1
|
Qin Z, Yang J, Zhang K, Gao X, Ran Q, Xu Y, Wang Z, Lou D, Huang C, Zellmer L, Meng G, Chen N, Ma H, Wang Z, Liao DJ. Updating mRNA variants of the human RSK4 gene and their expression in different stressed situations. Heliyon 2024; 10:e27475. [PMID: 38560189 PMCID: PMC10980951 DOI: 10.1016/j.heliyon.2024.e27475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/11/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
We determined RNA spectrum of the human RSK4 (hRSK4) gene (also called RPS6KA6) and identified 29 novel mRNA variants derived from alternative splicing, which, plus the NCBI-documented ones and the five we reported previously, totaled 50 hRSK4 RNAs that, by our bioinformatics analyses, encode 35 hRSK4 protein isoforms of 35-762 amino acids. Many of the mRNAs are bicistronic or tricistronic for hRSK4. The NCBI-normalized NM_014496.5 and the protein it encodes are designated herein as the Wt-1 mRNA and protein, respectively, whereas the NM_001330512.1 and the long protein it encodes are designated as the Wt-2 mRNA and protein, respectively. Many of the mRNA variants responded differently to different situations of stress, including serum starvation, a febrile temperature, treatment with ethanol or ethanol-extracted clove buds (an herbal medicine), whereas the same stressed situation often caused quite different alterations among different mRNA variants in different cell lines. Mosifloxacin, an antibiotics and also a functional inhibitor of hRSK4, could inhibit the expression of certain hRSK4 mRNA variants. The hRSK4 gene likely uses alternative splicing as a handy tool to adapt to different stressed situations, and the mRNA and protein multiplicities may partly explain the incongruous literature on its expression and comports.
Collapse
Affiliation(s)
- Zhenwei Qin
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Jianglin Yang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Rd, Guiyang, 550004, Guizhou Province, China
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Keyin Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Xia Gao
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Qianchuan Ran
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Yuanhong Xu
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Zhi Wang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Didong Lou
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Chunhua Huang
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Lucas Zellmer
- Department of Medicine, Hennepin County Medical Center, 730 South 8th St., Minneapolis, MN, 55415, USA
| | - Guangxue Meng
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Na Chen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Dezhong Joshua Liao
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Rd, Guiyang, 550004, Guizhou Province, China
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| |
Collapse
|
2
|
Dorney R, Dhungel BP, Rasko JEJ, Hebbard L, Schmitz U. Recent advances in cancer fusion transcript detection. Brief Bioinform 2022; 24:6918739. [PMID: 36527429 PMCID: PMC9851307 DOI: 10.1093/bib/bbac519] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Extensive investigation of gene fusions in cancer has led to the discovery of novel biomarkers and therapeutic targets. To date, most studies have neglected chromosomal rearrangement-independent fusion transcripts and complex fusion structures such as double or triple-hop fusions, and fusion-circRNAs. In this review, we untangle fusion-related terminology and propose a classification system involving both gene and transcript fusions. We highlight the importance of RNA-level fusions and how long-read sequencing approaches can improve detection and characterization. Moreover, we discuss novel bioinformatic tools to identify fusions in long-read sequencing data and strategies to experimentally validate and functionally characterize fusion transcripts.
Collapse
Affiliation(s)
- Ryley Dorney
- epartment of Molecular & Cell Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Douglas, QLD 4811, Australia,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Bijay P Dhungel
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia,Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2006, Australia,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia,Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lionel Hebbard
- epartment of Molecular & Cell Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Douglas, QLD 4811, Australia,Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Ulf Schmitz
- Corresponding author. Ulf Schmitz, Department of Molecular and Cell Biology, College of Public Health, Medical and Vet Sciences, James Cook University, Douglas, QLD 4811, Australia. E-mail:
| |
Collapse
|
3
|
Jiang P, Sun S, Zhang J, Li C, Ma G, Wang J, Chen F, Liao DJ. RNA expression profiling from the liquid fraction of synovial fluid in knee joint osteoarthritis patients. Am J Transl Res 2022; 14:6782-6791. [PMID: 36247259 PMCID: PMC9556501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/20/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the RNA profile of synovial fluid (SF) from osteoarthritis (OA) patients and carry out cluster analysis of OA-related genes. METHODS RNA of SF from OA patients was isolated using RNA-specific Trizol. A cDNA library was built and subjected to the second-generation sequencing using HisSeq4000 with a data size of 8G. The sequencing reads were aligned to the UCSC human reference genome (hg38) using Tophat with default parameters. Gene function enrichment was generated using DAVID. RESULTS The minimum weight 0.096 µg RNA of SF sample was used for sequencing analysis, which produced 66,154,562 clean reads, 91.28% of which were matched to the reference with 2,682 genes identified. Some of the unmatchable reads matched RNAs of bacteria, mainly Pseudomonas. The detected human RNAs in samples fell into different categories of genes, including protein-coding ones, processed and unprocessed pseudogenes, and long noncoding, antisense and miscellaneous RNAs that mediate various biological functions. Interestingly, 80% of the expressed genes belonged to the mitochondrial genome. CONCLUSION These results suggest that less than 0.1 µg RNA is sufficient for establishing a cDNA library and deep sequencing, and that the liquid fraction of SF contains a whole RNA repertoire that may reflect a history of previous microorganism infections.
Collapse
Affiliation(s)
- Peng Jiang
- School of Clinical Medicine, Shandong UniversityJinan 250100, Shandong Province, China
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong Province, China
| | - Shui Sun
- School of Clinical Medicine, Shandong UniversityJinan 250100, Shandong Province, China
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong Province, China
| | - Ju Zhang
- CAS Key Laboratory of Genomics Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing 100101, China
| | - Cuidan Li
- CAS Key Laboratory of Genomics Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing 100101, China
| | - Guannan Ma
- CAS Key Laboratory of Genomics Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing 100101, China
| | - Jian Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong Province, China
| | - Fei Chen
- CAS Key Laboratory of Genomics Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing 100101, China
| | - Dezhong Joshua Liao
- Department of Pathology, and Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical UniversityGuiyang 550004, Guizhou Province, China
| |
Collapse
|
4
|
Zhang K, Yang J, Qin Z, Lu T, Lou D, Ran Q, Huang H, Cheng S, Zellmer L, Ma H, Liao DJ. Establishment of New Genetic Markers and Methods for Sex Determination of Mouse and Human Cells using Polymerase Chain Reactions and Crude DNA Samples. Curr Genomics 2022; 23:275-288. [PMID: 36777874 PMCID: PMC9875541 DOI: 10.2174/1389202923666220610121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The currently available methods for sexing human or mouse cells have weaknesses. Therefore, it is necessary to establish new methods. Methods: We used bioinformatics approach to identify genes that have alleles on both the X and Y chromosomes of mouse and human genomes and have a region showing a significant difference between the X and Y alleles. We then used polymerase chain reactions (PCR) followed by visualization of the PCR amplicons in agarose gels to establish these genomic regions as genetic sex markers. Results: Our bioinformatics analyses identified eight mouse sex markers and 56 human sex markers that are new, i.e. are previously unreported. Six of the eight mouse markers and 14 of the 56 human markers were verified using PCR and ensuing visualization of the PCR amplicons in agarose gels. Most of the tested and untested sex markers possess significant differences in the molecular weight between the X- and Y-derived PCR amplicons and are thus much better than most, if not all, previously-reported genetic sex markers. We also established several simple and essentially cost-free methods for extraction of crude genomic DNA from cultured cells, blood samples, and tissues that could be used as template for PCR amplification. Conclusion: We have established new sex genetic markers and methods for extracting genomic DNA and for sexing human and mouse cells. Our work may also lend some methodological strategies to the identification of new genetic sex markers for other organismal species.
Collapse
Affiliation(s)
- Keyin Zhang
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China;,Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China
| | - Jianglin Yang
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P. R. China;,Center for Clinical Laboratories, Guizhou Medical University Hospital, 4 Beijing Rd, Guiyang 550004, Guizhou Province, P.R. China
| | - Zhenwei Qin
- Forensic Science Section, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang 550025, Guizhou Province, P.R. China
| | - Tianzu Lu
- Department of Stomatology, School of Stomatology, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China
| | - Didong Lou
- Forensic Science Section, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang 550025, Guizhou Province, P.R. China
| | - Qianchuan Ran
- Forensic Science Section, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang 550025, Guizhou Province, P.R. China
| | - Hai Huang
- Center for Clinical Laboratories, Guizhou Medical University Hospital, 4 Beijing Rd, Guiyang 550004, Guizhou Province, P.R. China
| | - Shuqiang Cheng
- Center for Clinical Laboratories, Guizhou Medical University Hospital, 4 Beijing Rd, Guiyang 550004, Guizhou Province, P.R. China
| | - Lucas Zellmer
- Department of Medicine, Hennepin County Medical Center, 730 South 8th St., Minneapolis, MN 5415
| | - Hong Ma
- Department of Stomatology, School of Stomatology, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China;,Address correspondence to these authors at the Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China; Tel/Fax: 86-85186752814; E-mail: and Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University 9 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China; Tel/Fax: 86-851-88512238; E-mail:
| | - Dezhong J. Liao
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China;,Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China;,Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P. R. China;,Address correspondence to these authors at the Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China; Tel/Fax: 86-85186752814; E-mail: and Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University 9 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China; Tel/Fax: 86-851-88512238; E-mail:
| |
Collapse
|
5
|
Gao X, Zhang K, Zhou H, Zellmer L, Yuan C, Huang H, Liao DJ. At elevated temperatures, heat shock protein genes show altered ratios of different RNAs and expression of new RNAs, including several novel HSPB1 mRNAs encoding HSP27 protein isoforms. Exp Ther Med 2021; 22:900. [PMID: 34257713 PMCID: PMC8243336 DOI: 10.3892/etm.2021.10332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Heat shock proteins (HSP) serve as chaperones to maintain the physiological conformation and function of numerous cellular proteins when the ambient temperature is increased. To determine how accurate the general assumption that HSP gene expression is increased in febrile situations is, the RNA levels of the HSF1 (heat shock transcription factor 1) gene and certain HSP genes were determined in three cell lines cultured at 37˚C or 39˚C for three days. At 39˚C, the expression of HSF1, HSPB1, HSP90AA1 and HSP70A1L genes demonstrated complex changes in the ratios of expression levels between different RNA variants of the same gene. Several older versions of the RNAs of certain HSP genes that have been replaced by a newer version in the National Center for Biotechnology Information database were also detected, indicating that the older versions are actually RNA variants of these genes. The present study cloned four new RNA variants of the HSP27-encoding HSPB1 gene, which together encode three short HSP27 peptides. Reanalysis of the proteomics data from our previous studies also demonstrated that proteins from certain HSP genes could be detected simultaneously at multiple positions using SDS-PAGE, suggesting that these genes may engender multiple protein isoforms. These results collectively suggested that, besides increasing their expression, certain HSP and associated genes also use alternative transcription start sites to produce multiple RNA transcripts and use alternative splicing of a transcript to produce multiple mature RNAs, as important mechanisms for responding to an increased ambient temperature in vitro.
Collapse
Affiliation(s)
- Xia Gao
- Department of Pathology, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China.,Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Keyin Zhang
- Department of Pathology, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China.,Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Haiyan Zhou
- Clinical Research Center, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Hai Huang
- Center for Clinical Laboratories, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Clinical Laboratories, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
6
|
Chen W, Cui W, Qiu Y, Cui D. Research Progress of Chimeric RNA and Health. Health (London) 2021. [DOI: 10.4236/health.2021.134036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Oliver GR, Jenkinson G, Klee EW. Computational Detection of Known Pathogenic Gene Fusions in a Normal Tissue Database and Implications for Genetic Disease Research. Front Genet 2020; 11:173. [PMID: 32180803 PMCID: PMC7059617 DOI: 10.3389/fgene.2020.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Several recent studies have demonstrated the utility of RNA-Seq in the diagnosis of rare inherited disease. Diagnostic rates 35% higher than those previously achievable with DNA-Seq alone have been attained. These studies have primarily profiled gene expression and splicing defects, however, some have also shown that fusion transcripts are diagnostic or phenotypically relevant in patients with constitutional disorders. Fusion transcripts have traditionally been studied as oncogenic phenomena, with relevance only to cancer testing. Consequently, fusion detection algorithms were biased toward the detection of well-known oncogenic fusions, hindering their application to rare Mendelian genetic disease studies. A recent methodology published by the authors successfully tailored a traditional algorithm to the detection of pathogenic fusion events in inherited disease. A key mechanism of decreasing false positive or biologically benign events was comparison to a database of events detected in normal tissues. This approach is akin to population frequency-based filtering of genetic variants. It is predicated on the idea that pathogenic fusion transcripts are absent from normal tissue. We report on an analysis of RNA-Seq data from the genotype-tissue expression (GTEx) project in which known pathogenic fusions are computationally detected at low levels in normal tissues unassociated with the disease phenotype. Examples include archetypal cancer fusion transcripts, as well as fusions responsible for rare inherited disease. We consider potential explanations for the detectability of such transcripts and discuss the bearing such results have on the future profiling of genetic disease patients for pathogenic gene fusions.
Collapse
Affiliation(s)
- Gavin Robert Oliver
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Garrett Jenkinson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Qu J, Zhang J, Zellmer L, He Y, Liu S, Wang C, Yuan C, Xu N, Huang H, Liao DJ. About three-fourths of mouse proteins unexpectedly appear at a low position of SDS-PAGE, often as additional isoforms, questioning whether all protein isoforms have been eliminated in gene-knockout cells or organisms. Protein Sci 2020; 29:978-990. [PMID: 31930537 DOI: 10.1002/pro.3823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/01/2020] [Accepted: 01/05/2020] [Indexed: 01/08/2023]
Abstract
Most genes in evolutionarily complex genomes are expressed to multiple protein isoforms, but there is not yet any simple high-throughput approach to identify these isoforms. Using an oversimplified top-down LC-MS/MS strategy, we detected, around the 26-kD position of SDS-PAGE, proteins produced from 782 genes in a Cdk4-/- mouse embryonic fibroblast cell line. Interestingly, only 213 (27.24%, about one-fourth) of these 782 genes have their proteins with a theoretical molecular mass (TMM) 10% smaller or larger than 26 kD, that is, between 23 and 29 kD, the range set as allowed variation in SDS-PAGE. These 213 proteins are considered as the wild type (WT). The remaining three-fourths includes proteins from 66 (9.44%) genes with a TMM smaller than 23 kD and proteins from 503 (64.32%, nearly two-thirds) genes with a TMM larger than 29 kD; these proteins are categorized into a larger-group or a smaller-group, respectively, for their appearance at a higher or lower position of SDS-PAGE. For instance, at this 26-kD position we detected proteins from the Rps27a, Snrpf, Hist1h4a, and Rps25 genes whose proteins' TMM is 8.6, 9.7, 11.4, and 13.7 kD, respectively, and detected proteins from the Plelc1 and Prkdc genes, whose largest isoform is 533.9 and 471.1 kD, respectively. We extrapolate that many of those proteins migrating unexpectedly in SDS-PAGE may be isoforms besides the WT protein. Moreover, we also detected a Cdk4 protein in this Cdk4-/- cell line, thus wondering whether some of other gene-knockout cells or organisms show similar incompleteness of the knockout.
Collapse
Affiliation(s)
- Jiayuan Qu
- Department of Biochemistry, China Three Gorges University, Yichang, Hubei Province, China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou Province, P. R., China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang, Hubei Province, China
| | - Ningzhi Xu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Dezhong J Liao
- Laboratory for Core Facilities, The Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| |
Collapse
|
9
|
Barresi V, Cosentini I, Scuderi C, Napoli S, Di Bella V, Spampinato G, Condorelli DF. Fusion Transcripts of Adjacent Genes: New Insights into the World of Human Complex Transcripts in Cancer. Int J Mol Sci 2019; 20:ijms20215252. [PMID: 31652751 PMCID: PMC6862657 DOI: 10.3390/ijms20215252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
Abstract
The awareness of genome complexity brought a radical approach to the study of transcriptome, opening eyes to single RNAs generated from two or more adjacent genes according to the present consensus. This kind of transcript was thought to originate only from chromosomal rearrangements, but the discovery of readthrough transcription opens the doors to a new world of fusion RNAs. In the last years many possible intergenic cis-splicing mechanisms have been proposed, unveiling the origins of transcripts that contain some exons of both the upstream and downstream genes. In some cases, alternative mechanisms, such as trans-splicing and transcriptional slippage, have been proposed. Five databases, containing validated and predicted Fusion Transcripts of Adjacent Genes (FuTAGs), are available for the scientific community. A comparative analysis revealed that two of them contain the majority of the results. A complete analysis of the more widely characterized FuTAGs is provided in this review, including their expression pattern in normal tissues and in cancer. Gene structure, intergenic splicing patterns and exon junction sequences have been determined and here reported for well-characterized FuTAGs. The available functional data and the possible roles in cancer progression are discussed.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Ilaria Cosentini
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Salvatore Napoli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
10
|
Oliver GR, Tang X, Schultz-Rogers LE, Vidal-Folch N, Jenkinson WG, Schwab TL, Gaonkar K, Cousin MA, Nair A, Basu S, Chanana P, Oglesbee D, Klee EW. A tailored approach to fusion transcript identification increases diagnosis of rare inherited disease. PLoS One 2019; 14:e0223337. [PMID: 31577830 PMCID: PMC6774566 DOI: 10.1371/journal.pone.0223337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND RNA sequencing has been proposed as a means of increasing diagnostic rates in studies of undiagnosed rare inherited disease. Recent studies have reported diagnostic improvements in the range of 7.5-35% by profiling splicing, gene expression quantification and allele specific expression. To-date however, no study has systematically assessed the presence of gene-fusion transcripts in cases of germline disease. Fusion transcripts are routinely identified in cancer studies and are increasingly recognized as having diagnostic, prognostic or therapeutic relevance. Isolated reports exist of fusion transcripts being detected in cases of developmental and neurological phenotypes, and thus, systematic application of fusion detection to germline conditions may further increase diagnostic rates. However, current fusion detection methods are unsuited to the investigation of germline disease due to performance biases arising from their development using tumor, cell-line or in-silico data. METHODS We describe a tailored approach to fusion candidate identification and prioritization in a cohort of 47 undiagnosed, suspected inherited disease patients. We modify an existing fusion transcript detection algorithm by eliminating its cell line-derived filtering steps, and instead, prioritize candidates using a custom workflow that integrates genomic and transcriptomic sequence alignment, biological and technical annotations, customized categorization logic, and phenotypic prioritization. RESULTS We demonstrate that our approach to fusion transcript identification and prioritization detects genuine fusion events excluded by standard analyses and efficiently removes phenotypically unimportant candidates and false positive events, resulting in a reduced candidate list enriched for events with potential phenotypic relevance. We describe the successful genetic resolution of two previously undiagnosed disease cases through the detection of pathogenic fusion transcripts. Furthermore, we report the experimental validation of five additional cases of fusion transcripts with potential phenotypic relevance. CONCLUSIONS The approach we describe can be implemented to enable the detection of phenotypically relevant fusion transcripts in studies of rare inherited disease. Fusion transcript detection has the potential to increase diagnostic rates in rare inherited disease and should be included in RNA-based analytical pipelines aimed at genetic diagnosis.
Collapse
Affiliation(s)
- Gavin R. Oliver
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Laura E. Schultz-Rogers
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Noemi Vidal-Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - W. Garrett Jenkinson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Krutika Gaonkar
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Margot A. Cousin
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Asha Nair
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shubham Basu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Pritha Chanana
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric W. Klee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
11
|
Boldogkői Z, Moldován N, Balázs Z, Snyder M, Tombácz D. Long-Read Sequencing – A Powerful Tool in Viral Transcriptome Research. Trends Microbiol 2019; 27:578-592. [DOI: 10.1016/j.tim.2019.01.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
|
12
|
He Y, Yuan C, Chen L, Lei M, Zellmer L, Huang H, Liao DJ. Transcriptional-Readthrough RNAs Reflect the Phenomenon of "A Gene Contains Gene(s)" or "Gene(s) within a Gene" in the Human Genome, and Thus Are Not Chimeric RNAs. Genes (Basel) 2018; 9:E40. [PMID: 29337901 PMCID: PMC5793191 DOI: 10.3390/genes9010040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/29/2017] [Accepted: 01/07/2018] [Indexed: 02/06/2023] Open
Abstract
Tens of thousands of chimeric RNAs, i.e., RNAs with sequences of two genes, have been identified in human cells. Most of them are formed by two neighboring genes on the same chromosome and are considered to be derived via transcriptional readthrough, but a true readthrough event still awaits more evidence and trans-splicing that joins two transcripts together remains as a possible mechanism. We regard those genomic loci that are transcriptionally read through as unannotated genes, because their transcriptional and posttranscriptional regulations are the same as those of already-annotated genes, including fusion genes formed due to genetic alterations. Therefore, readthrough RNAs and fusion-gene-derived RNAs are not chimeras. Only those two-gene RNAs formed at the RNA level, likely via trans-splicing, without corresponding genes as genomic parents, should be regarded as authentic chimeric RNAs. However, since in human cells, procedural and mechanistic details of trans-splicing have never been disclosed, we doubt the existence of trans-splicing. Therefore, there are probably no authentic chimeras in humans, after readthrough and fusion-gene derived RNAs are all put back into the group of ordinary RNAs. Therefore, it should be further determined whether in human cells all two-neighboring-gene RNAs are derived from transcriptional readthrough and whether trans-splicing truly exists.
Collapse
Affiliation(s)
- Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City 443002, Hubei, China.
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA.
| | - Hai Huang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou, China.
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou, China.
| |
Collapse
|
13
|
He Y, Yuan C, Chen L, Liu Y, Zhou H, Xu N, Liao DJ. While it is not deliberate, much of today's biomedical research contains logical and technical flaws, showing a need for corrective action. Int J Med Sci 2018; 15:309-322. [PMID: 29511367 PMCID: PMC5835702 DOI: 10.7150/ijms.23215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Biomedical research has advanced swiftly in recent decades, largely due to progress in biotechnology. However, this rapid spread of new, and not always-fully understood, technology has also created a lot of false or irreproducible data and artifacts, which sometimes have led to erroneous conclusions. When describing various scientific issues, scientists have developed a habit of saying "on one hand… but on the other hand…", because discrepant data and conclusions have become omnipresent. One reason for this problematic situation is that we are not always thoughtful enough in study design, and sometimes lack enough philosophical contemplation. Another major reason is that we are too rushed in introducing new technology into our research without assimilating technical details. In this essay, we provide examples in different research realms to justify our points. To help readers test their own weaknesses, we raise questions on technical details of RNA reverse transcription, polymerase chain reactions, western blotting and immunohistochemical staining, as these methods are basic and are the base for other modern biotechnologies. Hopefully, after contemplation and reflection on these questions, readers will agree that we indeed know too little about these basic techniques, especially about the artifacts they may create, and thus many conclusions drawn from the studies using those ever-more-sophisticated techniques may be even more problematic.
Collapse
Affiliation(s)
- Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China.,Molecular Biology Center, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City, Hubei 443002, P.R. China
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yanjie Liu
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Haiyan Zhou
- Clinical Research Center, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China.,Molecular Biology Center, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
14
|
Li Z, Qin F, Li H. Chimeric RNAs and their implications in cancer. Curr Opin Genet Dev 2017; 48:36-43. [PMID: 29100211 DOI: 10.1016/j.gde.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/06/2017] [Accepted: 10/02/2017] [Indexed: 11/26/2022]
Abstract
Chimeric RNAs have been believed to be solely produced by gene fusions resulting from chromosomal rearrangement, thus unique features of cancer. Detected chimeric RNAs have also been viewed as surrogates for the presence of gene fusions. However, more and more research has demonstrated that chimeric RNAs in general are not a hallmark of cancer, but rather widely present in non-cancerous cells and tissues. At the same time, they may be produced by other mechanisms other than chromosomal rearrangement. The field of non-canonical chimeric RNAs is still in its infancy, with many challenges ahead, including the lack of a unified terminology. However, we believe that these non-canonical chimeric RNAs will have significant impacts in cancer detection and treatment.
Collapse
Affiliation(s)
- Zi Li
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Fujun Qin
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
15
|
Yan R, Zhang J, Zellmer L, Chen L, Wu D, Liu S, Xu N, Liao JD. Probably less than one-tenth of the genes produce only the wild type protein without at least one additional protein isoform in some human cancer cell lines. Oncotarget 2017; 8:82714-82727. [PMID: 29137297 PMCID: PMC5669923 DOI: 10.18632/oncotarget.20015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
To estimate how many genes produce multiple protein isoforms, we electrophoresed proteins from MCF7 and MDA-MB231 (MB231) human breast cancer cells in SDS-PAGE and excised narrow stripes of the gel at the 48kD, 55kD and 72kD. Proteins in these stripes were identified using liquid chromatography and tandem mass spectrometry. A total of 765, 750 and 679 proteins from MB231 cells, as well as 470, 390 and 490 proteins from MCF7 cells, were identified from the 48kD, 55kD and 72kD stripes, respectively. We arbitrarily allowed a 10% technical variation from the proteins' theoretical molecular mass (TMM) and considered those proteins with their TMMs within the 43-53 kD, 49-61 kD and 65-79 kD ranges as the wild type (WT) expected from the corresponding stripe, whereas those with a TMM above or below this range as a smaller- or larger-group, respectively. Only 263 (34.4%), 269 (35.9%) and 151 (22.2%) proteins from MB231 cells and 117 (24.9%), 135 (34.6%) and 130 (26.5%) proteins from MCF7 cells from the 48kD, 55kD and 72kD stripes, respectively, belonged to the WT, while the remaining majority belonged to the smaller- or larger-groups. Only about 3-16%, on average about 10% regardless of the stripe and cell line, of the proteins appeared in only one stripe and within the WT range, while the remaining preponderance appeared also in additional stripe(s) or had a larger or smaller TMM. We conclude that few (fewer than 10%) of the human genes produce only the WT protein without additional isoform(s).
Collapse
Affiliation(s)
- Rui Yan
- Nephrology Department, Guizhou Medical University Hospital, Guiyang, P.R. China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lucas Zellmer
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Di Wu
- Beijing Protein Innovation Co., Ltd, Beijing, P.R. China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Joshua D Liao
- Department of Pathology, Guizhou Medical University Hospital, Guiyang, P.R. China
| |
Collapse
|