1
|
Taguchi S, Azushima K, Yamaji T, Suzuki T, Abe E, Tanaka S, Hirota K, Tsukamoto S, Morita R, Kobayashi R, Kinguchi S, Yamashita A, Wakui H, Tamura K. Angiotensin II type 1 receptor-associated protein deletion combined with angiotensin II stimulation accelerates the development of diabetic kidney disease in mice on a C57BL/6 strain. Hypertens Res 2024; 47:55-66. [PMID: 37957242 DOI: 10.1038/s41440-023-01496-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
The progress in the research field of diabetic kidney disease (DKD) has been disturbed by the lack of reliable animal models. Angiotensin II (Ang II) type 1 receptor (AT1R)-associated protein (ATRAP) promotes internalization of AT1R and selectively inhibits pathological AT1R signaling. In this study, we investigated whether overactivation of the renin-angiotensin system (RAS) through a combination of ATRAP deletion with Ang II stimulation developed a progressive DKD model in C57BL/6 mice, which are resistant to the development of kidney injury. Eight-week-old male systemic ATRAP-knockout mice on the C57BL/6 strain (KO) and their littermate wild-type mice (Ctrl) were divided into five groups: 1) Ctrl, 2) Ctrl-streptozotocin (STZ), 3) KO-STZ, 4) Ctrl-STZ-Ang II, and 5) KO-STZ-Ang II. Ang II was administered for 6 weeks from 4 weeks after STZ administration. At 10 weeks after STZ administration, mice were euthanized to evaluate kidney injuries. Neither ATRAP deletion alone nor Ang II stimulation alone developed a progressive DKD model in STZ-induced diabetic C57BL/6 mice. However, a combination of ATRAP deletion with Ang II stimulation accelerated the development of DKD as manifested by overt albuminuria, glomerular hypertrophy, podocyte loss, mesangial expansion, kidney interstitial fibrosis and functional insufficiency, concomitant with increased angiotensinogen and AT1R expression in the kidneys. In STZ-induced diabetic C57BL/6 mice that are resistant to the development of kidney injury, the combination of ATRAP deletion and Ang II stimulation accelerates the development of DKD, which may be associated with intrarenal RAS overactivation.
Collapse
Affiliation(s)
- Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keigo Hirota
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryutaro Morita
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
2
|
Tanaka S, Wakui H, Azushima K, Tsukamoto S, Yamaji T, Urate S, Suzuki T, Abe E, Taguchi S, Yamada T, Kobayashi R, Kanaoka T, Kamimura D, Kinguchi S, Takiguchi M, Funakoshi K, Yamashita A, Ishigami T, Tamura K. Effects of a High-Protein Diet on Kidney Injury under Conditions of Non-CKD or CKD in Mice. Int J Mol Sci 2023; 24:ijms24097778. [PMID: 37175483 PMCID: PMC10177820 DOI: 10.3390/ijms24097778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Considering the prevalence of obesity and global aging, the consumption of a high-protein diet (HPD) may be advantageous. However, an HPD aggravates kidney dysfunction in patients with chronic kidney disease (CKD). Moreover, the effects of an HPD on kidney function in healthy individuals are controversial. In this study, we employed a remnant kidney mouse model as a CKD model and aimed to evaluate the effects of an HPD on kidney injury under conditions of non-CKD and CKD. Mice were divided into four groups: a sham surgery (sham) + normal diet (ND) group, a sham + HPD group, a 5/6 nephrectomy (Nx) + ND group and a 5/6 Nx + HPD group. Blood pressure, kidney function and kidney tissue injury were compared after 12 weeks of diet loading among the four groups. The 5/6 Nx groups displayed blood pressure elevation, kidney function decline, glomerular injury and tubular injury compared with the sham groups. Furthermore, an HPD exacerbated glomerular injury only in the 5/6 Nx group; however, an HPD did not cause kidney injury in the sham group. Clinical application of these results suggests that patients with CKD should follow a protein-restricted diet to prevent the exacerbation of kidney injury, while healthy individuals can maintain an HPD without worrying about the adverse effects.
Collapse
Affiliation(s)
- Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Shingo Urate
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Takayuki Yamada
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Tomohiko Kanaoka
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Daisuke Kamimura
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Masahito Takiguchi
- Department of Neuroanatomy, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishiharacho, Okinawa 903-0215, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
3
|
ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond. Hypertens Res 2022; 45:32-39. [PMID: 34642449 DOI: 10.1038/s41440-021-00776-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022]
Abstract
Pathological activation of kidney angiotensin II (Ang II) type 1 receptor (AT1R) signaling stimulates tubular sodium transporters, including epithelial sodium channels, to increase sodium reabsorption and blood pressure. During a search for a means to functionally and selectively modulate AT1R signaling, a molecule directly interacting with the carboxyl-terminal cytoplasmic domain of AT1R was identified and named AT1R-associated protein (ATRAP/Agtrap). We showed that ATRAP promotes constitutive AT1R internalization to inhibit pathological AT1R activation in response to certain stimuli. In the kidney, ATRAP is abundantly distributed in epithelial cells along the proximal and distal tubules. Results from genetically engineered mice with modified ATRAP expression show that ATRAP plays a key role in the regulation of renal sodium handling and the modulation of blood pressure in response to pathological stimuli and further suggest that the function of kidney tubule ATRAP may be different between distal tubules and proximal tubules, implying that ATRAP is a target of interest in hypertension.
Collapse
|
4
|
Shi L, Li Y, Liu Q, Zhang L, Wang L, Liu X, Gao H, Hou X, Zhao F, Yan H, Wang L. Identification of SNPs and Candidate Genes for Milk Production Ability in Yorkshire Pigs. Front Genet 2021; 12:724533. [PMID: 34675963 PMCID: PMC8523896 DOI: 10.3389/fgene.2021.724533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Sow milk production ability is an important limiting factor impacting suboptimal growth and the survival of piglets. Through pig genetic improvement, litter sizes have been increased. Larger litters need more suckling mammary glands, which results in increased milk from the lactating sow. Hence, there is much significance to exploring sow lactation performance. For milk production ability, it is not practical to directly measure the milk yield, we used litter weight gain (LWG) throughout sow lactation as an indicator. In this study, we estimated the heritability of LWG, namely, 0.18 ± 0.07. We then performed a GWAS, and detected seven significant SNPs, namely, Sus scrofa Chromosome (SSC) 2: ASGA0010040 (p = 7.73E-11); SSC2:MARC0029355 (p = 1.30E-08), SSC6: WU_10.2_6_65751151 (p = 1.32E-10), SSC7: MARC0058875 (p = 4.99E-09), SSC10: WU_10.2_10_49571394 (p = 6.79E-08), SSC11: M1GA0014659 (p = 1.19E-07), and SSC15: MARC0042106 (p = 1.16E-07). We performed the distribution of phenotypes corresponding to the genotypes of seven significant SNPs and showed that ASGA0010040, MARC0029355, MARC0058875, WU_10.2_10_49571394, M1GA0014659, and MARC0042106 had extreme phenotypic values that corresponded to the homozygous genotypes, while the intermediate values corresponded to the heterozygous genotypes. We screened for flanking regions ± 200 kb nearby the seven significant SNPs, and identified 38 genes in total. Among them, 28 of the candidates were involved in lactose metabolism, colostrum immunity, milk protein, and milk fat by functional enrichment analysis. Through the combined analysis between 28 candidate genes and transcriptome data of the sow mammary gland, we found nine commons (ANO3, MUC15, DISP3, FBXO6, CLCN6, HLA-DRA, SLA-DRB1, SLA-DQB1, and SLA-DQA1). Furthermore, by comparing the chromosome positions of the candidate genes with the quantitative trait locus (QTLs) as previously reported, a total of 17 genes were found to be within 0.86–94.02 Mb of the reported QTLs for sow milk production ability, in which, NAV2 was found to be located with 0.86 Mb of the QTL region ssc2: 40936355. In conclusion, we identified seven significant SNPs located on SSC2, 6, 7, 10, 11, and 15, and propose 28 candidate genes for the ability to produce milk in Yorkshire pigs, 10 of which were key candidates.
Collapse
Affiliation(s)
- Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Kinguchi S, Wakui H, Azushima K, Haruhara K, Koguchi T, Ohki K, Uneda K, Matsuda M, Haku S, Yamaji T, Yamada T, Kobayashi R, Minegishi S, Ishigami T, Yamashita A, Fujikawa T, Tamura K. Effects of ATRAP in Renal Proximal Tubules on Angiotensin-Dependent Hypertension. J Am Heart Assoc 2019; 8:e012395. [PMID: 30977419 PMCID: PMC6507205 DOI: 10.1161/jaha.119.012395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background We have previously shown that ATRAP (angiotensin II receptor-associated protein; Agtrap) interacts with AT1R (angiotensin II type 1 receptor) and promotes constitutive internalization of AT 1R so as to inhibit hyperactivation of its downstream signaling. In response to angiotensin II , systemic ATRAP deficiency exacerbates angiotensin II -mediated hypertension via hyperactivation of renal tubular AT 1R. Although ATRAP expression is abundant in renal proximal tubules, little is known about the actual function of renal proximal tubule ATRAP in angiotensin-mediated hypertension. Methods and Results In this study, we examined the in vivo functional role of renal proximal tubule ATRAP in angiotensin-dependent hypertension. We succeeded in generating proximal tubule-specific ATRAP knockout ( PT - KO ) mice for the first time using the Cre/loxP system with Pepck-Cre. Detailed analysis of renal ATRAP expression in PT - KO mice estimated by immunohistochemical and laser-capture microdissection analysis revealed that ATRAP mRNA expression decreased by ≈80% in proximal regions of the nephron in PT - KO mice compared with wild-type ( WT ) mice. We compared blood pressure of PT - KO and WT mice using both tail-cuff and radiotelemetric methods. Blood pressure of PT - KO mice was comparable with that of WT mice at baseline. Moreover, no significant differences were noted in pressor response to angiotensin II (600 ng/kg per min or 1000 ng/kg per minute) infusion between PT - KO and WT mice. In addition, angiotensin II -mediated cardiac hypertrophy was identical between PT - KO and WT mice. Conclusions ATRAP deficiency in proximal tubules did not exacerbate angiotensin-dependent hypertension in vivo. The results indicate that renal proximal tubule ATRAP has a minor role in angiotensin-dependent hypertension in vivo.
Collapse
Affiliation(s)
- Sho Kinguchi
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Hiromichi Wakui
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Kengo Azushima
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan.,2 Cardiovascular and Metabolic Disorders Program Duke-NUS Medical School Singapore Singapore
| | - Kotaro Haruhara
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Tomoyuki Koguchi
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Kohji Ohki
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Kazushi Uneda
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Miyuki Matsuda
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Sona Haku
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Takahiro Yamaji
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Takayuki Yamada
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Ryu Kobayashi
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Shintaro Minegishi
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Tomoaki Ishigami
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Akio Yamashita
- 3 Department of Molecular Biology Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Tetsuya Fujikawa
- 4 Center for Health Service Sciences Yokohama National University Yokohama Japan
| | - Kouichi Tamura
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| |
Collapse
|
6
|
Perivascular Adipose Tissue-Enhanced Vasodilation in Metabolic Syndrome Rats by Apelin and N-Acetyl⁻l-Cysteine-Sensitive Factor(s). Int J Mol Sci 2018; 20:ijms20010106. [PMID: 30597883 PMCID: PMC6337496 DOI: 10.3390/ijms20010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 01/24/2023] Open
Abstract
Perivascular adipose tissue (PVAT) can regulate vascular tone. In mesenteric arteries of SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP.ZF) with metabolic syndrome, vascular dysfunction is compensated by PVAT-dependent mechanisms that disappear with increasing age. In this study, we investigated the mechanisms of the age-related changes and responsible factor(s) involved in the enhancing effects of mesenteric arterial PVAT in SHRSP.ZF. Acetylcholine- and sodium nitroprusside-induced relaxations of isolated arteries were greater with PVAT than without PVAT at 17 and 20 weeks of age (wks), and as expected, this enhancement by the presence of PVAT disappeared at 23 wks. PVAT mRNA levels of angiotensin II type 1 (AT1) receptor-associated protein was less and AT1 receptor was unchanged at 23 wks when compared to 20 wks. At 20 wks, the enhanced acetylcholine-induced relaxation by the presence of PVAT was inhibited by N-acetyl-l-cysteine (NAC). Acetylcholine-induced relaxation of arteries without PVAT was increased in the presence of exogenously added apelin. PVAT mRNA level of apelin was higher in SHRSP.ZF than in control Wistar-Kyoto rats, and the level was decreased with aging. These results suggest that AT1 receptor activation in PVAT, and changes in the regulation of apelin and a NAC-sensitive factor are related to the age-dependent deterioration of the vasodilation enhancing effects of mesenteric arterial PVAT in SHRSP.ZF.
Collapse
|
7
|
Ohki K, Wakui H, Kishio N, Azushima K, Uneda K, Haku S, Kobayashi R, Haruhara K, Kinguchi S, Yamaji T, Yamada T, Minegishi S, Ishigami T, Toya Y, Yamashita A, Imajo K, Nakajima A, Kato I, Ohashi K, Tamura K. Angiotensin II Type 1 Receptor-associated Protein Inhibits Angiotensin II-induced Insulin Resistance with Suppression of Oxidative Stress in Skeletal Muscle Tissue. Sci Rep 2018; 8:2846. [PMID: 29434287 PMCID: PMC5809432 DOI: 10.1038/s41598-018-21270-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/01/2018] [Indexed: 01/19/2023] Open
Abstract
Enhancement of AT1 receptor-associated protein (ATRAP) in adipose tissue improves high fat diet (HFD)-induced visceral obesity and insulin resistance, and suppresses adipose oxidative stress. However, HFD loading is not a direct stimulatory factor for AT1 receptor. In the present study, we investigated the effect of chronic, low-dose angiotensin II (Ang II) stimulation on glucose and lipid metabolism in mice and functional role of ATRAP. ATRAP expression was higher in adipose tissue (5–10-fold) and skeletal muscle tissue (approximately 1.6-fold) in ATRAP transgenic (TG) mice compared with wild-type (WT) mice. After Ang II infusion, insulin sensitivity was impaired in WT mice, but this response was suppressed in TG mice. Unexpectedly, Ang II infusion did not affect the adipose tissue profile in WT or TG mice. However, in skeletal muscle tissue, Ang II stimulus caused an increase in oxidative stress and activation of p38 MAPK, resulting in a decrease in glucose transporter type 4 expression in WT mice. These responses were suppressed in TG mice. Our study suggests that Ang II-induced insulin resistance is suppressed by increased ATRAP expression in skeletal muscle tissue. Hyperactivity of AT1 receptor could be related to formation of insulin resistance related to metabolic syndrome.
Collapse
Affiliation(s)
- Kohji Ohki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Nozomu Kishio
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sona Haku
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Yamada
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Ohashi
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|