1
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
2
|
Jiang Y, Rex DAB, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Mayta ML, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics using Mass Spectrometry. ARXIV 2023:arXiv:2311.07791v1. [PMID: 38013887 PMCID: PMC10680866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8093, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical Sciences Division, National Institute of Standards and Technology, NIST Charleston · Funded by NIST
| | - Germán L. Rosano
- Mass Spectrometry Unit, Institute of Molecular and Cellular Biology of Rosario, Rosario, Argentina · Funded by Grant PICT 2019-02971 (Agencia I+D+i)
| | - Norbert Volkmar
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
| | | | - Susan B. Egbert
- Department of Chemistry, University of Manitoba, Winnipeg, Cananda
| | - Simion Kreimer
- Smidt Heart Institute, Cedars Sinai Medical Center; Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center
| | - Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oliver M. Crook
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute · Funded by Grant BT/PR16456/BID/7/624/2016 (Department of Biotechnology, India); Grant Translational Research Program (TRP) at THSTI funded by DBT
| | - Muralidharan Vanuopadath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam-690 525, Kerala, India · Funded by Department of Health Research, Indian Council of Medical Research, Government of India (File No.R.12014/31/2022-HR)
| | - Martín L. Mayta
- School of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martín 3103, Argentina; Molecular Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department of Chemistry, University of Washington · Funded by Summer Research Acceleration Fellowship, Department of Chemistry, University of Washington
| | - Nicholas M. Riley
- Department of Chemistry, University of Washington · Funded by National Institutes of Health Grant R00 GM147304
| | - Robert L. Moritz
- Institute for Systems biology, Seattle, WA, USA, 98109 · Funded by National Institutes of Health Grants R01GM087221, R24GM127667, U19AG023122, S10OD026936; National Science Foundation Award 1920268
| | - Jesse G. Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center · Funded by National Institutes of Health Grant R21 AG074234; National Institutes of Health Grant R35 GM142502
| |
Collapse
|
3
|
Kim J, Lindahl PA. CUP1 Metallothionein from Healthy Saccharomyces cerevisiae Colocalizes to the Cytosol and Mitochondrial Intermembrane Space. Biochemistry 2023; 62:62-74. [PMID: 36503220 PMCID: PMC9813906 DOI: 10.1021/acs.biochem.2c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 12/14/2022]
Abstract
Liquid chromatography, mass spectrometry, and metal analyses of cytosol and mitochondrial filtrates from healthy copper-replete Saccharomyces cerevisiae cells revealed that metallothionein CUP1 was a notable copper-containing species in both compartments, with its abundance dependent upon the level of copper supplementation in the growth media. Electrospray ionization mass spectrometry of cytosol and soluble mitochondrial filtrates displayed a full isotopologue pattern of CUP1 in which the first eight amino acid residues were truncated and eight copper ions were bound. Neither apo-CUP1 nor intermediate copper-bound forms were detected, but chelator treatment could generate apo-CUP1. Mitoplasting revealed that mitochondrial CUP1 was located in the intermembrane space. Fluorescence microscopy demonstrated that 34 kDa CUP1-GFP entered the organelle, discounting the possibility that 7 kDa CUP1 enters folded and metalated through outer membrane pores. How CUP1 enters mitochondria remains unclear, as does its role within the organelle. Although speculative, mitochondrial CUP1 may limit the concentrations of low-molecular-mass copper complexes in the organelle.
Collapse
Affiliation(s)
- Joshua
E. Kim
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Paul A. Lindahl
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Bhopatkar AA, Rangachari V. Are granulins copper sequestering proteins? Proteins 2020; 89:450-461. [PMID: 33252789 DOI: 10.1002/prot.26031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Granulins (GRN 1-7) are short (~6 kDa), cysteine-rich proteins that are generated upon the proteolytic processing of progranulin (PGRN). These peptides, along with their precursor, have been implicated in multiple pathophysiological roles, especially in neurodegenerative diseases. Previously we showed that GRN-3 and GRN-5 are fully disordered in the reduced form implicating redox sensitive attributes to the proteins. Redox-based modulations are often carried out by metalloproteins in mitigating oxidative stress and maintaining metal-homeostasis within cells. To probe whether GRNs play a role in metal sequestration, we tested the metal binding propensity of the reduced forms of GRNs -3 and - 5 under neutral and acidic pH mimicking cytosolic and lysosomal conditions, respectively. We found, at neutral pH, both GRNs selectively bind Cu and no other divalent metal cations, with a greater specificity for Cu(I). Binding of Cu did not result in a disorder-to-order structural transition but partly triggered the multimerization of GRNs via uncoordinated cystines at both pH conditions. Overall, the results indicate that GRNs -3 and - 5 have surprisingly strong affinity for Cu in the pM range, comparable to other known copper sequestering proteins. The results also hint at a potential of GRNs to reduce Cu(II) to Cu(I), a process that has significance in mitigating Cu-induced ROS cytotoxicity in cells. Together, this report uncovers metal-coordinating property of GRNs for the first time, which may have profound significance in their structure and pathophysiological functions.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences and, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Vijayaraghavan Rangachari
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
5
|
Chatterjee S, Kumari S, Rath S, Priyadarshanee M, Das S. Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics 2020; 12:1637-1655. [PMID: 32996528 DOI: 10.1039/d0mt00140f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are a group of cysteine-rich, universal, low molecular weight proteins distributed widely in almost all major taxonomic groups ranging from tiny microbes to highly organized vertebrates. The primary function of this protein is storage, transportation and binding of metals, which enable microorganisms to detoxify heavy metals. In the microbial world, these peptides were first identified in a cyanobacterium Synechococcus as the SmtA protein which exhibits high affinity towards rising level of zinc and cadmium to preserve metal homeostasis in a cell. In yeast, MTs aid in reserving copper and confer protection against copper toxicity by chelating excess copper ions in a cell. Two MTs, CUP1 and Crs5, originating from Saccharomyces cerevisiae predominantly bind to copper though are capable of binding with zinc and cadmium ions. MT superfamily 7 is found in ciliated protozoa which show high affinity towards copper and cadmium. Several tools and techniques, such as western blot, capillary electrophoresis, inductively coupled plasma, atomic emission spectroscopy and high performance liquid chromatography, have been extensively utilized for the detection and quantification of microbial MTs which are utilized for the efficient remediation and sequestration of heavy metals from a contaminated environment.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| | | | | | | | | |
Collapse
|
6
|
Rizvi A, Ahmed B, Zaidi A, Khan MS. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:302-322. [PMID: 30758729 DOI: 10.1007/s10646-019-02023-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal pollution destruct soil microbial compositions and functions, plant's performance and subsequently human health. Culturable microbes among many metal abatement strategies are considered inexpensive, viable and environmentally safe. In this study, nitrogen fixing bacterial strain CAZ3 recovered from chilli rhizosphere tolerated 100, 1000 and 1200 µg mL-1 of cadmium, chromium and nickel, respectively and was identified as Azotobacter chroococcum by 16S rDNA sequence analysis. Under metal stress, cellular morphology of A. chroococcum observed under SEM was found distorted and shrinkage of cells was noticed when grown with 50 µg mL-1 of Cd (cell size 1.7 µm) and 100 of µg mL-1 Ni (cell size 1.3 µm) compared to untreated control (cell size 1.8 µm). In the presence of 100 µg mL-1 of Cr, cells became elongated and measured 1.9 µm in size. Location of metals inside the cells was revealed by EDX. A dose dependent growth arrest and consequently the death of A. chroococcum cells was revealed under CLSM. A. chroococcum CAZ3 secreted 320, 353 and 133 µg EPS mL-1 when grown with 100 µg mL-1 each of Cd, Cr and Ni, respectively. The EDX revealed the presence of 0.4, 0.07 and 0.24% of Cd, Cr and Ni, respectively within EPS extracted from metal treated cells. Moreover, a dark brown pigment (melanin) secreted by A. chroococcum cells under metal pressure displayed tremendous metal chelating activity. The EDX spectra of melanin extracted from metal treated cells of A. chroococcum CAZ3 displayed 0.53, 0.22 and 0.12% accumulation of Cd, Cr and Ni, respectively. The FT-IR spectra of EPS and melanin demonstrated stretching vibrations and variations in surface functional groups of bacterial cells. The C-H stretching of CH3 in fatty acids and CH2 groups, stretching of N-H bond of proteins and O-H bond of hydroxyl groups caused the shifting of peaks in the EPS spectra. Similar stretching vibrations were recorded in metal treated melanin which involved CHO, alkyl, carboxylate and alkene groups resulting in significant peak shifts. Nuclear magnetic resonance (NMR) spectrum of EPS extracted from A. chroococcum CAZ3 revealed apparent peak signals at 4.717, 9.497, 9.369 and 9.242 ppm. However, 1H NMR peaks were poorly resolved due largely to the impurity/viscosity of the EPS. The entrapment of metals by EPS and melanin was confirmed by EDX. Also, the induction and excretion of variable amounts of metallothioneins (MTs) by A. chroococcum under metal pressure was interesting. Conclusively, the present findings establish- (i) cellular damage due to Cd, Cr and Ni and (ii) role of EPS, melanin and MTs in adsorption/complexation and concurrently the removal of heavy metals. Considering these, A. chroococcum can be promoted as a promising candidate for supplying N efficiently to plants and protecting plants from metal toxicity while growing under metal stressed environment.
Collapse
Affiliation(s)
- Asfa Rizvi
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India.
| | - Bilal Ahmed
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Almas Zaidi
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Mohd Saghir Khan
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| |
Collapse
|
7
|
Wong DL, Korkola NC, Stillman MJ. Kinetics of competitive Cd2+ binding pathways: the realistic structure of intrinsically disordered, partially metallated metallothioneins. Metallomics 2019; 11:894-905. [DOI: 10.1039/c8mt00347e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The metallation of metallothionein can proceed via two different intermediate structures: a beaded structure that forms quickly (top) and a slow-forming cluster structure (bottom) before forming the fully metallated two-domain protein.
Collapse
Affiliation(s)
- Daisy L. Wong
- Department of Chemistry
- the University of Western Ontario
- Ontario
- Canada
| | | | | |
Collapse
|
8
|
Dennison C. The Coordination Chemistry of Copper Uptake and Storage for Methane Oxidation. Chemistry 2018; 25:74-86. [PMID: 30281847 DOI: 10.1002/chem.201803444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/09/2022]
Abstract
Methanotrophs are remarkable bacteria that utilise large quantities of copper (Cu) to oxidize the potent greenhouse gas methane. To assist in providing the Cu they require for this process some methanotrophs can secrete the Cu-sequestering modified peptide methanobactin. These small molecules bind CuI with very high affinity and crystal structures have given insight into why this is the case, and also how the metal ion may be released within the cell. A much greater proportion of methanotrophs, genomes of which have been sequenced, possess a member of a newly discovered bacterial family of copper storage proteins (the Csps). These are tetramers of four-helix bundles whose cores are lined with Cys residues enabling the binding of large numbers of CuI ions. In methanotrophs, a Csp exported from the cytosol stores CuI for the active site of the ubiquitous enzyme that catalyses the oxidation of methane. The presence of cytosolic Csps, not only in methanotrophs but in a wide range of bacteria, challenges the dogma that these organisms have no requirement for Cu in this location. The properties of the Csps, with an emphasis on CuI binding and the structures of the sites formed, are the primary focus of this review.
Collapse
Affiliation(s)
- Christopher Dennison
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
9
|
Wong DL, Stillman MJ. Metallothionein: An Aggressive Scavenger-The Metabolism of Rhodium(II) Tetraacetate (Rh 2(CH 3CO 2) 4). ACS OMEGA 2018; 3:16314-16327. [PMID: 31458267 PMCID: PMC6643557 DOI: 10.1021/acsomega.8b02161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/13/2018] [Indexed: 06/10/2023]
Abstract
Anthropogenic sources of xenobiotic metals with no physiological benefit are increasingly prevalent in the environment. The platinum group metals (Pd, Pt, Rh, Ru, Os, and Ir) are found in marine and plant species near urban sources, and are known to bioaccumulate, introducing these metals into the human food chain. Many of these metals are also being used in innovative cancer therapy, which leads to a direct source of exposure for humans. This paper aims to further our understanding of nontraditional metal metabolism via metallothionein, a protein involved in physiologically important metal homeostasis. The aggressive reaction of metallothionein and dirhodium(II) tetraacetate, a common synthetic catalyst known for its cytotoxicity, was studied in detail in vitro. Optical spectroscopic and equilibrium and time-dependent mass spectral data were used to define binding constants for this robust reaction, and molecular dynamics calculations were conducted to explain the observed results.
Collapse
Affiliation(s)
- Daisy L. Wong
- Department of Chemistry, The
University of Western Ontario, 1151 Richmond Street, N6A 5B7 London, Ontario, Canada
| | - Martin J. Stillman
- Department of Chemistry, The
University of Western Ontario, 1151 Richmond Street, N6A 5B7 London, Ontario, Canada
| |
Collapse
|
10
|
Dong S, Wagner ND, Russell DH. Collision-Induced Unfolding of Partially Metalated Metallothionein-2A: Tracking Unfolding Reactions of Gas-Phase Ions. Anal Chem 2018; 90:11856-11862. [PMID: 30221929 DOI: 10.1021/acs.analchem.8b01622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) constitute a group of intrinsically disordered proteins that exhibit extreme diversity in structure, biological functionality, and metal ion specificity. Structures of coordinatively saturated metalated MTs have been extensively studied, but very limited structural information for the partially metalated MTs exists. Here, the conformational preferences from partial metalation of rabbit metallothionein-2A (MT) by Cd2+, Zn2+, and Ag+ are studied using nanoelectrospray ionization ion mobility mass spectrometry. We also employ collision-induced unfolding to probe differences in the gas-phase stabilities of these partially metalated MTs. Our results show that despite their similar ion mobility profiles, Cd4-MT, Zn4-MT, Ag4-MT, and Ag6-MT differ dramatically in their gas-phase stabilities. Furthermore, the sequential addition of each Cd2+ and Zn2+ ion results in the incremental stabilization of unique unfolding intermediates.
Collapse
Affiliation(s)
- Shiyu Dong
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Nicole D Wagner
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David H Russell
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
11
|
Scheller JS, Irvine GW, Stillman MJ. Unravelling the mechanistic details of metal binding to mammalian metallothioneins from stoichiometric, kinetic, and binding affinity data. Dalton Trans 2018; 47:3613-3637. [PMID: 29431781 DOI: 10.1039/c7dt03319b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metallothioneins (MTs) are small, cysteine-rich proteins, found throughout Nature. Their ability to bind a number of different metals with a range of stoichiometric ratios means that this protein family is critically important for essential metal (Zn2+ and Cu+) homeostasis, metal storage, metal donation to nascent metalloenzymes as well as heavy metal detoxification. With its 20 cysteines, metallothionein is also considered to protect cells against oxidative stress. MT has been studied by a large number of researchers over the last 6 decades using a variety of spectroscopic techniques. The lack of distinguishing chromophores for the multitude of binding sites has made the evaluation of stoichiometric properties for different metals challenging. Initially, only 113Cd-NMR spectroscopy could provide strong evidence for the proposed cluster formation of Cd-MT. The extraordinary development of electrospray ionization mass spectrometry (ESI-MS), where all coexisting species in solution are observed, revolutionized MT research. Prior to the use of ESI-MS data, a range of "magic numbers" representing metal-to-MT molar ratios were reported from optical spectroscopic studies. The availability of ESI mass spectral data led to (i) the confirmation of cluster formation, (ii) a conceptual understanding of the cooperativity involved in multiple metal binding events, (iii) the presence of domain specificity between regions of the protein and (iv) mechanistic details involving both binding affinities and rate constants. The kinetic experiments identified the presence of multiple individual binding sites, each with a unique rate constant and an analogous binding affinity. The almost linear trend in rate constants as a function of bound As3+ provided a unique insight that became a critical step in the complete understanding of the mechanistic details of the metalation of MT. To fully define the biological function of this sulfur-rich protein it is necessary to determine kinetic rate constants and binding affinities for the essential metals. Recently, Zn2+ competition experiments between both of the isolated fragments (α and β) and the full-length protein (βα-MT 1a) as well as Zn2+ competition between βα-MT 1a and carbonic anhydrase were reported. From these data, the trend in binding affinities and the values of the Kf of the 7 bimolecular reactions involved in metalation were determined. From the analysis of ESI-MS data for Cu+ binding to βα-MT 1a at different pH-values, a trend in the 20 binding affinities for the complete metalation mechanism was reported. This review details a personal view of the historical development of the determination of stoichiometry for metal binding, the structure of the binding sites, the rates of the metalation reactions and the underlying binding affinities for each metalation step. We have attempted to summarize the experimental developments that led to the publication in May 2017 of the experimental determination of the 20 binding constants for the 20 sequential bimolecular reactions for Cu+ binding to the 20 Cys of apoMT as a function of pH that show the appearance and disappearance of clusters. We report both published data and in a series of tables an assembly of stoichiometries, and equilibrium constants for Zn2+ and Cu+ for many different metallothioneins.
Collapse
Affiliation(s)
- Judith S Scheller
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.
| | | | | |
Collapse
|