1
|
Neaz S, Alam MM, Imran AB. Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles. Heliyon 2024; 10:e39917. [PMID: 39553547 PMCID: PMC11567044 DOI: 10.1016/j.heliyon.2024.e39917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This article discusses and summarizes some fascinating outcomes and applications of cyclodextrins (CDs) and their derivatives in drug delivery. These applications include the administration of protein, peptide medications, and gene delivery. Several innovative drug delivery systems, including NPs, microspheres, microcapsules, and liposomes, are designed with the help of CD, which is highlighted in this article. The use of these compounds as excipients in medicine formulation is reviewed, in addition to their well-known effects on drug solubility and dissolution, as well as their bioavailability, safety, and stability. Furthermore, the article focuses on many factors that influence the development of inclusion complexes, as having this information is necessary to manage these diverse materials effectively. An overview of the commercial availability, regulatory status, and patent status of CDs for pharmaceutical formulation is also presented. Due to the fact that CDs can discover new uses in drug delivery consistently, it is predicted that they will solve a wide range of issues related to the distribution of a variety of unique medications through various delivery channels.
Collapse
Affiliation(s)
- Sharif Neaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Mahbub Alam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Franchin M, Saliba ASMC, Giovanini de Oliveira Sartori A, Orestes Pereira Neto S, Benso B, Ikegaki M, Wang K, Matias de Alencar S, Granato D. Food-grade delivery systems of Brazilian propolis from Apis mellifera: From chemical composition to bioactivities in vivo. Food Chem 2024; 432:137175. [PMID: 37633143 DOI: 10.1016/j.foodchem.2023.137175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Brazilian propolis from Apis mellifera is widely studied worldwide due to its unique chemical composition and biological properties, such as antioxidant, antimicrobial, and anti-inflammatory. However, although many countries produce honey, another bee product, the consumption of propolis as a functional ingredient is linked to hydroethanolic extract. Hence, other food uses of propolis still have to be incorporated into food systems. Assuming that propolis is a rich source of flavonoids and is regarded as a food-grade ingredient for food and pharmaceutical applications, this review provides a theoretical and practical basis for optimising the bioactive properties of Brazilian propolis, encompassing the extraction processes and incorporating its bioactive compounds in the delivery systems for food applications. Overall, pharmacotechnical resources can optimise the extraction and enhance the chemical stability of phenolic compounds to ensure the bioactivity of food formulations.
Collapse
Affiliation(s)
- Marcelo Franchin
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland; School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | | | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Masaharu Ikegaki
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas - UNIFAL-MG, Alfenas, MG, Brazil
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
3
|
Jansen-Alves C, Martins Fonseca L, Doring Krumreich F, Zavareze EDR. Applications of propolis encapsulation in food products. J Microencapsul 2023; 40:567-586. [PMID: 37867427 DOI: 10.1080/02652048.2023.2274059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Propolis has beneficial health properties attributed to of phenolic compounds. However, its application is limited. Thus, encapsulation protects the bioactive compounds of propolis from degradation, allowing their release under controlled and specific conditions and increasing their solubility. In addition to protecting flavonoids, encapsulation also minimises the undesirable characteristics of propolis, such as strong odour. We brought attention to the high antioxidant and antimicrobial activities of encapsulated propolis, and its maintained biological activity enables more uses in different areas. Encapsulated propolis can be applied in food products as an ingredient. This review describes recent advances in improving the bioactivity of propolis extracts by using encapsulation techniques, and biopolymer research strategies, focusing on applications in food products. Encapsulated propolis has a promising market perspective due to the industrial and scientific-technological advancement, the increase in the amount of research, the improvement of propolis extraction techniques, and the need of consumers for innovative products.
Collapse
Affiliation(s)
- Cristina Jansen-Alves
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Elessandra Da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
4
|
Christaki S, Spanidi E, Panagiotidou E, Athanasopoulou S, Kyriakoudi A, Mourtzinos I, Gardikis K. Cyclodextrins for the Delivery of Bioactive Compounds from Natural Sources: Medicinal, Food and Cosmetics Applications. Pharmaceuticals (Basel) 2023; 16:1274. [PMID: 37765082 PMCID: PMC10535610 DOI: 10.3390/ph16091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclodextrins have gained significant and established attention as versatile carriers for the delivery of bioactive compounds derived from natural sources in various applications, including medicine, food and cosmetics. Their toroidal structure and hydrophobic cavity render them ideal candidates for encapsulating and solubilizing hydrophobic and poorly soluble compounds. Most medicinal, food and cosmetic ingredients share the challenges of hydrophobicity and degradation that can be effectively addressed by various cyclodextrin types. Though not new or novel-their first applications appeared in the market in the 1970s-their versatility has inspired numerous developments, either on the academic or industrial level. This review article provides an overview of the ever-growing applications of cyclodextrins in the delivery of bioactive compounds from natural sources and their potential application benefits.
Collapse
Affiliation(s)
- Stamatia Christaki
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Eleni Panagiotidou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Sophia Athanasopoulou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Konstantinos Gardikis
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| |
Collapse
|
5
|
Dos Santos FF, Morais-Urano RP, Cunha WR, de Almeida SG, Cavallari PSDSR, Manuquian HA, Pereira HDA, Furtado R, Santos MFC, Amdrade E Silva ML. A review on the anti-inflammatory activities of Brazilian green, brown and red propolis. J Food Biochem 2022; 46:e14350. [PMID: 35880944 DOI: 10.1111/jfbc.14350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Humanity has used propolis since ancient times, and its use as a food supplement has significantly increased. Several reports on propolis´ biological activity and toxicity have highlighted its anti-inflammatory properties, unlike many natural food supplements. This review addresses the anti-inflammatory roles of Brazilian green, brown, and red propolis produced by Apis mellifera, their extracts, isolated compounds, and their mode of action. Despite advances in anti-inflammatory therapies, the development of inflammatory processes in several diseases has been a concern for centuries. Demands for new anti-inflammatory drugs have led to studies on propolis products as diet components to treat and prevent inflammatory disorders. Brazilian green, brown, and red propolis are alternatives for obtaining extracts and compounds of valuable anti-inflammatory properties. PRACTICAL APPLICATIONS: Currently, propolis is a food supplement, and to the best of our knowledge, several studies have shown that despite advances in anti-inflammatory therapies, the inflammatory process continues to be a significant concern. However, due to the demand for new anti-inflammatory drugs, propolis products as dietary components can be used to treat and prevent inflammatory disorders.
Collapse
Affiliation(s)
- Fransergio F Dos Santos
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Raquel P Morais-Urano
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Wilson R Cunha
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Samarah G de Almeida
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | | | - Hallana A Manuquian
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Henrique de A Pereira
- Department of Physics and Chemistry, Center of Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Ricardo Furtado
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Mario F C Santos
- Department of Physics and Chemistry, Center of Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Márcio L Amdrade E Silva
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| |
Collapse
|
6
|
Barta DG, Cornea-Cipcigan M, Margaoan R, Vodnar DC. Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties-An Overview. Front Nutr 2022; 9:871896. [PMID: 35571893 PMCID: PMC9097220 DOI: 10.3389/fnut.2022.871896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent signs of progress in functional foods and nutraceuticals highlighted the favorable impact of bioactive molecules on human health and longevity. As an outcome of the fermentation process, an increasing interest is developed in bee products. Bee bread (BB) is a different product intended for humans and bees, resulting from bee pollen's lactic fermentation in the honeycombs, abundant in polyphenols, nutrients (vitamins and proteins), fatty acids, and minerals. BB conservation is correlated to bacteria metabolites, mainly created by Pseudomonas spp., Lactobacillus spp., and Saccharomyces spp., which give lactic acid bacteria the ability to outperform other microbial groups. Because of enzymatic transformations, the fermentation process increases the content of new compounds. After the fermentation process is finalized, the meaningful content of lactic acid and several metabolites prevent the damage caused by various pathogens that could influence the quality of BB. Over the last few years, there has been an increase in bee pollen fermentation processes to unconventional dietary and functional supplements. The use of the chosen starters improves the bioavailability and digestibility of bioactive substances naturally found in bee pollen. As a consequence of enzymatic changes, the fermentation process enhances BB components and preserves them against loss of characteristics. In this aspect, the present review describes the current biotechnological advancements in the development of BB rich in beneficial components derived from bee pollen fermentation and its use as a food supplement and probiotic product with increased shelf life and multiple health benefits.
Collapse
Affiliation(s)
- Daniel Gabriel Barta
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
7
|
de L Paula LA, Santos MFC, Pagotti MC, Veneziani RCS, Bastos JK, Caffrey CR, Ambrósio SR, Magalhães LG. Brazilian green propolis reduces worm burden and hepatic granuloma formation in a Schistosoma mansoni experimental murine model. Parasitol Res 2022; 121:775-780. [PMID: 35048211 DOI: 10.1007/s00436-021-07408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
Characterized as an acute and chronic parasitic disease, schistosomiasis mansoni has as its central pathology the formation of hepatic granulomas in response to the parasite's eggs trapped in the host's liver. In recent years, research on propolis has grown; however, there is little anthelmintic work on this bee product. In the propolis scenario, Brazilian ones receive attention, with green and red propolis standing out. This study aims to evaluate in vivo the standardized extract of Brazilian green propolis (Pex) against Schistosoma mansoni. The in vivo antiparasitic activity of Pex was conducted in female BALB/c mice infected with S. mansoni and of the three groups treated with Pex (300 mg/kg); G2 (35th to 42nd dpi) reduced the total worm burden by 55.32%, followed by G3 (42nd to 49th dpi) and G4 (49th to 56th dpi), with about 46%. Furthermore, G2 significantly reduced the total egg load in the ileum (59.33%) and showed an increase in the dead eggs. Similarly, histological analysis of the livers showed a significant reduction in the number and diameter of the granulomas. Based on these results, there is an interesting schistosomicidal activity of Pex and its potential against the formation of hepatic granulomas, paving the way for more detailed studies of propolis in the animal model of schistosomiasis mansoni.
Collapse
Affiliation(s)
- Lucas A de L Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, SP, CEP 14404-600, Franca, Brazil
| | - Mário F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, SP, CEP 14404-600, Franca, Brazil
| | - Mariana C Pagotti
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, SP, CEP 14404-600, Franca, Brazil
| | - Rodrigo C S Veneziani
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, SP, CEP 14404-600, Franca, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14.040-903, Ribeirão Preto, SP, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sérgio R Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, SP, CEP 14404-600, Franca, Brazil.
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, SP, CEP 14404-600, Franca, Brazil.
| |
Collapse
|
8
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Valencia D, Velazquez C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Lucia Appleton S, Navarro-Orcajada S, Martínez-Navarro FJ, Caldera F, López-Nicolás JM, Trotta F, Matencio A. Cyclodextrins as Anti-inflammatory Agents: Basis, Drugs and Perspectives. Biomolecules 2021; 11:biom11091384. [PMID: 34572597 PMCID: PMC8472668 DOI: 10.3390/biom11091384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammation is a biological response of the immune system to harmful stimuli. Importantly, inflammation is also a hallmark of several human diseases such as cancer or diabetes. Novel drugs to treat this response are constantly researched, but the formulation is usually forgotten. Cyclodextrins (CDs) are a well-known excipient for complexing and drug delivery. Anti-inflammatory drugs and bioactive compounds with similar activities have been favored from these CD processes. CDs also illustrate anti-inflammatory activity per se. This review tried to describe the capacities of CDs in this field, and is divided into two parts: Firstly, a short description of the inflammation disease (causes, symptoms, treatment) is explained; secondly, the effects of different CDs alone or forming inclusion complexes with drugs or bioactive compounds are discussed.
Collapse
Affiliation(s)
- Silvia Lucia Appleton
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (S.L.A.); (F.C.); (F.T.)
| | - Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (J.M.L.-N.)
| | - Francisco Juan Martínez-Navarro
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (F.J.M.-N.); or (A.M.)
| | - Fabrizio Caldera
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (S.L.A.); (F.C.); (F.T.)
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (J.M.L.-N.)
| | - Francesco Trotta
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (S.L.A.); (F.C.); (F.T.)
| | - Adrián Matencio
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (S.L.A.); (F.C.); (F.T.)
- Correspondence: (F.J.M.-N.); or (A.M.)
| |
Collapse
|
10
|
de L Paula LA, Cândido ACBB, Santos MFC, Caffrey CR, Bastos JK, Ambrósio SR, Magalhães LG. Antiparasitic Properties of Propolis Extracts and Their Compounds. Chem Biodivers 2021; 18:e2100310. [PMID: 34231306 DOI: 10.1002/cbdv.202100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Propolis is a bee product that has been used in medicine since ancient times. Although its anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory activities have been investigated, its anti-parasitic properties remain poorly explored, especially regarding helminths. This review surveys the results obtained with propolis around the world against human parasites. Regarding protozoa, studies carried out with the protozoa Trypanosoma spp. and Leishmania spp. have demonstrated promising results in vitro and in vivo. However, there are fewer studies for Plasmodium spp., the etiological agent of malaria and less so for helminths, particularly for Fasciola spp. and Schistosoma spp. Despite the favorable in vitro results with propolis, helminth assays need to be further investigated. However, propolis has shown itself to be an excellent natural product for parasitology, thus opening new paths and approaches in its activity against protozoa and helminths.
Collapse
Affiliation(s)
- Lucas A de L Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Cândido
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14.040-903, Ribeirão Preto, SP, Brazil
| | - Sérgio R Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Wüpper S, Lüersen K, Rimbach G. Cyclodextrins, Natural Compounds, and Plant Bioactives-A Nutritional Perspective. Biomolecules 2021; 11:biom11030401. [PMID: 33803150 PMCID: PMC7998733 DOI: 10.3390/biom11030401] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Cyclodextrins (CDs) are a group of cyclic oligosaccharides produced from starch or starch derivatives. They contain six (αCD), seven (βCD), eight (γCD), or more glucopyranose monomers linked via α-1,4-glycosidic bonds. CDs have a truncated cone shape with a hydrophilic outer wall and a less hydrophilic inner wall, the latter forming a more apolar internal cavity. Because of this special architecture, CDs are soluble in water and can simultaneously host lipophilic guest molecules. The major advantage of inclusion into CDs is increased aqueous solubility of such lipophilic substances. Accordingly, we present studies where the complexation of natural compounds such as propolis and dietary plant bioactives (e.g., tocotrienol, pentacyclic triterpenoids, curcumin) with γCD resulted in improved stability, bioavailability, and bioactivity in various laboratory model organisms and in humans. We also address safety aspects that may arise from increased bioavailability of plant extracts or natural compounds owing to CD complexation. When orally administered, α- and βCD—which are inert to intestinal digestion—are fermented by the human intestinal flora, while γCD is almost completely degraded to glucose units by α-amylase. Hence, recent reports indicate that empty γCD supplementation exhibits metabolic activity on its own, which may provide opportunities for new applications.
Collapse
|
12
|
Yousefi B, Semnani V, Mokhtari T, Zarbakhsh S, Amjad MHT, Barati M, Doustmohammadi H. Co-administration of Aluminum Sulfate and Propolis Regulates Matrix Metalloproteinases-2/9 Expression and Improves the Uterine Leiomyoma in Adult Rat Model. Biol Trace Elem Res 2021; 199:1002-1012. [PMID: 32594359 DOI: 10.1007/s12011-020-02200-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the effects of aluminum sulfate (alum) with propolis (PR) on uterine leiomyoma (UL) in rat model. One hundred and four female Wistar rats (180-200 g) were allocated into two main groups of control (Co, n = 8) and experiment (UL model [estradiol benzoate 200 μg/kg/IM twice/week/8 weeks] with/without treatment) defined in 13 subgroups with/without treatment with coil oil (UL + COi), PR (100 or 200 mg/kg) as UL + PR100 or 200, alum (35, 75 or 150 mg/Kg) as UL + AL 35, 75, or 150, and PR (100 mg/kg or 200) with alum (35, 75, or 150 mg/Kg) as UL + PR100 or 200 + AL35, 75, or 150. Subgroups received doses of therapeutics for 14 days (IP). In the end, rats were sacrificed, and the uteri were isolated for molecular and histopathological investigations. The myometrium thickness, collagen contents, and gene expression of MMP-2 and 9 increased significantly in experimental groups with/without treatment (P ˂ 0.05). PR administration (100 and 200 mg/kg) alone or with alum (35 and 75 mg/kg) significantly decreased myometrium collagen contents and the gene expression and protein concentration of MMP-2 and 9 compared with UL and UL + Coi subgroups (P ˂ 0.05). Alum (75 mg/kg) with PR (200 mg/kg) could improve UL features and reduce MMP-2 and 9 gene expression.
Collapse
Affiliation(s)
- Behpour Yousefi
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Vahid Semnani
- Department of Pathology, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahmineh Mokhtari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Sam Zarbakhsh
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Hasan Tabrizi Amjad
- Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mehdi Barati
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Doustmohammadi
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
13
|
Spanidi E, Karapetsas A, Voulgaridou GP, Letsiou S, Aligiannis N, Tsochantaridis I, Kynigopoulos S, Lambropoulou M, Mourtzinos I, Pappa A, Gardikis K. A New Controlled Release System for Propolis Polyphenols and Its Biochemical Activity for Skin Applications. PLANTS 2021; 10:plants10020420. [PMID: 33672417 PMCID: PMC7927051 DOI: 10.3390/plants10020420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023]
Abstract
Propolis is a resinous substance produced by bees that exhibits antimicrobial, immunostimulatory and antioxidant activity. Its use is common in functional foods, cosmetics and traditional medicine despite the fact that it demonstrates low extraction yields and inconsistency in non-toxic solvents. In this work, a new encapsulation and delivery system consisting of liposomes and cyclodextrins incorporating propolis polyphenols has been developed and characterized. The antioxidant, antimutagenic and antiaging properties of the system under normal and UVB-induced oxidative stress conditions were investigated in cultured skin cells and/or reconstituted skin model. Furthermore, the transcript accumulation for an array of genes involved in many skin-related processes was studied. The system exhibits significant polyphenol encapsulation efficiency, physicochemical stability as well as controlled release rate in appropriate conditions. The delivery system can retain the anti-mutagenic, anti-oxidative and anti-ageing effects of propolis polyphenols to levels similar and comparable to those of propolis methanolic extracts, making the system ideal for applications where non-toxic solvents are required and controlled release of the polyphenol content is desired.
Collapse
Affiliation(s)
- Eleni Spanidi
- Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece; (E.S.); (S.L.)
| | - Athanasios Karapetsas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.K.); (G.-P.V.); (I.T.); (A.P.)
| | - Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.K.); (G.-P.V.); (I.T.); (A.P.)
| | - Sophia Letsiou
- Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece; (E.S.); (S.L.)
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 11527 Athens, Greece;
| | - Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.K.); (G.-P.V.); (I.T.); (A.P.)
| | - Spyridon Kynigopoulos
- Laboratory of Histology and Embryology, Faculty of Health Sciences, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.K.); (M.L.)
| | - Maria Lambropoulou
- Laboratory of Histology and Embryology, Faculty of Health Sciences, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.K.); (M.L.)
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.K.); (G.-P.V.); (I.T.); (A.P.)
| | - Konstantinos Gardikis
- Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece; (E.S.); (S.L.)
- Correspondence: ; Tel.: +30-6974899959
| |
Collapse
|
14
|
Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020; 12:E669. [PMID: 32708823 PMCID: PMC7407519 DOI: 10.3390/pharmaceutics12070669] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers' formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.
Collapse
Affiliation(s)
- Anastasia Detsi
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Eleni Kavetsou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Kostopoulou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Pitterou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Antonella Rozaria Nefeli Pontillo
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Andromachi Tzani
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Paris Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
| | - Aristeia Siliachli
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Food Science and Technology, Universisty of West Attica, Ag. Spyridonos Str., Egaleo, 12243 Athens, Greece
| |
Collapse
|
15
|
A de L Paula L, Santos MFC, Pagotti MC, Faleiros R, Ramos HP, Veneziani RCS, Bastos JK, Caffrey CR, Ambrosio SR, Magalhães LG. Uncovering Biological Application of Brazilian Green Propolis: A Phenotypic Screening against Schistosoma mansoni. Chem Biodivers 2020; 17:e2000277. [PMID: 32578329 DOI: 10.1002/cbdv.202000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/23/2020] [Indexed: 11/07/2022]
Abstract
The chemotherapy of schistosomiasis remains centered in the use of praziquantel, however, there has been growing resistant parasites to this drug. Thus, the aim of this work was to evaluate in vitro schistosomicidal activity of the hexanes/dichloromethane 1 : 1 extract of Brazilian green propolis (Pex), as well as its major isolated compounds artepillin C, caffeic acid, coumaric acid and drupanin against Schistosoma mansoni. The Pex was active by displaying an IC50 value of 36.60 (26.26-51.13) μg mL-1 at 72 h against adult worms of S. mansoni. The major isolated compounds were inactive with IC50 values >100 μM, however, the combination of the isolated compounds (CM) in the same range found in the extract was active with an IC50 value of 41.17 (39.89-42.46) μg mL-1 at 72 h. Pex and CM induced alteration in the tegument of S. mansoni, and caffeic acid caused alteration in egg's maturation. Pex displayed in vitro activity against adult worms' and eggs' viability of S. mansoni, which opens new perspectives to better understand the synergistic and/or additive effects promoted by both Pex extract and CM against schistosomiasis features.
Collapse
Affiliation(s)
- Lucas A de L Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Mariana C Pagotti
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Renata Faleiros
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Henrique P Ramos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Rodrigo C S Veneziani
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14.040-903, Ribeirão, Preto, SP, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sérgio R Ambrosio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, CEP, 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, CEP, 14404-600, Franca, SP, Brazil
| |
Collapse
|
16
|
Khalifa SA, Elashal M, Kieliszek M, Ghazala NE, Farag MA, Saeed A, Xiao J, Zou X, Khatib A, Göransson U, El-Seedi HR. Recent insights into chemical and pharmacological studies of bee bread. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.08.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Pujirahayu N, Bhattacharjya DK, Suzuki T, Katayama T. α-Glucosidase Inhibitory Activity of Cycloartane-Type Triterpenes Isolated from Indonesian Stingless Bee Propolis and Their Structure-Activity Relationship. Pharmaceuticals (Basel) 2019; 12:ph12030102. [PMID: 31266160 PMCID: PMC6789647 DOI: 10.3390/ph12030102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/19/2023] Open
Abstract
This study reports on the antioxidant activity and α-glucosidase inhibitory activity of five cycloartane-type triterpenes isolated from Indonesian stingless bee (Tetragonula sapiens Cockerell) propolis and their structure–activity relationships. The structure of the triterpenes was determined to include mangiferolic acid (1), Cycloartenol (2), ambonic acid (3), mangiferonic acid (4), and ambolic acid (5). The inhibitory test results of all isolated triterpenes against α-glucosidase showed a high potential for inhibitory activity with an IC50 range between 2.46 and 10.72 µM. Among the compounds tested, mangiferonic acid (4) was the strongest α-glucosidase inhibitor with IC50 2.46 µM compared to the standard (–)-epicatechin (1991.1 µM), and also had antioxidant activities with IC50 values of 37.74 ± 6.55 µM. The study on the structure–activity relationships among the compounds showed that the ketone group at C-3 and the double bonds at C-24 and C-25 are needed to increase the α-glucosidase inhibitory activity. The carboxylic group at C-26 is also more important for increasing the inhibitory activity compared with the methyl group. This study provides an approach to help consider the structural requirements of cycloartane-type triterpenes from propolis as α-glucosidase inhibitors. An understanding of these requirements is deemed necessary to find a new type of α-glucosidase inhibitor from the cycloartane-type triterpenes or to improve those inhibitors that are known to help in the treatment of diabetes.
Collapse
Affiliation(s)
- Niken Pujirahayu
- Laboratory of Biomass Chemistry, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan.
- Department of Forestry, Faculty of Forestry and Environmental Sciences, Halu Oleo University, Kendari 93232, Indonesia.
| | - Debu Kumar Bhattacharjya
- Laboratory of Biomass Chemistry, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Toshisada Suzuki
- Laboratory of Biomass Chemistry, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Takeshi Katayama
- Laboratory of Biomass Chemistry, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| |
Collapse
|
18
|
Affiliation(s)
- Xun Li
- Department of Medicinal Chemistry, Key laboratory of Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, PR China
| |
Collapse
|