1
|
Miao Z, Xu L, Gu W, Ren Y, Li R, Zhang S, Chen C, Wang H, Ji J, Chen J. A targetable PRR11-DHODH axis drives ferroptosis- and temozolomide-resistance in glioblastoma. Redox Biol 2024; 73:103220. [PMID: 38838551 PMCID: PMC11179629 DOI: 10.1016/j.redox.2024.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Temozolomide (TMZ) is a widely utilized chemotherapy treatment for patients with glioblastoma (GBM), although drug resistance constitutes a major therapeutic hurdle. Emerging evidence suggests that ferroptosis-mediated therapy could offer an appropriate alternative treatment option against cancer cells that are resistant to certain drugs. However, recurrent gliomas display robust ferroptosis resistance, although the precise mechanism of resistance remains elusive. In the present work, we report that proline rich protein 11 (PRR11) depletion significantly sensitizes GBM cells to TMZ by inducing ferroptosis. Mechanistically, PRR11 directly binds to and stabilizes dihydroorotate dehydrogenase (DHODH), which leads to glioma ferroptosis-resistant in a DHODH-dependent manner in vivo and in vitro. Furthermore, PRR11 inhibits HERC4 and DHODH binding, by suppressing the recruitment of E3 ubiquitin ligase HERC4 and polyubiquitination degradation of DHODH at the K306 site, which maintains DHODH protein stability. Importantly, downregulated PRR11 increases lipid peroxidation and alters DHODH-mediated mitochondrial morphology, thereby promoting ferroptosis and increasing TMZ chemotherapy sensitivity. In conclusion, our results reveal a mechanism via which PRR11 drives ferroptosis resistance and identifies ferroptosis induction and TMZ as an attractive combined therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Zong Miao
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yimin Ren
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Rong Li
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuai Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China.
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
2
|
Dolfini D, Gnesutta N, Mantovani R. Expression and function of NF-Y subunits in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189082. [PMID: 38309445 DOI: 10.1016/j.bbcan.2024.189082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
NF-Y is a Transcription Factor (TF) targeting the CCAAT box regulatory element. It consists of the NF-YB/NF-YC heterodimer, each containing an Histone Fold Domain (HFD), and the sequence-specific subunit NF-YA. NF-YA expression is associated with cell proliferation and absent in some post-mitotic cells. The review summarizes recent findings impacting on cancer development. The logic of the NF-Y regulome points to pro-growth, oncogenic genes in the cell-cycle, metabolism and transcriptional regulation routes. NF-YA is involved in growth/differentiation decisions upon cell-cycle re-entry after mitosis and it is widely overexpressed in tumors, the HFD subunits in some tumor types or subtypes. Overexpression of NF-Y -mostly NF-YA- is oncogenic and decreases sensitivity to anti-neoplastic drugs. The specific roles of NF-YA and NF-YC isoforms generated by alternative splicing -AS- are discussed, including the prognostic value of their levels, although the specific molecular mechanisms of activity are still to be deciphered.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
3
|
Wang S, Zhang X, Lei H, Song L, Huang Y, Kang T, Zhang M, Wang N, Yang P, Feng S, Wang J, Bai R, Wang N, Wang W, Zheng Y. Proline-rich 11 (PRR11) promotes the progression of cutaneous squamous cell carcinoma by activating the EGFR signaling pathway. Mol Carcinog 2023; 62:613-627. [PMID: 36727626 DOI: 10.1002/mc.23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin malignancies, and its incidence rate is increasing worldwide. Proline-rich 11 (PRR11) has been reported to be involved in the occurrence and development of various tumors. However, the role of PRR11 in cSCC remains unknown. In the present study, we observed upregulated expression of PRR11 in cSCC tissues and cell lines. Knockdown of PRR11 in the cSCC cell lines A431 and SCL-1 inhibited cell proliferation by inducing cell cycle arrest during the G1/S phase transition, promoted cell apoptosis, and reduced cell migration and invasion in vitro. Conversely, overexpression of PRR11 promoted cell proliferation, decreased cell apoptosis, and enhanced cell migration and invasion. PRR11 knockdown also inhibited cSCC tumor growth in a mouse xenograft model. Mechanistic investigations by RNA sequencing revealed that 891 genes were differentially expressed genes between cells with PRR11 knockdown and control cells. Enrichment analysis of different genes showed that the epidermal growth factor receptor (EGFR) signaling pathway was the top enriched pathway. We further validated that PRR11 induced EGFR pathway activity, which contributed to cSCC progression. These data suggest that PRR11 may serve as a novel therapeutic target in cSCC.
Collapse
Affiliation(s)
- Shengbang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiu Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liumei Song
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingjian Huang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Kang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengju Yang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuo Feng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingping Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Xia X, Tao C, Du K, Meng P, Hu L, Cheng D, Liu X, Bu Y, Fan X, Chen Q. SKA2-mediated transcriptional downregulation of the key enzyme of CoQ 10 biosynthesis PDSS2 in lung cancer cells. J Cancer 2023; 14:379-392. [PMID: 36860919 PMCID: PMC9969585 DOI: 10.7150/jca.79058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide. SKA2 is a novel cancer-associated gene that plays critical roles in both cell cycle and tumorigenesis including lung cancer. However, the molecular mechanisms underlying its implication in lung cancer remains elusive. In this study, we first analyzed the gene expression profiling after SKA2 knockdown, and identified several candidate downstream target genes of SKA2, including PDSS2, the first key enzyme in CoQ10 biosynthesis pathway. Further experiments verified that SKA2 remarkably repressed PDSS2 gene expression at both mRNA and protein levels. Luciferase reporter assay showed that SKA2 repressed PDSS2 promoter activity through its Sp1-binding sites. Co-immunoprecipitation assay demonstrated that SKA2 associated with Sp1. Functional analysis revealed that PDSS2 remarkably suppressed lung cancer cell growth and motility. Furthermore, SKA2-induced malignant features can be also significantly attenuated by PDSS2 overexpression. However, CoQ10 treatment showed no obvious effects on lung cancer cell growth and motility. Of note, PDSS2 mutants with no catalytic activity exhibited comparable inhibitory effects on the malignant features of lung cancer cells and could also abrogate SKA2-promoted malignant phenotypes in lung cancer cells, highly suggesting a non-enzymatic tumor-suppressing activity of PDSS2 in lung cancer cells. The levels of PDSS2 expression were significantly decreased in lung cancer samples, and lung cancer patients with high expression of SKA2 and low expression of PDSS2 displayed remarkable poor prognosis. Collectively, our results demonstrated that PDSS2 is a novel downstream target gene of SKA2 in lung cancer cells, and the SKA2-PDSS2 transcriptional regulatory axis functionally contributes to human lung cancer cell malignant phenotypes and prognosis.
Collapse
Affiliation(s)
- Xing Xia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chuntao Tao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Peixin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lanyue Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dong Cheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xianjun Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Fan
- Department of Basic Medical Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Quanmei Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Han W, Chen L. PRR11 in Malignancies: Biological Activities and Targeted Therapies. Biomolecules 2022; 12:biom12121800. [PMID: 36551227 PMCID: PMC9775115 DOI: 10.3390/biom12121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Proline rich 11 (PRR11), initially renowned for its relevance with cell-cycle progression, is a proline-rich protein coding gene in chromosome 17q22-23. Currently, accumulating studies have demonstrated that PRR11 plays a critical role in cellular proliferation, colony formation, migration, invasion, cell-cycle progression, apoptosis, autophagy and chemotherapy resistance via multiple signaling pathways and biological molecules in several solid tumors. In particular, PRR11 also serves as a promising prognostic indicator in a limited number of human cancers, gradually manifesting its potential application for targeted therapies. In this review, we summarize functional activities, related signaling pathways and biological molecules of PRR11 in various malignancies and generalize potential application of PRR11 for targeted therapies, thereby contributing to further exploration of PRR11 in cancer treatment.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Correspondence: (W.H.); (L.C.)
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Correspondence: (W.H.); (L.C.)
| |
Collapse
|
6
|
Lu T, Li C, Xiang C, Gong Y, Peng W, Hou F, Chen C. Over-expression of NFYB affects stromal cells reprogramming and predicts worse survival in gastric cancer patients. Aging (Albany NY) 2022; 14:7851-7865. [PMID: 36152055 PMCID: PMC9596197 DOI: 10.18632/aging.204294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and the third most fatal. Cancer-associated fibroblasts (CAFs) play an essential role in promoting the occurrence and development of gastric cancer in all stages. NFYB is highly expressed in multiple tumors and promotes tumor invasion, metastasis, and drug resistance, but its role in the occurrence and development of gastric cancer remains unclear. Hence, we used TCGA, TIMER, Kaplan-Meier Plot, and UALCAN databases to analyze the expression of NFYB in pan-cancers and assess its clinical prognostic value. We found that high expression of NFYB may be a promising prognostic biomarker in patients with gastric cancer. High expression of NFYB was associated with high T stage, high histological grade, diffuse gastric cancer, and early-onset GC. Moreover, High expression of NFYB was associated with CAFs infiltration in the GC microenvironment. The prognosis of GC patients with high expression of NFYB and high infiltration of CAFs was worse. Therefore, NFYB may serve as a potential prognostic biomarker in patients with GC.
Collapse
Affiliation(s)
- Tailiang Lu
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chenglong Li
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Cailing Xiang
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Yongqiang Gong
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Wei Peng
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Futao Hou
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chaowu Chen
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Cai C, Zhang Y, Hu X, Yang S, Ye J, Wei Z, Chu T. Spindle and Kinetochore-associated Family Genes are Prognostic and Predictive Biomarkers in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:627-641. [PMID: 36062274 PMCID: PMC9396317 DOI: 10.14218/jcth.2021.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors. Spindle and kinetochore-associated (SKA) family genes are essential for the maintenance of the metaphase plate and spindle checkpoint silencing during mitosis. Recent studies have indicated that dysregulation of SKA family genes induces tumorigenesis, tumor progression, and chemoresistance via modulation of cell cycle and DNA replication. However, the differential transcription of SKAs in the context of HCC and its prognostic significance has not been demonstrated. METHODS Bioinformatics analyses were performed using TCGA, ONCOMINE, HCCDB, Kaplan-Meier plotter, STRING, GEPIA databases. qRT-PCR, western blot, and functional assays were utilized for in vitro experiments. RESULTS We found remarkable upregulation of transcripts of SKA family genes in HCC samples compared with normal liver samples on bioinformatics analyses and in vitro validation. Interaction analysis and enrichment analysis showed that SKA family members were mainly related to microtubule motor activity, mitosis, and cell cycle. Immuno-infiltration analysis showed a correlation of all SKA family genes with various immune cell subsets, especially T helper 2 (Th2) cells. Transcriptional levels of SKA family members were positively associated with histologic grade, T stage, and α-fetoprotein in HCC patients. Receiver operating characteristic curve analysis demonstrated a strong predictive ability of SKA1/2/3 for HCC. Increased expression of these SKAs was associated with unfavorable overall survival, progression-free survival, and disease-specific survival. On Cox proportional hazards regression analyses, SKA1 upregulation and pathological staging were independent predictors of overall survival and disease-specific survival of HCC patients. Finally, clinical tissue microarray validation and in vitro functional assays revealed SKA1 acts an important regulatory role in tumor malignant behavior. CONCLUSIONS SKA family members may potentially serve as diagnostic and prognostic markers in the context of HCC. The correlation between SKAs and immune cell infiltration provides a promising research direction for SKA-targeted immunotherapeutics for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tongwei Chu
- Correspondence to: Tongwei Chu, Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), No.83 Xinqiao Main Street, Shapingba District, Chongqing 400037, China. ORCID: https://orcid.org/0000-0003-0309-7082. Tel: +86-13708388336, E-mail:
| |
Collapse
|
8
|
Xu H, Chen G, Niu Q, Song K, Feng Z, Han Z. SKA3 promotes cell growth via the PI3K/AKT/GSK3β and PI3K/AKT/FOXO1 pathways and is a potential prognostic biomarker for oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134:599-614. [DOI: 10.1016/j.oooo.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/04/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
|
9
|
Xu Q, Zhao J, Guo Y, Liu M, Schinckel AP, Zhou B. A Single-Nucleotide Polymorphism in the Promoter of Porcine ARHGAP24 Gene Regulates Aggressive Behavior of Weaned Pigs After Mixing by Affecting the Binding of Transcription Factor p53. Front Cell Dev Biol 2022; 10:839583. [PMID: 35433684 PMCID: PMC9010951 DOI: 10.3389/fcell.2022.839583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Pigs are important biomedical model animals for the study of human neurological diseases. Similar to human aggressive behavior in children and adolescents, weaned pigs also show more aggressive behavior after mixing, which has negative effects on animal welfare and growth performance. The identification of functional single-nucleotide polymorphisms (SNPs) related to the aggressive behavior of pigs would provide valuable molecular markers of the aggressive behavioral trait for genetic improvement program. The Rho GTPase–activating protein 24 (ARHGAP24) gene plays an important role in regulating the process of axon guidance, which may impact the aggressive behavior of pigs. By resequencing the entire coding region, partially adjacent introns and the 5′ and 3′ flanking regions, six and four SNPs were identified in the 5′ flanking region and 5′ untranslated region (UTR) of the porcine ARHGAP24 gene, respectively. Association analyses revealed that nine SNPs were significantly associated with aggressive behavioral traits (p = < 1.00 × 10–4–4.51 × 10–2), and their haplotypes were significantly associated with aggressive behavior (p = < 1.00 × 10–4–2.99 × 10–2). The core promoter region of the ARHGAP24 gene has been identified between −670 and −1,113 bp. Furthermore, the luciferase activity of allele A of rs335052970 was significantly less than that of allele G, suggesting that the transcriptional activity of the ARHGAP24 gene was inhibited by allele A of rs335052970. It was identified that the transcription factor p53 bound to the transcription factor binding sites (TFBSs) containing allele A of rs335052970. In porcine primary neural cells, p53 binds to the target promoter region of the ARHGAP24 gene, reduces its promoter transcriptional activity, and then reduces its messenger RNA (mRNA) and protein expression. The results demonstrated that the ARHGAP24 gene had significant genetic effects on aggressive behavioral traits of pigs. Therefore, rs335052970 in the ARHGAP24 gene can be used as a molecular marker to select the less aggressive pigs.
Collapse
Affiliation(s)
- Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Bo Zhou,
| |
Collapse
|
10
|
Song H, Sun H, Pang X, Qian S, Zhang X, Huang Y, Liu X. [WITHDRAWN] miR-144-3p Functions as a Tumor Suppressor in Endometrial Cancer by Targeting PRR11. Am J Med Sci 2022:S0002-9629(22)00106-9. [PMID: 35276076 DOI: 10.1016/j.amjms.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Huihui Song
- Department of Obstetrics, Weifang People's Hospital, Kuiwen District, Weifang 261041, China
| | - Hong Sun
- Department of Obstetrics II, Weifang People's Hospital, Weifang 261041, China
| | - Xuecheng Pang
- Second Department of Gynecology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Sumin Qian
- Second Department of Gynecology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Xiang Zhang
- Second Department of Gynecology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Yue Huang
- Second Department of Gynecology, Cangzhou Central Hospital, Cangzhou 061000, China
| | - Xueliang Liu
- Department of Obstetrics, Weifang People's Hospital, Kuiwen District, Weifang 261041, China.
| |
Collapse
|
11
|
Ahmad SS, Samia NSN, Khan AS, Turjya RR, Khan MAAK. Bidirectional promoters: an enigmatic genome architecture and their roles in cancers. Mol Biol Rep 2021; 48:6637-6644. [PMID: 34378109 DOI: 10.1007/s11033-021-06612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Bidirectional promoters are the transcription regulatory regions of genes positioned head-to-head on opposite strands. Specific sequence signals, chromatin modifications and three-dimensional structures of the transcription site facilitate the unconventional yet tightly regulated transcription proceeding in both directions from these promoters. Mutations or aberrant epigenetic changes can lead to abnormal enhanced or reduced expression from either of the bidirectionally transcribed genes resulting in tumorigenesis. Moreover, bidirectionally transcribed genes might also contribute towards the immune regulation in tumor microenvironment. In this review, we aimed to expound the characteristic features of bidirectional promoters alongside their transcriptional regulations, and ultimately, the association of these enigmatic genomic elements in different cancers.
Collapse
Affiliation(s)
- Sheikh Shafin Ahmad
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | | | - Auroni Semonti Khan
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Rafeed Rahman Turjya
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | | |
Collapse
|
12
|
HEDGEHOG/GLI Modulates the PRR11-SKA2 Bidirectional Transcription Unit in Lung Squamous Cell Carcinomas. Genes (Basel) 2021; 12:genes12010120. [PMID: 33477943 PMCID: PMC7833434 DOI: 10.3390/genes12010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that proline-rich protein 11 (PRR11) and spindle and kinetochore associated 2 (SKA2) constituted a head-to-head gene pair driven by a prototypical bidirectional promoter. This gene pair synergistically promoted the development of non-small cell lung cancer. However, the signaling pathways leading to the ectopic expression of this gene pair remains obscure. In the present study, we first analyzed the lung squamous cell carcinoma (LSCC) relevant RNA sequencing data from The Cancer Genome Atlas (TCGA) database using the correlation analysis of gene expression and gene set enrichment analysis (GSEA), which revealed that the PRR11-SKA2 correlated gene list highly resembled the Hedgehog (Hh) pathway activation-related gene set. Subsequently, GLI1/2 inhibitor GANT-61 or GLI1/2-siRNA inhibited the Hh pathway of LSCC cells, concomitantly decreasing the expression levels of PRR11 and SKA2. Furthermore, the mRNA expression profile of LSCC cells treated with GANT-61 was detected using RNA sequencing, displaying 397 differentially expressed genes (203 upregulated genes and 194 downregulated genes). Out of them, one gene set, including BIRC5, NCAPG, CCNB2, and BUB1, was involved in cell division and interacted with both PRR11 and SKA2. These genes were verified as the downregulated genes via RT-PCR and their high expression significantly correlated with the shorter overall survival of LSCC patients. Taken together, our results indicate that GLI1/2 mediates the expression of the PRR11-SKA2-centric gene set that serves as an unfavorable prognostic indicator for LSCC patients, potentializing new combinatorial diagnostic and therapeutic strategies in LSCC.
Collapse
|
13
|
Dou D, Ren X, Han M, Xu X, Ge X, Gu Y, Wang X, Zhao S. Circ_0008039 supports breast cancer cell proliferation, migration, invasion, and glycolysis by regulating the miR-140-3p/SKA2 axis. Mol Oncol 2020; 15:697-709. [PMID: 33244865 PMCID: PMC7858101 DOI: 10.1002/1878-0261.12862] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) have been shown to modulate gene expression and participate in the development of multiple malignancies. The purpose of this study was to investigate the role of circ_0008039 in breast cancer (BC). The expression of circ_0008039, miR-140-3p, and spindle and kinetochore-associated protein 2 (SKA2) was detected by qRT-PCR. Cell viability, colony formation, migration, and invasion were evaluated using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, colony formation assay, and transwell assay, respectively. Glucose consumption and lactate production were measured using commercial kits. Protein levels of hexokinase II (HK2) and SKA2 were determined by western blot. The interaction between miR-140-3p and circ_0008039 or SKA2 was verified by dual-luciferase reporter assay. Finally, a mouse xenograft model was established to investigate the roles of circ_0008039 in BC in vivo. We found that circ_0008039 and SKA2 were upregulated in BC tissues and cells, while miR-140-3p was downregulated. Knockdown of circ_0008039 suppressed BC cell proliferation, migration, invasion, and glycolysis. Moreover, miR-140-3p could bind to circ_0008039 and its inhibition reversed the inhibitory effect of circ_0008039 interference on proliferation, migration, invasion, and glycolysis in BC cells. SKA2 was verified as a direct target of miR-140-3p and its overexpression partially inhibited the suppressive effect of miR-140-3p restoration in BC cells. Additionally, circ_0008039 positively regulated SKA2 expression by sponging miR-140-3p. Consistently, silencing circ_0008039 restrained tumor growth via increasing miR-140-3p and decreasing SKA2. In conclusion, circ_0008039 downregulation suppressed BC cell proliferation, migration, invasion, and glycolysis partially through regulating the miR-140-3p/SKA2 axis, providing an important theoretical basis for treatment of BC.
Collapse
Affiliation(s)
- Dongwei Dou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Xiaoyang Ren
- Department of Information, The First Affiliated Hospital of Zhengzhou University, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Xiaodong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Xinxing Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Song Zhao
- Department of Thoracic surgery, The First Affiliated Hospital of Zhengzhou University, China
| |
Collapse
|
14
|
Li G, Zhao H, Guo H, Wang Y, Cui X, Xu B, Guo X. Functional and transcriptomic analyses of the NF-Y family provide insights into the defense mechanisms of honeybees under adverse circumstances. Cell Mol Life Sci 2020; 77:4977-4995. [PMID: 32016487 PMCID: PMC11104996 DOI: 10.1007/s00018-019-03447-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
As predominant pollinators, honeybees are important for crop production and terrestrial ecosystems. Recently, various environmental stresses have led to large declines in honeybee populations in many regions. The ability of honeybees to respond to these stresses is critical for their survival. However, the details of the stress defense mechanisms of honeybees have remained elusive. Here, we found that the Nuclear Factor Y (NF-Y) family (containing NF-YA, NF-YB, and NF-YC) is a novel stress mediator family that regulates honeybee environmental stress resistance. NF-YA localized in the nucleus, NF-YB accumulated in the cytoplasm, and NF-YC presented in both the nucleus and cytoplasm. NF-YC interacted with NF-YA and NF-YB in vitro and in vivo, and the nuclear import of NF-YB relied on its interaction with NF-YC. We further found that the expression of NF-Y was induced under multiple stress conditions. In addition, NF-Y regulated many stress responses and antioxidant genes at the transcriptome-wide level, and knockdown of NF-Y repressed the expression of stress-inducible genes, particularly LOC108003540 and LOC107994062, under adverse circumstances. Silencing NF-Y lowered honeybee stress resistance by reducing total antioxidant capacity and enhancing oxidative impairment. Collectively, these results indicate that NF-Y plays important roles in stress responses. Our study sheds light on the underlying defense mechanisms of honeybees under environmental stress.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Hongbin Guo
- Statistics Department, University of Auckland, 38 Princes Street, Auckland, New Zealand
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Zhang N, Jiang T, Wang Y, Hu L, Bu Y. BTG4 is A Novel p53 Target Gene That Inhibits Cell Growth and Induces Apoptosis. Genes (Basel) 2020; 11:genes11020217. [PMID: 32093041 PMCID: PMC7074044 DOI: 10.3390/genes11020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
BTG4 is the last cloned and poorly studied member of BTG/Tob family. Studies have suggested that BTG4 is critical for the degradation of maternal mRNAs in mice during the process of maternal-to-zygotic transition, and downregulated in cancers, such as gastric cancer. However, the regulatory mechanism of BTG4 and its function in cancers remain elusive. In this study, we have for the first time identified the promoter region of the human BTG4 gene. Serial luciferase reporter assay demonstrated that the core promoter of BTG4 is mainly located within the 388 bp region near its transcription initiation site. Transcription factor binding site analysis revealed that the BTG4 promoter contains binding sites for canonical transcription factors, such as Sp1, whereas its first intron contains two overlapped consensus p53 binding sites. However, overexpression of Sp1 has negligible effects on BTG4 promoter activity, and site-directed mutagenesis assay further suggested that Sp1 is not a critical transcription factor for the transcriptional regulation of BTG4. Of note, luciferase assay revealed that one of the intronic p53 binding sites is highly responsive to p53. Both exogenous p53 overexpression and adriamycin-mediated endogenous p53 activation result in the transcriptional upregulation of BTG4. In addition, BTG4 is downregulated in lung and colorectal cancers, and overexpression of BTG4 inhibits cell growth and induces apoptosis in cancer cells. Taken together, our results strongly suggest that BTG4 is a novel p53-regulated gene and probably functions as a tumor suppressor in lung and colorectal cancers.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Tinghui Jiang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Lanyue Hu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Correspondence: ; Tel.: +86-23-68485991
| |
Collapse
|
16
|
Shi JW, Huang Y. Screen and classify genes on bladder cancer associated with metastasis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Su H, Ren F, Jiang H, Chen Y, Fan X. Upregulation of microRNA-520a-3p inhibits the proliferation, migration and invasion via spindle and kinetochore associated 2 in gastric cancer. Oncol Lett 2019; 18:3323-3330. [PMID: 31452811 DOI: 10.3892/ol.2019.10663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miR) serve important roles in the development and progression of tumors by targeting different genes. miR-520a-3p reported in lung and breast cancers as a tumor suppressor gene. However, the expression and functional significance of miR-520a-3p is not completely understood in gastric cancer (GC). In the present study, it was demonstrated that the expression levels of miR-520a-3p were significantly downregulated in GC tissues and cells using RT-qPCR. In addition, downregulated expression of miR-520a-3p was associated with the clinical stage of the tumor and invasion in patients with GC. Furthermore, overexpression of miR-520a-3p significantly inhibited cell proliferation, invasion and migration in SGC-7901 and MGC-803 GC cell lines using proliferation, wound healing and cell invasion assays. Spindle and kinetochore associated 2 (SKA2) was upregulated in GC cells using western blot analysis and a target gene of miR-520a-3p; miR-520a-3p mimics significantly reduced SKA2 expression. In addition, upregulation of SKA2 protein expression SKA2 reversed the miR-520a-3p-mediated inhibition of SGC-7901 cell proliferation, migration and invasion. In conclusion, miR-520a-3p functioned as a tumor suppressor gene by targeting SKA2 in GC cell lines, and may serve as a novel prognostic and potential therapeutic marker.
Collapse
Affiliation(s)
- Hui Su
- Department of General Surgery, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| | - Feng Ren
- Department of General Surgery, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| | - Haitao Jiang
- Department of General Surgery, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| | - Yunjie Chen
- Department of General Surgery, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| | - Xiaoxiang Fan
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Zhejiang 315010, P.R. China
| |
Collapse
|
18
|
Wang Y, Zhang C, Mai L, Niu Y, Wang Y, Bu Y. PRR11 and SKA2 gene pair is overexpressed and regulated by p53 in breast cancer. BMB Rep 2019. [PMID: 30760381 PMCID: PMC6443325 DOI: 10.5483/bmbrep.2019.52.2.207] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Our previous study found that two novel cancer-related genes, PRR11 and SKA2, constituted a classic gene pair that was regulated by p53 and NF-Y in lung cancer. However, their role and regulatory mechanism in breast cancer remain elusive. In this study, we found that the expression levels of PRR11 and SKA2 were upregulated and have a negative prognotic value in breast cancer. Loss-of-function experiments showed that RNAi-mediated knockdown of PRR11 and/or SKA2 inhibited proliferation, migration, and invasion of breast cancer cells. Mechanistic experiments revealed that knockdown of PRR11 and/or SKA2 caused dysregulation of several downstream genes, including CDK6, TPM3, and USP12, etc. Luciferase reporter assays demonstrated that wild type p53 significantly repressed the PRR11-SKA2 bidirectional promoter activity, but not NF-Y. Interestingly, NF-Y was only essential for and correlated with the expression of PRR11, but not SKA2. Consistently, adriamycin-induced (ADR) activation of endogenous p53 also caused significant repression of the PRR11 and SKA2 gene pair expression. Notably, breast cancer patients with lower expression levels of either PRR11 or SKA2, along with wild type p53, exhibited better disease-free survival compared to others with p53 mutations and/or higher expression levels of either PRR11 or SKA2. Collectively, our study indicates that the PRR11 and SKA2 transcription unit might be an oncogenic contributor and might serve as a novel diagnostic and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Chunxu Zhang
- Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Li Mai
- Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yulong Niu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
19
|
SKA2/FAM33A: A novel gene implicated in cell cycle, tumorigenesis, and psychiatric disorders. Genes Dis 2018; 6:25-30. [PMID: 30906829 PMCID: PMC6411626 DOI: 10.1016/j.gendis.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
SKA2 (spindle and KT associated 2), also referred to as FAM33A (family with sequence similarity 33, member A), is a recently identified gene involved in cell cycle regulation, and growing evidence is implicating its roles in tumorigenesis and psychiatric disorders. It has been demonstrated that SKA2, along with its coworkers SKA1 and SKA3, constitutes the SKA complex which plays a critical role in the maintenance of the metaphase plate and/or spindle checkpoint silencing during mitosis. SKA2 is over-expressed both in cancer cell lines and clinical samples including small cell lung cancer and breast cancer, whereas downregulation of SKA2 is associated with depression and suicidal ideation. The expression of SKA2 is regulated by transcription factors including NF-κΒ and CREB, miRNAs as well as DNA methylation. In this review, we provide an overview of studies that reveal SKA2 gene and protein characteristics as well as physiological function, with a special focus on its transcription regulatory mechanisms, and also provide a summary regarding the translational opportunity of the SKA2 gene as a clinical biomarker for cancers and psychiatric disorders.
Collapse
|
20
|
Li G, Zhao H, Wang L, Wang Y, Guo X, Xu B. The animal nuclear factor Y: an enigmatic and important heterotrimeric transcription factor. Am J Cancer Res 2018; 8:1106-1125. [PMID: 30094088 PMCID: PMC6079162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with the ability to bind to CCAAT boxes in nearly all eukaryotes and has long been a topic of interest since it is first identified. In plants, due to each subunit of NF-Y is encoded by multiple gene families, there are a wide variety NF-Y complex combinations that fulfill many pivotal functions. However, the animal NF-Y complex usually has only one type of combination, as each subunit is generally encoded by a single gene. Even though, mounting evidence points to that the animal NF-Y complex is also essential for numerous biological processes involved in proliferation and apoptosis, cancer and tumor, stress responses, growth and development. Therefore, a relatively comprehensive functional dissection of animal NF-Y will enable a deeper comprehension of how lesser combinations of the NF-Y complex regulate diverse aspects of biology processes in animal. Here, we focus mainly on reviewing recent advances related to NF-Y in the animal field, including subunit structural characteristics, expression regulation models and biological functions, and we also discuss future directions.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural UniversityTaian 271018, Shandong, P. R. China
| |
Collapse
|
21
|
Ye MH, Zhao ZS, Ru GQ, He XL. Expression of PRR11 protein in gastric cancer: Correlation with disease progression and prognosis. Shijie Huaren Xiaohua Zazhi 2018; 26:80-86. [DOI: 10.11569/wcjd.v26.i2.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of PRR11 in gastric cancer (GC) and to analyze its relationship with GC progression and prognosis.
METHODS Expression of PRR11 in 436 GC samples was detected by immunohistochemistry (IHC), and Western blot was used to compare PRR11 expression between GC samples and normal gastric mucosal samples. The correlation of PRR11 expression with clinicopathological parameters was analyzed.
RESULTS Western blot analysis showed that the expression of PRR11 in GC samples was obviously higher than that in normal gastric mucosal samples. IHC results showed that PRR11 was specifically expressed in GC and located in the cytoplasm and membrane; PRR11 was overexpressed in 182 (41.8%) of GC samples, but none or weak expression was detected in the normal gastric mucosa. PRR11 overexpression was correlated significantly with clinicopathologic features such as tumor differentiation (P < 0.01), tumor invasion (P = 0.03), TNM stage (P < 0.01), lymph node metastasis (P < 0.01), and distant metastasis (P < 0.01).
CONCLUSION PRR11 is overexpressed in GC, which is associated with the occurrence, progression, and prognosis of GC. These data indicate that PRR11 can be used as an important biomarker to estimate the progression and prognosis of GC.
Collapse
Affiliation(s)
- Mei-Hua Ye
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital Of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Zhong-Sheng Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital Of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Guo-Qing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital Of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Xiang-Lei He
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital Of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|