ingredients and Antioxidant Activities of Wild Sanghuangporus Species of Medicinal Fungi. J Fungi (Basel) 2023; 9:jof9020242. [PMID: 36836356 PMCID: PMC9959451 DOI: 10.3390/jof9020242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Sanghuangporus refers to a group of rare medicinal fungi with remarkable therapeutic properties. However, current knowledge on the bioactive ingredients and antioxidant activities of different species of this genus is limited. In this study, a total of 15 wild strains from 8 species of Sanghuangporus were selected as the experimental materials for identification of the bioactive components (polysaccharide, polyphenol, flavonoid, triterpenoid, and ascorbic acid) and antioxidant activities (scavenging activities against hydroxyl, superoxide, DPPH, and ABTS radicals; superoxide dismutase activity; and ferric reducing ability of plasma). Notably, individual strains contained different levels of various indicators, among which Sanghuangporus baumii Cui 3573, S. sanghuang Cui 14419 and Cui 14441, S. vaninii Dai 9061, and S. zonatus Dai 10841 displayed the strongest activities. The correlation analysis of bioactive ingredients and antioxidant activities revealed that the antioxidant capacity of Sanghuangporus is mainly associated with the contents of flavonoid and ascorbic acid, followed by polyphenol and triterpenoid, and finally, polysaccharide. Together, the results obtained from the comprehensive and systematic comparative analyses contribute further potential resources and critical guidance for the separation, purification, and further development and utilization of bioactive agents from wild Sanghuangporus species, as well as the optimization of their artificial cultivation conditions.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jin-Xin Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Dong-Mei Wu
- Xinjiang Academy of Agricultural and Reclamation Sciences/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Shihezi 832000, China
| | - Neng Gao
- Xinjiang Academy of Agricultural and Reclamation Sciences/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Shihezi 832000, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.S.); (B.-K.C.)
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.S.); (B.-K.C.)
| |
Collapse
|
14
|
Qiu H, Wang W, Hu K, Liu W, Pan S, Lv Q, Xu G, Yu Q. EuHD1 protects against inflammatory injury driven by NLRP3 inflammasome. Int Immunopharmacol 2023; 115:109712. [PMID: 37724954 DOI: 10.1016/j.intimp.2023.109712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) possessing anti-inflammatory, analgesic and antipyretic activities, are widely used in the treatment of osteoarthritis, rheumatism and rheumatoid arthritis. However, its long-term or large use will cause serious gastrointestinal injury or cardiovascular adverse reactions, which limits its clinical application. We have synthesized a new class of NSAIDs, EuHD1, which can release hydrogen sulfide and have better gastrointestinal safety. However, the anti-inflammatory molecular mechanism of the drug is still unclear. In this paper, we explored the mechanism of EuHD1 on NLRP3 inflammasome and its effects on acute lung injury and acute liver injury in mice. In vitro results demonstrated that EuHD1 inhibited macrophage pyroptosis and LDH release induced by LPS combined with ATP. In addition, EuHD1 blocked NLRP3 inflammasome activation and suppressed following Caspase-1 activation and secretion of mature IL-1β. EuHD1 restrained intracellular ROS production and the formation of ASC oligomers, which inhibited the assembly and activation of NLRP3 inflammasome. In vivo results further showed that EuHD1 alleviated LPS-induced acute lung injury in mice, and inhibited the production of mature IL-1β and Caspase-1 (p20). Besides, EuHD1 improved D-GalN/LPS-induced acute liver injury, and inhibited SOD/MDA levels and oxidative stress injury, and blocked the activation of NLRP3 inflammasome. In summary, we found that EuHD1 inhibits the assembly and activation of NLRP3 inflammasome through restraining the production of ROS and the formation of ASC oligomers, and has therapeutic effects on acute lung injury and liver injury in mice, indicating that EuHD1 has the potential to treat NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Huanhuan Qiu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Kejun Hu
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Wangwang Liu
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shumin Pan
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Qi Lv
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Guanglin Xu
- College of Life Science, Nanjing Normal University, Nanjing, China; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Qingfeng Yu
- School of Science, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
15
|
Dong Z, Wang Y, Hao C, Cheng Y, Guo X, He Y, Shi Y, Wang S, Li Y, Shi W. Sanghuangporus sanghuang extract extended the lifespan and healthspan of Caenorhabditis elegans via DAF-16/SIR-2.1. Front Pharmacol 2023; 14:1136897. [PMID: 37153808 PMCID: PMC10159060 DOI: 10.3389/fphar.2023.1136897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/20/2023] [Indexed: 05/10/2023] Open
Abstract
Sanghuangporus Sanghuang is a fungus species. As a traditional Chinese medicine, it is known for antitumor, antioxidant and anti-inflammatory properties. However, the antiaging effect of S. Sanghuang has not been deeply studied. In this study, the effects of S. Sanghuang extract (SSE) supernatants on the changes of nematode indicators were investigated. The results showed that different concentrations of SSE prolonged the lifespans of nematodes and substantially increased these by 26.41%. In addition, accumulations of lipofuscin were also visibly reduced. The treatment using SSE also played a role in increasing stress resistance, decreasing ROS accumulations and obesity, and enhancing the physique. RT-PCR analysis showed that the SSE treatment upregulated the transcription of daf-16, sir-2.1, daf-2, sod-3 and hsp-16.2, increased the expression of these genes in the insulin/IGF-1 signalling pathway and prolonged the lifespans of nematodes. This study reveals the new role of S. Sanghuang in promoting longevity and inhibiting stress and provides a theoretical basis for the application of S. Sanghuang in anti-ageing treatments.
Collapse
Affiliation(s)
- Zhenghan Dong
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yachao Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Cuiting Hao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yuan Cheng
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yanyu He
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yueyue Shi
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Shuang Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yunqi Li
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, Jilin, China
- College of Life Sciences, Jilin University, Changchun, Jilin, China
- *Correspondence: Wei Shi,
| |
Collapse
|
16
|
Zhang H, Jiang F, Li L, Liu X, Yan JK. Recent advances in the bioactive polysaccharides and other key components from Phellinus spp. and their pharmacological effects: A review. Int J Biol Macromol 2022; 222:3108-3128. [DOI: 10.1016/j.ijbiomac.2022.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
17
|
Study on the potential of Sanghuangporus sanghuang and its components as COVID-19 spike protein receptor binding domain inhibitors. Biomed Pharmacother 2022; 153:113434. [PMID: 36076488 PMCID: PMC9288968 DOI: 10.1016/j.biopha.2022.113434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has led to the most severe global pandemic, which began in Wuhan, China. Angiotensin-converting enzyme 2 (ACE2) combines with the spike protein of SARS-CoV-2, allowing the virus to cross the membrane and enter the cell. SARS-CoV-2 is modified by the transmembrane protease serine 2 (TMPRSS2) to facilitate access to cells. Accordingly, ACE2 and TMPRSS2 are targets of vital importance for the avoidance of SARS-CoV-2 infection. Sanghuangporus sanghuang (SS) is a traditional Chinese medicine that has been demonstrated to have antitumor, antioxidant, anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective and immunomodulatory properties. In this paper, we demonstrated that SS decreased ACE2 and TMPRSS2 expression in cell lines and a mouse model without cytotoxicity or organ damage. Liver and kidney sections were confirmed to have reduced expression of ACE2 and TMPRSS2 by immunohistochemistry (IHC) assessment. Then, hispidin, DBA, PAC, PAD and CA, phenolic compounds of SS, were also tested and verified to reduce the expression of ACE2 and TMPRSS2. In summary, the results indicate that SS and its phenolic compounds have latent capacity for preventing SARS-CoV-2 infection in the future.
Collapse
|
18
|
Qiu P, Liu J, Zhao L, Zhang P, Wang W, Shou D, Ji J, Li C, Chai K, Dong Y. Inoscavin A, a pyrone compound isolated from a Sanghuangporus vaninii extract, inhibits colon cancer cell growth and induces cell apoptosis via the hedgehog signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153852. [PMID: 35026508 DOI: 10.1016/j.phymed.2021.153852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sanghuangporus vaninii, a large precious medicinal fungus called Sanghuang in China, has significant antitumor activity. We previously reported that a Sanghuangporus vaninii extract could lead to apoptosis in HT-29 cells through the intrinsic apoptotic pathway. We further found that Inoscavin A exhibited anti-colon cancer activity, but its specific mechanisms have not been fully elucidated. METHODS Inoscavin A was obtained from Sanghuangporus vaninii by the classic phytochemical separation technology. The male BALB/c nude mice were injected with HT-29 colon cancer cells as animal model. In order to observe the pathological changes of tumor section, the hematoxylin-eosin(H&E) staining was applied in the histological analysis. Metabolomics was utilized for the investigation of the overall changes of serum metabolites in animal model, and the potential targets of Inoscavin A were analyzed by Ingenuity Pathway Analysis (IPA). We further employed a molecular docking approach to predict the degree of combination of Inoscavin A and Smo. Then we further performed Western blotting and immunofluorescence analysis to investigate the expression of proteins involved in Hh-related pathways in tumor tissues. In addition, the colony formation assay, scratch-wound assay and transwell migration and invasion assay were conducted to evaluate the anti-colon-cancer activity of Inoscavin A. Concurrently, the mitochondrial membrane potential assay and TUNEL apoptosis assay were detected to demonstrate the effect of Inoscavin A on promoting HT-29 cells apoptosis. Western blot experiments verified the anti-tumor effects of Inoscavin A were modulated the protein expression of Shh, Ptch1, Smo and Gli1 in HT-29 cells. RESULTS We showed that Inoscavin A, a pyrone compound isolated from the Sanghuangporus vaninii extract, exerted its antitumor activity in an HT-29 colon cancer cell xenograft mouse model. Subsequently, we first time prove that the antitumor effects of Inoscavin A were related to the hedgehog (Hh) signaling pathway. Furthermore, we demonstrated that Smo, the core receptor of the Hh pathway, was critical for the induction of apoptosis of Inoscavin A and that overexpression of this target could significantly rescue cell apoptosis induced by Inoscavin A treatment. CONCLUSION Thus, our studies first propose that the natural outgrowth Inoscavin A exerted its anti-cancer effects by inhibiting Smo to suppress the activity of the Hh pathway though inhibiting cell proliferation and promoting apoptosis. These findings further indicate that Inoscavin A will be expected to be a prospective remedical compound for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ping Qiu
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hang zhou, China
| | - Jingqun Liu
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hang zhou, China
| | - Lisha Zhao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hang zhou 310007, China
| | - Pinghu Zhang
- Medical College, Yangzhou University, Yang zhou, China
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hang zhou, China
| | - Dan Shou
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hang zhou 310007, China
| | - Jinjun Ji
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hang zhou, China
| | - Changyu Li
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hang zhou, China
| | - Kequn Chai
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hang zhou 310007, China.
| | - Yu Dong
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hang zhou 310007, China.
| |
Collapse
|
19
|
Li IC, Chang FC, Kuo CC, Chu HT, Li TJ, Chen CC. Pilot Study: Nutritional and Preclinical Safety Investigation of Fermented Hispidin-Enriched Sanghuangporus sanghuang Mycelia: A Promising Functional Food Material to Improve Sleep. Front Nutr 2022; 8:788965. [PMID: 35111796 PMCID: PMC8801445 DOI: 10.3389/fnut.2021.788965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Sleep disturbances have been the hallmark of the recent coronavirus disease 2019 pandemic. Studies have shown that once sleep is disrupted, it can lead to psychological and physical health issues which can, in turn, disrupt circadian rhythm and induce further sleep disruption. As consumers are trying to establish healthy routines, nutritional and preclinical safety investigation of fermented hispidin-enriched Sanghuangporus sanghuang mycelia (GKSS) as a novel food material for spontaneous sleep in Sprague-Dawley rats is conducted for the first time. Results showed that the nutritional analysis of GKSS including moisture, ash, crude lipid, crude protein, carbohydrate, and energy were found to be 2.4 ± 0.3%, 8.0 ± 2.5%, 1.7 ± 0.3%, 22.9 ± 1.2%, 65.1 ± 3.1%, and 367.1 ± 10.2 kcal/100 g respectively. In the 28-day repeated-dose oral toxicity study, only Sprague-Dawley male rats receiving 5 g/kg showed a slight decrease in feed consumption at week 3, but no associated clinical signs of toxicity or significant weight loss were observed. Although a significant reduction of the platelet count was found in mid- and high-dose GKSS treated male groups, such changes were noted to be within the normal range and were not correlated with relative spleen weight changes. Hence, the no observed adverse effect level (NOAEL) of GKSS was identified to be higher than 5 g/kg in rats. After the safety of GKSS is confirmed, the sleep-promoting effect of GKSS ethanolic extract enriched with hispidin was further assessed. Despite 75 mg/kg of GKSS ethanolic extract does not affect wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep, GKSS ethanolic extract at 150 mg/kg significantly decreased wakefulness and enhanced NREM and REM sleep. Interestingly, such effects seem to be mediated through anti-inflammatory activities via NF-E2-related factor-2 (Nrf2) signaling pathway. Taken together, these findings provide the preliminary evidence to studies support the claims suggesting that GKSS contained useful phytochemical hispidin could be considered as and is safe to use as a functional food agent or nutraceutical for relieving sleep problems mediated by Nrf2 pathway, which the results are useful for future clinical pilot study.
Collapse
Affiliation(s)
- I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Tung Chu
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
- *Correspondence: Tsung-Ju Li
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
- Chin-Chu Chen
| |
Collapse
|
20
|
Hou R, Zhou L, Fu Y, Wang T, Li Z, Zhou L, Zhang G, Tian X. Chemical characterization of two fractions from Sanghuangporus sanghuang and evaluation of antidiabetic activity. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
21
|
Wu YX, Wang YY, Gao ZQ, Chen D, Liu G, Wan BB, Jiang FJ, Wei MX, Zuo J, Zhu J, Chen YQ, Qian F, Pang QF. Ethyl ferulate protects against lipopolysaccharide-induced acute lung injury by activating AMPK/Nrf2 signaling pathway. Acta Pharmacol Sin 2021; 42:2069-2081. [PMID: 34417573 DOI: 10.1038/s41401-021-00742-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ethyl ferulate (EF) is abundant in Rhizoma Chuanxiong and grains (e.g., rice and maize) and possesses antioxidative, antiapoptotic, antirheumatic, and anti-inflammatory properties. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) is still unknown. In the present study, we found that EF significantly alleviated LPS-induced pathological damage and neutrophil infiltration and inhibited the gene expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in murine lung tissues. Moreover, EF reduced the gene expression of TNF-α, IL-1β, IL-6, and iNOS and decreased the production of NO in LPS-stimulated RAW264.7 cells and BMDMs. Mechanistic experiments revealed that EF prominently activated the AMPK/Nrf2 pathway and promoted Nrf2 nuclear translocation. AMPK inhibition (Compound C) and Nrf2 inhibition (ML385) abolished the beneficial effect of EF on the inflammatory response. Furthermore, the protective effect of EF on LPS-induced ALI was not observed in Nrf2 knockout mice. Taken together, the results of our study suggest that EF ameliorates LPS-induced ALI in an AMPK/Nrf2-dependent manner. These findings provide a foundation for developing EF as a new anti-inflammatory agent for LPS-induced ALI/ARDS therapy.
Collapse
|
22
|
Wang T, Wang G, Zhang G, Hou R, Zhou L, Tian X. Systematic analysis of the lysine malonylome in Sanghuangporus sanghuang. BMC Genomics 2021; 22:840. [PMID: 34798813 PMCID: PMC8603570 DOI: 10.1186/s12864-021-08120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/22/2021] [Indexed: 01/18/2023] Open
Abstract
Background Sanghuangporus sanghuang is a well-known traditional medicinal mushroom associated with mulberry. Despite the properties of this mushroom being known for many years, the regulatory mechanisms of bioactive compound biosynthesis in this medicinal mushroom are still unclear. Lysine malonylation is a posttranslational modification that has many critical functions in various aspects of cell metabolism. However, at present we do not know its role in S. sanghuang. In this study, a global investigation of the lysine malonylome in S. sanghuang was therefore carried out. Results In total, 714 malonyl modification sites were matched to 255 different proteins. The analysis indicated that malonyl modifications were involved in a wide range of cellular functions and displayed a distinct subcellular localization. Bioinformatics analysis indicated that malonylated proteins were engaged in different metabolic pathways, including glyoxylate and dicarboxylate metabolism, glycolysis/gluconeogenesis, and the tricarboxylic acid (TCA) cycle. Notably, a total of 26 enzymes related to triterpene and polysaccharide biosynthesis were found to be malonylated, indicating an indispensable role of lysine malonylation in bioactive compound biosynthesis in S. sanghuang. Conclusions These findings suggest that malonylation is associated with many metabolic pathways, particularly the metabolism of the bioactive compounds triterpene and polysaccharide. This paper represents the first comprehensive survey of malonylation in S. sanghuang and provides important data for further study on the physiological function of lysine malonylation in S. sanghuang and other medicinal mushrooms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08120-0.
Collapse
Affiliation(s)
- Tong Wang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Guoli Zhang
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Ranran Hou
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Liwei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuemei Tian
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China.
| |
Collapse
|
23
|
Chen D, Zeng R, Teng G, Cai C, Pan T, Tu H, Lin H, Du Q, Wang H, Chen Y. Menstrual blood-derived mesenchymal stem cells attenuate inflammation and improve the mortality of acute liver failure combining with A2AR agonist in mice. J Gastroenterol Hepatol 2021; 36:2619-2627. [PMID: 33729623 PMCID: PMC8518829 DOI: 10.1111/jgh.15493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIM Acute liver failure (ALF) poses a serious public health issue. The menstrual blood-derived mesenchymal stem cells (MenSCs) have been applied to cure various liver-related diseases. However, the efficacy and mechanism are far from clear. This study aims to explore the efficacy and potential mechanism of MenSCs to cure ALF. METHODS We investigate the potential mechanism of MenSCs on the ALF in vitro and in vivo. A2A adenosine receptor (A2AR) activation was investigated as the potential reinforcer for MenSCs treatment. Lipid polysaccharide/d-galactosamine (d-GalN) was employed to induce ALF. Diverse techniques were used to measure the inflammatory cytokines and key signaling molecules. Hematoxylin-eosin stain and aminotransaminases were applied to evaluate the liver injury. Flow cytometry was employed to assess the T cells. RESULTS The MenSCs can decrease the lipid polysaccharide-induced inflammatory cytokine elevation and related signaling molecules in ALF, including TLR4, phosphorylated-NF-kBp65 (p-NF-kBp65), PI3K, and p-AKT, p-mTOR and p-IKK in vitro. Moreover, MenSCs also can significantly reverse the liver injury, inflammatory cytokines elevation and related signaling molecules increase, and Treg/Th17 ratio decrease in vivo. In addition, MenSCs plus A2AR agonist can enhance the above changes. CONCLUSIONS The MenSCs can attenuate the ALF-induced liver injury via inhibition of TLR4-mediated PI3K/Akt/mTOR/IKK signaling. Then, this inhibits the p-NF-κBp65 translocate into nuclear, which causes a decrease of inflammatory cytokines release. Moreover, A2AR agonist can play a synergic role with MenSCs and enhance the above-mentioned effects.
Collapse
Affiliation(s)
- Dazhi Chen
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Ruichao Zeng
- Department of Oncological SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina,Precision and Systems BiomedicineQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia,Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Guigen Teng
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Chao Cai
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Tongtong Pan
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Hanxiao Tu
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Hongwei Lin
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Qingjing Du
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Huahong Wang
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Yongping Chen
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
24
|
Zheng N, Ming Y, Chu J, Yang S, Wu G, Li W, Zhang R, Cheng X. Optimization of Extraction Process and the Antioxidant Activity of Phenolics from Sanghuangporus baumii. Molecules 2021; 26:3850. [PMID: 34202632 PMCID: PMC8270281 DOI: 10.3390/molecules26133850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Sanghuangporus baumii, is a widely used medicinal fungus. The polyphenols extracted from this fungus exert antioxidant, anti-inflammatory, and hypoglycemic effects. In this study, polyphenols from the fruiting bodies of S. baumii were obtained using the deep eutectic solvent (DES) extraction method. The factors affecting the extraction yield were investigated at different conditions. Based on the results from single-factor experiments, response surface methodology was used to optimize the extraction conditions. The scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was determined. The results showed that the DES system composed of choline chloride and malic acid had the best extraction yield (6.37 mg/g). The optimal extraction parameters for response surface methodology were as follows: 42 min, 58 ℃, 1:34 solid-liquid (mg/mL), and water content of 39%. Under these conditions, the yield of polyphenols was the highest (12.58 mg/g). At 0.30 mg/mL, the scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was 95.71%, 91.08%, and 85.52%, respectively. Thus, the method using DES was more effective than the conventional method of extracting phenolic compounds from the fruiting bodies of S. baumii. Moreover, the extracted polyphenols exhibited potent antioxidant activity.
Collapse
Affiliation(s)
- Na Zheng
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Yongfei Ming
- School of Life Science, Ludong University, Yantai 264025, China;
| | - Jianzhi Chu
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Shude Yang
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Guochao Wu
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Weihuan Li
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Rui Zhang
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Xianhao Cheng
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| |
Collapse
|
25
|
Al-Obaidi JR, Jambari NN, Ahmad-Kamil EI. Mycopharmaceuticals and Nutraceuticals: Promising Agents to Improve Human Well-Being and Life Quality. J Fungi (Basel) 2021; 7:jof7070503. [PMID: 34202552 PMCID: PMC8304235 DOI: 10.3390/jof7070503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/19/2023] Open
Abstract
Fungi, especially edible mushrooms, are considered as high-quality food with nutritive and functional values. They are of considerable interest and have been used in the synthesis of nutraceutical supplements due to their medicinal properties and economic significance. Specific fungal groups, including predominantly filamentous endophytic fungi from Ascomycete phylum and several Basidiomycetes, produce secondary metabolites (SMs) with bioactive properties that are involved in the antimicrobial and antioxidant activities. These beneficial fungi, while high in protein and important fat contents, are also a great source of several minerals and vitamins, in particular B vitamins that play important roles in carbohydrate and fat metabolism and the maintenance of the nervous system. This review article will summarize and discuss the abilities of fungi to produce antioxidant, anticancer, antiobesity, and antidiabetic molecules while also reviewing the evidence from the last decade on the importance of research in fungi related products with direct and indirect impact on human health.
Collapse
Affiliation(s)
- Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
- Correspondence: (J.R.A.-O.); (N.N.J.)
| | - Nuzul Noorahya Jambari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (J.R.A.-O.); (N.N.J.)
| | - E. I. Ahmad-Kamil
- Malaysian Nature Society (MNS), JKR 641, Jalan Kelantan, Bukit Persekutuan, Kuala Lumpur 50480, Malaysia;
| |
Collapse
|
26
|
Jiang WP, Deng JS, Huang SS, Wu SH, Chen CC, Liao JC, Chen HY, Lin HY, Huang GJ. Sanghuangporus sanghuang Mycelium Prevents Paracetamol-Induced Hepatotoxicity through Regulating the MAPK/NF-κB, Keap1/Nrf2/HO-1, TLR4/PI3K/Akt, and CaMKKβ/LKB1/AMPK Pathways and Suppressing Oxidative Stress and Inflammation. Antioxidants (Basel) 2021; 10:antiox10060897. [PMID: 34199606 PMCID: PMC8226512 DOI: 10.3390/antiox10060897] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Liver damage induced by paracetamol overdose is the main cause of acute liver failure worldwide. In order to study the hepatoprotective effect of Sanghuangporus sanghuang mycelium (SS) on paracetamol-induced liver injury, SS was administered orally every day for 6 days in mice before paracetamol treatment. SS decreased serum aminotransferase activities and the lipid profiles, protecting against paracetamol hepatotoxicity in mice. Furthermore, SS inhibited the lipid peroxidation marker malondialdehyde (MDA), hepatic cytochrome P450 2E1 (CYP2E1), and the histopathological changes in the liver and decreased inflammatory activity by inhibiting the production of proinflammatory cytokines in paracetamol-induced acute liver failure. Moreover, SS improved the levels of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase in the liver. Significantly, SS diminished mitogen-activated protein kinase (MAPK), Toll-like receptor 4 (TLR4), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the nuclear factor-kappa B (NF-κB) axis, as well as upregulated the Kelch-like ECH-associated protein 1 (Keap1)/erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, in paracetamol-induced mice. SS mainly inhibited the phosphorylation of the liver kinase B1 (LKB1), Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ), and AMP-activated protein kinase (AMPK) protein expression. Furthermore, the protective effects of SS on paracetamol-induced hepatotoxicity were abolished by compound C, an AMPK inhibitor. In summary, we provide novel molecular evidence that SS protects liver cells from paracetamol-induced hepatotoxicity by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wen-Ping Jiang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Department of Occupational Therapy, Asia University, Taichung 413, Taiwan
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-S.H.); (J.-C.L.); (H.-Y.C.); (H.-Y.L.)
| | - Sheng-Hua Wu
- Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan;
| | - Chin-Chu Chen
- Grape King Biotechnology Center, Chung-Li City 320, Taiwan;
| | - Jung-Chun Liao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-S.H.); (J.-C.L.); (H.-Y.C.); (H.-Y.L.)
| | - Hung-Yi Chen
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-S.H.); (J.-C.L.); (H.-Y.C.); (H.-Y.L.)
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-S.H.); (J.-C.L.); (H.-Y.C.); (H.-Y.L.)
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5508)
| |
Collapse
|
27
|
Zhou Q, Wang J, Jiang H, Wang G, Wang Y. Deep sequencing of the Sanghuangporus vaninii transcriptome reveals dynamic landscapes of candidate genes involved in the biosynthesis of active compounds. Arch Microbiol 2021; 203:2315-2324. [PMID: 33646337 DOI: 10.1007/s00203-021-02225-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The medicinal fungus Sanghuang produces diverse bioactive compounds and is widely used in Asian countries. However, little is known about the genes and pathways involved in the biosynthesis of these active compounds. Based on our previous study providing Sanghuangporus vaninii genomic information, the transcriptomes of MY (mycelium), OY (1-year-old fruiting bodies), and TY (3-year-old fruiting bodies) were determined in this study. A significant number of genes (4774) were up- or downregulated between mycelium and fruiting bodies, but only 1422 differentially expressed genes were detected between OY and TY. 138 genes encoding P450s were identified in the fungal genome and grouped into 25 P450 families; more than 64% (88) of the genes were significantly differentially expressed between the mycelium and fruiting body, suggesting that these P450s are involved in fungal sexual development. Importantly, the expression of genes involved in bioactive compound (triterpenoids, polysaccharides, and flavonoids) biosynthesis in asexual (cultured with solid and liquid media) and sexual stages was explored and combined with transcriptome and quantitative PCR analyses. More genes involved in the biosynthesis of bioactive compounds were expressed more highly in mycelium than in fruiting bodies under liquid medium culture compared with solid medium culture, which was consistent with the yields of different bioactive compounds, suggesting that liquid fermentation of S. vaninii Kangneng can be used to obtain these bioactive compounds. A comprehensive understanding of the genomic information of S. vaninii will facilitate its potential use in pharmacological and industrial applications.
Collapse
Affiliation(s)
- Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jiuxiang Wang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Gaofei Wang
- Clinical Laboratory, The Central Hospital of Bianqiao Town, Bianqiao, 273305, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
28
|
Wang S, Liu Z, Wang X, Sun T, Zou L. Cloning and characterization of a phosphomevalonate kinase gene from Sanghuangporus baumii. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1938678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Shixin Wang
- Department of Forest Conservation, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Zengcai Liu
- Department of Forest Conservation, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Xutong Wang
- Department of Forest Conservation, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Tingting Sun
- Department of Food Engineering, College of Food Science, Harbin University, Harbin, Heilongjiang, PR China
| | - Li Zou
- Department of Forest Conservation, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| |
Collapse
|
29
|
Li T, Chen L, Wu D, Dong G, Chen W, Zhang H, Yang Y, Wu W. The Structural Characteristics and Biological Activities of Intracellular Polysaccharide Derived from Mutagenic Sanghuangporous sanghuang Strain. Molecules 2020; 25:molecules25163693. [PMID: 32823661 PMCID: PMC7464456 DOI: 10.3390/molecules25163693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Sanghuangporous sanghuang is a rare medicinal fungus which contains polysaccharide as the main active substance and was used to treat gynecological diseases in ancient China. The intracellular polysaccharide yield of S. sanghuang was enhanced by the strain A130 which was screened from mutant strains via atmospheric and room temperature plasma (ARTP) mutagenesis. The objective of this research was to investigate the effects of ARTP mutagenesis on structural characteristics and biological activities of intracellular polysaccharides from S. sanghuang. Six intracellular polysaccharide components were obtained from S. sanghuang mycelia cultivated by the mutagenic strain (A130) and original strain (SH1), respectively. The results revealed that the yields of polysaccharide fractions A130-20, A130-50 and A130-70 isolated from the mutagenic strain fermentation mycelia were significantly higher than those of the original ones by 1.5-, 1.3- and 1.2-fold, and the clear physicochemical differences were found in polysaccharide fractions precipitated by 20% ethanol. A130-20 showed a relatively expanded branching chain with higher molecular weight and better in vitro macrophage activation activities and the IL-6, IL-1, and TNF-α production activities of macrophages were improved by stimulation of A130-20 from the mutagenic strain. This study demonstrates that ARTP is a novel and powerful tool to breed a high polysaccharide yield strain of S. sanghuang and may, therefore, contribute to the large-scale utilization of rare medicinal fungi.
Collapse
Affiliation(s)
- Tingting Li
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China;
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (L.C.); (G.D.)
| | - Linjun Chen
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (L.C.); (G.D.)
| | - Di Wu
- College of Medical Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.W.); (W.C.); (H.Z.)
| | - Guochao Dong
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (L.C.); (G.D.)
| | - Wanchao Chen
- College of Medical Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.W.); (W.C.); (H.Z.)
| | - Henan Zhang
- College of Medical Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.W.); (W.C.); (H.Z.)
| | - Yan Yang
- College of Medical Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.W.); (W.C.); (H.Z.)
- Correspondence: (Y.Y.); (W.W.); Tel.: +86-21-6220-9765 (Y.Y.); +86-21-6190-0388 (W.W.)
| | - Wenhui Wu
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China;
- Correspondence: (Y.Y.); (W.W.); Tel.: +86-21-6220-9765 (Y.Y.); +86-21-6190-0388 (W.W.)
| |
Collapse
|
30
|
Yao H, Sun J, Wei J, Zhang X, Chen B, Lin Y. Kaempferol Protects Blood Vessels From Damage Induced by Oxidative Stress and Inflammation in Association With the Nrf2/HO-1 Signaling Pathway. Front Pharmacol 2020; 11:1118. [PMID: 32792954 PMCID: PMC7387620 DOI: 10.3389/fphar.2020.01118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Over recent years, an increasing number of studies have confirmed that the occurrence and development of vascular pathological changes are closely related to oxidative stress and the inflammatory response of the vascular endothelium. Kaempferol is the most common flavonoid compound found in fruits and vegetables. Our present research identified that kaempferol had the capability to protect the vascular endothelium in a mouse model of vascular injury and explored the specific mechanisms underlying these effects by investigating oxidative stress, the extent of cardiovascular injury, and inflammatory markers such as NF-κB, TNF-α, IL-6, and the Nrf2/HO-1 signaling pathway. Analysis showed that kaempferol reduced oxidative stress and inflammation mediated by H2O2 and paraquat, respectively, both in vitro and in vivo. Furthermore, kaempferol suppressed the levels of TNF-α and IL-6, and the activation of NF-κB, in aortic tissues and human umbilical vein endothelial cells (HUVECs). Finally, we observed that kaempferol corrected the levels of antioxidants and elevated the protein levels of Nrf2 and HO-1 in aortic tissues and HUVECs. Collectively, our findings prove that kaempferol protects blood vessels from damage induced by oxidative stress and inflammation and that the Nrf2/HO-1 signaling pathway plays a key role in mediating these effects.
Collapse
Affiliation(s)
- He Yao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jingyu Sun
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Bing Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China.,The Key Laboratory of Geriatrics, Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
31
|
Huang CY, Deng JS, Huang WC, Jiang WP, Huang GJ. Attenuation of Lipopolysaccharide-Induced Acute Lung Injury by Hispolon in Mice, Through Regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 Pathways, and Suppressing Oxidative Stress-Mediated ER Stress-Induced Apoptosis and Autophagy. Nutrients 2020; 12:E1742. [PMID: 32532087 PMCID: PMC7352175 DOI: 10.3390/nu12061742] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
The anti-inflammatory effect of hispolon has identified it as one of the most important compounds from Sanghuangporus sanghuang. The research objectives were to study this compound using an animal model by lipopolysaccharide (LPS)-induced acute lung injury. Hispolon treatment reduced the production of the pro-inflammatory mediator NO, TNF-α, IL-1β, and IL-6 induced by LPS challenge in the lung tissues, as well as decreasing their histological alterations and protein content. Total cell number was also reduced in the bronchoalveolar lavage fluid (BALF). Moreover, hispolon inhibited iNOS, COX-2 and IκB-α and phosphorylated IKK and MAPK, while increasing catalase, SOD, GPx, TLR4, AKT, HO-1, Nrf-2, Keap1 and PPARγ expression, after LPS challenge. It also regulated apoptosis, ER stress and the autophagy signal transduction pathway. The results of this study show that hispolon regulates LPS-induced ER stress (increasing CHOP, PERK, IRE1, ATF6 and GRP78 protein expression), apoptosis (decreasing caspase-3 and Bax and increasing Bcl-2 expression) and autophagy (reducing LC3 I/II and Beclin-1 expression). This in vivo experimental study suggests that hispolon suppresses the LPS-induced activation of inflammatory pathways, oxidative injury, ER stress, apoptosis and autophagy and has the potential to be used therapeutically in major anterior segment lung diseases.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Graduate Institute of Aging Medicine, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Wen-Ping Jiang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| |
Collapse
|
32
|
Zhou LW, Ghobad-Nejhad M, Tian XM, Wang YF, Wu F. Current Status of ‘Sanghuang’ as a Group of Medicinal Mushrooms and Their Perspective in Industry Development. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1740245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Masoomeh Ghobad-Nejhad
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Xue-Mei Tian
- Shandong Provincial Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Yi-Fei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Fang Wu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
33
|
Cordyceps cicadae Mycelia Ameliorate Cisplatin-Induced Acute Kidney Injury by Suppressing the TLR4/NF- κB/MAPK and Activating the HO-1/Nrf2 and Sirt-1/AMPK Pathways in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7912763. [PMID: 32089779 PMCID: PMC7026739 DOI: 10.1155/2020/7912763] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 12/14/2022]
Abstract
Acute kidney injury (AKI) is a common clinical problem, characterized by a sudden loss of renal function, a high risk of death, and the eventual development of renal fibrosis and renal failure. Cordyceps cicadae is a traditional Chinese medicine with the potential function of kidney protection. We analyze two sputum extracts, a water extract (WCC), and an ethanol extract (ECC), to assess the potential of treating AKI in an animal model of kidney injury induced by cisplatin. A nephrotoxic mouse model was first established by intraperitoneal injection of cisplatin. Subsequently, WCC and ECC were orally administered in these mice. The results show that WCC and ECC significantly alleviated cisplatin-induced AKI renal histological changes, serum creatinine (CRE) and blood urea nitrogen (BUN) production, and the levels of NO, TNF-α, IL-1β, and IL-6. The levels of malondialdehyde (MDA) and glutathione (GSH) were suppressed by administration of WCC and ECC. However, WCC treatment prevented these changes significantly better than ECC treatment. In addition, Western blot data showed that WCC attenuated the cisplatin-induced protein expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS), as well as inhibiting nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation in the kidney tissues. Furthermore, WCC greatly inhibited the expression of Toll-like receptor 4 (TLR4) and cisplatin-induced NF-κB activation, as well as dramatically increasing the production of antioxidative enzymes (i.e., superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1)), silent information regulator T1 (Sirt1), and p-AMP-activated protein kinase (AMPK) in the kidney tissues. In addition, we found that WCC increased the expression levels of the autophagy-related proteins LC3B and Beclin-1; proapoptotic proteins, including cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) 1; and organic anion transporters 1 (OAT1) and 3 (OAT3) in the kidney tissues. Finally, WCC, ECC, and two bioactive compounds-adenosine and N6-(2-hydroxyethyl) adenosine (HEA)-inhibited the production of nitrite oxide (NO) and intracellular reactive oxygen species (ROS) triggered by lipopolysaccharide- (LPS-) stimulated RAW264.7 macrophages in vitro. Collectively, WCC could provide a potential therapeutic candidate for the prevention of cisplatin-induced kidney injury through the inhibition of oxidative stress and inflammation.
Collapse
|
34
|
Marine Microorganism-Derived Macrolactins Inhibit Inflammatory Mediator Effects in LPS-Induced Macrophage and Microglial Cells by Regulating BACH1 and HO-1/Nrf2 Signals through Inhibition of TLR4 Activation. Molecules 2020; 25:molecules25030656. [PMID: 32033079 PMCID: PMC7037854 DOI: 10.3390/molecules25030656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, many natural products with unique structure and promising pharmacological potential have been reported from marine-derived microorganisms. The macrolactin A (MA), 15-epi-dihydromacrolactin F (DMF) and macrolactin F (MF) were obtained from the culture broth extract of a marine sediment derived microorganism Bacillus sp. HC001. In this study, MA, DMF and MF inhibited the production and expression of proinflammatory mediators of inducible nitric oxide synthase (iNOS) and cyclooxygenase–2 (COX-2) in LPS-stimulated RAW264.7 and BV2 cells. Also, MA, DMF and MF exert anti-inflammatory effects through the expression of heme oxygenase (HO) -1, a stress-inducing enzyme that converts heme to carbon monoxide (CO), iron and biliberdine. Toll-like receptor 4 (TLR4) expressed by lipopolysaccharide (LPS) was inhibited by increased expression of HO-1 transcription factor Nrf2 and down regulation of BTB Domain And CNC Homolog 1 (BACH1), inhibited phosphorylation of Mitogen-activated protein kinase kinase kinase 7 (MAP3K7, TAK1) and nuclear factor kappaB (NF-κB). These results show that MA, DMF and MF effectively inhibited TLR4 by regulating BACH1 and HO-1/Nrf2 signals in LPS-stimulated RAW264.7 and BV2 cells, which suggests the possibility of use as an anti-inflammatory agent.
Collapse
|
35
|
Shao Y, Guo H, Zhang J, Liu H, Wang K, Zuo S, Xu P, Xia Z, Zhou Q, Zhang H, Wang X, Chen A, Wang Y. The Genome of the Medicinal Macrofungus Sanghuang Provides Insights Into the Synthesis of Diverse Secondary Metabolites. Front Microbiol 2020; 10:3035. [PMID: 31993039 PMCID: PMC6971051 DOI: 10.3389/fmicb.2019.03035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The mushroom, Sanghuang is widely used in Asian countries. This medicinal fungus produces diverse bioactive compounds and possesses a potent ability to degrade the wood of the mulberry tree. However, the genes, pathways, and mechanisms that are involved in the biosynthesis of the active compounds and wood degradation by Sanghuang mushroom are still unknown. Here, we report a 34.5 Mb genome—encoding 11,310 predicted genes—of this mushroom. About 16.88% (1909) of the predicted genes have been successfully classified as EuKaryotic Orthologous Groups, and approximately 27.23% (665) of these genes are involved in metabolism. Additionally, a total of 334 genes encoding CAZymes—and their characteristics—were compared with those of the other fungi. Homologous genes involved in triterpenoid, polysaccharide, and flavonoid biosynthesis were identified, and their expression was examined during four developmental stages, 10 and 20 days old mycelia, 1 year old and 3 years old fruiting bodies. Importantly, the lack of chalcone isomerase 1 in the flavonoid biosynthesis pathway suggested that different mechanisms were used in this mushroom to synthesize flavonoids than those used in plants. In addition, 343 transporters and 4 velvet family proteins, involved in regulation, uptake, and redistribution of secondary metabolites, were identified. Genomic analysis of this fungus provides insights into its diverse secondary metabolites, which would be beneficial for the investigation of the medical applications of these pharmacological compounds in the future.
Collapse
Affiliation(s)
- Ying Shao
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Hongwei Guo
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Jianping Zhang
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Hui Liu
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Kun Wang
- Jiangsu Konen Biological Engineering Co., Ltd., Nanjing, China
| | - Song Zuo
- Jiangsu Konen Biological Engineering Co., Ltd., Nanjing, China
| | - Pengfei Xu
- Jiangsu Konen Biological Engineering Co., Ltd., Nanjing, China
| | - Zhenrong Xia
- Jiangsu Konen Biological Engineering Co., Ltd., Nanjing, China
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hanghang Zhang
- Nanling Forestry Technology Center, Nanling Forestry Bureau, Nanling, China
| | - Xiangqing Wang
- Department of Neurology, The People's Hospital of Pingyi County, Pingyi, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
36
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
37
|
Chen JJ, Deng JS, Huang CC, Li PY, Liang YC, Chou CY, Huang GJ. p-Coumaric-Acid-Containing Adenostemma lavenia Ameliorates Acute Lung Injury by Activating AMPK/Nrf2/HO-1 Signaling and Improving the Anti-oxidant Response. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1483-1506. [DOI: 10.1142/s0192415x19500769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adenostemma lavenia is a perennial herb belonging to the Compositae family and is widely distributed in the tropical parts of Asia. It has been widely used as medicine in Taiwan with the whole plant used to treat pulmonary congestion, pneumonia, bacterial infections of the respiratory tract, edema, and inflammation. This study sought to investigate the anti-inflammatory effects of A. lavenia in vitro and in animal models. The anti-inflammatory effects of ethyl acetate fractions of A. lavenia (EAAL) were stimulated with lipopolysaccharide (LPS) murine macrophages (RAW 264.7) and lung injury in mice. EAAL reduced proinflammatory cytokine responses. Preoral EAAL alleviated LPS-induced histological alterations in lung tissue and inhibited the infiltration of inflammatory cells and protein concentrations in bronchoalveolar lavage fluid (BALF). EAAL prevented protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2); phosphorylation of I[Formula: see text]B-[Formula: see text], MAPKs, and AMP-activated protein kinase (AMPK); and activated anti-oxidant enzymes (catalase, SOD, and GPx), heme oxygenase-1 (HO-1), and nuclear factor E2-related factor 2 (Nrf2) in LPS-stimulated cells and lung tissues. Fingerprinting of EAAL was performed with HPLC to control its quality, and [Formula: see text]-coumaric acid was found to be a major constituent. This study suggests that EAAL is a potential therapeutic agent to treat inflammatory disorders.
Collapse
Affiliation(s)
- Jian-Jung Chen
- Department of Chinese Medicine, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chung-Chun Huang
- Department of Chinese Medicine, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan
| | - Pei-Ying Li
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yu-Chia Liang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Che-Yi Chou
- Division of Nephrology, Asia University Hospital, Taichung, Taiwan
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Zhang J, Yan J. Protective Effect of Ginkgolic Acid in Attenuating LDL Induced Inflammation Human Peripheral Blood Mononuclear Cells via Altering the NF-κB Signaling Pathway. Front Pharmacol 2019; 10:1241. [PMID: 31780924 PMCID: PMC6856219 DOI: 10.3389/fphar.2019.01241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is considered as the significant maker of inflammatory reaction. ox-LDL was reported to play a crucial role in the pathogenesis of atherosclerosis (AS). In the current study, we scrutinize the suppressive effect of ginkgolic acid against ox-LDL induced an oxidative and inflammatory response in human microvascular endothelial cells (HMEC-1) and human peripheral blood mononuclear cells (nPBMCs) and explore the mechanism of action. HMEC-1 cells are treated with ox-LDL in the presence of different concentration of ginkgolic acid. MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed for the estimation of cell viability effect. Reactive oxygen species (ROS), inflammatory cytokines, and NF-κB activity are also estimated. For the hPBMCs assay, the cells were isolated from the healthy volunteers and cultured. The cells were further divided into different group and received the ginkgolic acid. Additionally, ROS, inflammatory marker such as prostaglandin E2 (PGE2), lipoxygenase (LOX), nitric oxide (NO), cyclooxygenase (COX) protein expression, and mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and vascular cell adhesion protein 1 (VCAM-1) were estimated in the ox-LDL treated group. The result exhibited that ginkgolic acid treatment induced the cell viability boosting in ox-LDL treatment and intracellular ROS significantly decreased by ginkgolic acid. Pro-inflammatory cytokines also downregulated via ginkgolic acid. Moreover, ginkgolic acid reduced the ox-LDL-induced NF-κB. The mRNA and protein expression of TNF-α, IL-6, and VCAM-1 considerably increased in the ox-LDL treated group and ginkgolic acid significantly reduced the mRNA and protein expression. An inflammatory marker such as PGE2, LOX, and NO were increased in the ox-LDL treated group and ginkgolic acid treated group exhibited the reduction of an inflammatory marker. Based on the result, we can conclude that ginkgolic acid significantly reduced and reversed the ox-LDL-induced modulation, suggesting its anti-inflammatory effect via the NF-κB pathway.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jifeng Yan
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Zhengzhou, China
- Central China Fuwai Hospital of ZhengZhou University, ZhengZhou, China
| |
Collapse
|
39
|
Protective effect of a polyphenols-rich extract from Inonotus Sanghuang on bleomycin-induced acute lung injury in mice. Life Sci 2019; 230:208-217. [DOI: 10.1016/j.lfs.2019.05.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
|
41
|
Zhang M, Xie Y, Su X, Liu K, Zhang Y, Pang W, Wang J. Inonotus sanghuang Polyphenols Attenuate Inflammatory Response Via Modulating the Crosstalk Between Macrophages and Adipocytes. Front Immunol 2019; 10:286. [PMID: 30863401 PMCID: PMC6399398 DOI: 10.3389/fimmu.2019.00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aims: Obesity is characterized as a chronic state of low-grade inflammation with progressive immune cell infiltration into adipose tissue. Adipose tissue macrophages play a critical role in the establishment of chronic inflammatory states and metabolic dysfunctions. Inonotus (I.) sanghuang and its extract polyphenols exhibit anti-carcinogenesis, anti-inflammatory, and anti-oxidant activities. However, the action of I. sanghuang polyphenols in obesity-related inflammation has not been reported. The aim of this study was to explore the anti-inflammatory action of polyphenols from I. sanghuang extract (ISE) in macrophages and the interaction between macrophages and adipocytes. Materials and Methods: RAW264.7 macrophages were stimulated with LPS or conditioned medium of hypertrophied 3T3-L1 adipocytes or cocultured with differentiated adipocytes in the presence of different doses of ISE. The inflammatory cytokines were evaluated by ELISA, the MAPK, NF-κB, and IL-6/STAT3 signals were determined by immunoblotting, and the migrated function of macrophages was determined by migration assay. Results: ISE suppressed the inflammatory mediators including NO, TNF-α, IL-6, and MCP-1 induced by either LPS or conditioned medium derived from 3T3-L1 adipocytes. ISE also decreased the production of these inflammatory mediators in cocultures of 3T3-L1 adipocytes and RAW264.7 macrophages. Furthermore, ISE blocked RAW264.7 macrophages migration toward 3T3-L1 adipocytes in cocultures. Finally, this effect of ISE might be mediated via inhibiting ERK, p38, and STAT3 activation. Conclusions: Our findings indicate the possibility that ISE suppresses the interaction between macrophages and adipocytes, attenuates chronic inflammation in adipose tissue and improves obesity-related insulin resistance and complication, suggesting that ISE might be a valuable medicinal food effective in improving insulin resistance and metabolic syndrome.
Collapse
Affiliation(s)
- Mengdi Zhang
- Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yu Xie
- Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng, China.,School of Physical Education, Henan University, Kaifeng, China
| | - Xing Su
- Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng, China
| | - Kun Liu
- College of Biology Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei, China
| | - Yijie Zhang
- Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng, China
| | - Wuyan Pang
- Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
42
|
Obeticholic acid alleviate lipopolysaccharide-induced acute lung injury via its anti-inflammatory effects in mice. Int Immunopharmacol 2018; 66:177-184. [PMID: 30468885 DOI: 10.1016/j.intimp.2018.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) is a common disease that may result in acute respiratory failure and death. However, there are still no effective treatments for ALI. Several studies have shown that farnesoid X receptor (FXR) has an anti-inflammatory effect. We investigated the effects of obeticholic acid (OCA), an agonist of FXR, on Lipopolysaccharide (LPS)-induced ALI in mice. Sixty male mice were randomly divided into six groups, and orally administered with or without OCA once daily for 3 consecutive days before LPS (1.0 mg/kg). Animals were sacrificed at 0 h, 2 h or 6 h after LPS. As expected, OCA enhanced pulmonary FXR activity. OCA prevented LPS-induced ALI. Additional experiment showed that OCA alleviated LPS-induced up-regulation of pulmonary pro-inflammatory and chemokine genes. Moreover, OCA also repressed LPS-induced the release of TNF-α and KC in serum and bronchoalveolar lavage fluid. In contrast, OCA further up-regulated LPS-induced the expression of Il-10, an anti-inflammatory cytokine. Further study showed that OCA inhibited LPS-evoked NF-κB signaling in the lungs. OCA attenuated LPS-induced ERK1/2, JNK, p38 and Akt phosphorylation in the lungs. Overall, these results suggest that OCA prevent LPS-induced ALI may be through enhancing pulmonary FXR activity and then blockading several inflammatory signaling pathways.
Collapse
|
43
|
Liu J, Wang X, Zheng M, Luan Q. Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway. Life Sci 2018; 211:133-139. [DOI: 10.1016/j.lfs.2018.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022]
|
44
|
Hsieh YH, Deng JS, Chang YS, Huang GJ. Ginsenoside Rh2 Ameliorates Lipopolysaccharide-Induced Acute Lung Injury by Regulating the TLR4/PI3K/Akt/mTOR, Raf-1/MEK/ERK, and Keap1/Nrf2/HO-1 Signaling Pathways in Mice. Nutrients 2018; 10:nu10091208. [PMID: 30200495 PMCID: PMC6163254 DOI: 10.3390/nu10091208] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
The anti-inflammatory effect of ginsenoside Rh2 (GRh2) has labeled it as one of the most important ginsenosides. The purpose of this study was to identify the anti-inflammatory and antioxidant effects of GRh2 using a lipopolysaccharide (LPS) challenge lung-injury animal model. GRh2 reduced LPS-induced proinflammatory mediator nitric oxide (NO), tumor necrosis factor-alpha, interleukin (IL)-1β, and anti-inflammatory cytokines (IL-4, IL-6, and IL-10) production in lung tissues. GRh2 treatment decreased the histological alterations in the lung tissues and bronchoalveolar lavage fluid (BALF) protein content; total cell number also reduced in LPS-induced lung injury in mice. Moreover, GRh2 blocked iNOS, COX-2, the phosphorylation of IκB-α, ERK, JNK, p38, Raf-1, and MEK protein expression, which corresponds with the growth of HO-1, Nrf-2, catalase, SOD, and GPx expression in LPS-induced lung injury. An in vivo experimental study suggested that GRh2 has anti-inflammatory effects, and has potential therapeutic efficacy in major anterior segment lung diseases.
Collapse
Affiliation(s)
- Yung-Hung Hsieh
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 413, Taiwan.
- Department of Pharmacy, Kuang Tien General Hospital, Taichung 433, Taiwan.
- Taichung City New Pharmacist Association, Taichung 420, Taiwan.
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 413, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 413, Taiwan.
| |
Collapse
|
45
|
Insights into Natural Products in Inflammation. Int J Mol Sci 2018; 19:ijms19030644. [PMID: 29495321 PMCID: PMC5877505 DOI: 10.3390/ijms19030644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/22/2022] Open
|
46
|
Preventive Effects of Velvet Antler (Cervus elaphus) against Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting MAPK/NF- κB Activation and Inducing AMPK/Nrf2 Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2870503. [PMID: 29483931 PMCID: PMC5816838 DOI: 10.1155/2018/2870503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/19/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022]
Abstract
Velvet antler (Cervus elaphus) is a typical traditional animal medicine. It is considered to have various pharmacological effects including stimulation of the immune system, increase in the physical strength, and enhancement of sexual function. This paper aims to investigate the aqueous extract of velvet antler (AVA) in the mouse models of LPS-induced ALI. Inhibition of NO, TNF-α, IL-1β, IL-6, and IL-10 productions contributes to the attenuation of LPS-induced lung inflammation by AVA. A 5-day pretreatment of AVA prevented histological alterations and enhanced antioxidant enzyme activity in lung tissues. AVA significantly reduced the material (total number of cells and proteins) in the BALF. Western blot analysis revealed that the expression of iNOS and COX-2 and phosphorylation of IκB-α and MAPKs proteins are blocked in LPS-stimulated macrophages as well as LPS-induced lung injury in mice. Consistent with this concept, the phosphorylation of CaMKKβ, LKB1, AMPK, Nrf2, and HO-1 was activated after AVA treatment. The results from this study indicate AVA has anti-inflammatory effects in vivo and AVA is a potential model for the development of health food. In addition, its pathways may be at least partially associated with inhibiting MAPK/NF-κB activation and upregulating AMPK/Nrf2 pathways and the regulation of antioxidant enzyme activity.
Collapse
|
47
|
Lin WC, Deng JS, Huang SS, Lin WR, Wu SH, Lin HY, Huang GJ. Anti-inflammatory activity of Sanghuangporus sanghuang by suppressing the TLR4-mediated PI3K/AKT/mTOR/IKKβ signaling pathway. RSC Adv 2017. [DOI: 10.1039/c7ra01000a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sanghuangporus sanghuang (SS) is a mushroom that belongs to the genus Sanghuangporus and it is commonly called “Sangwhang” in Taiwan.
Collapse
Affiliation(s)
- Wang-Ching Lin
- School of Pharmacy
- China Medical University
- Taichung 404
- Taiwan
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology
- Asia University
- Taichung 413
- Taiwan
| | | | - Wan-Rong Lin
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources
- College of Chinese Medicine
- China Medical University
- Taichung 404
- Taiwan
| | - Sheng-Hua Wu
- Department of Biology
- National Museum of Natural Science
- Taichung 404
- Taiwan
| | - Hui-Yi Lin
- School of Pharmacy
- China Medical University
- Taichung 404
- Taiwan
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources
- College of Chinese Medicine
- China Medical University
- Taichung 404
- Taiwan
| |
Collapse
|