1
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2024; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
2
|
Patrício A, Costa RS, Henriques R. On the challenges of predicting treatment response in Hodgkin's Lymphoma using transcriptomic data. BMC Med Genomics 2023; 16:170. [PMID: 37474945 PMCID: PMC10360230 DOI: 10.1186/s12920-023-01508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/03/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Despite the advancements in multiagent chemotherapy in the past years, up to 10% of Hodgkin's Lymphoma (HL) cases are refractory to treatment and, after remission, patients experience an elevated risk of death from all causes. These complications are dependent on the treatment and therefore an increase in the prognostic accuracy of HL can help improve these outcomes and control treatment-related toxicity. Due to the low incidence of this cancer, there is a lack of works comprehensively assessing the predictability of treatment response, especially by resorting to machine learning (ML) advances and high-throughput technologies. METHODS We present a methodology for predicting treatment response after two courses of Adriamycin, Bleomycin, Vinblastine and Dacarbazine (ABVD) chemotherapy, through the analysis of gene expression profiles using state-of-the-art ML algorithms. We work with expression levels of tumor samples of Classical Hodgkin's Lymphoma patients, obtained through the NanoString's nCounter platform. The presented approach combines dimensionality reduction procedures and hyperparameter optimization of various elected classifiers to retrieve reference predictability levels of refractory response to ABVD treatment using the regulatory profile of diagnostic tumor samples. In addition, we propose a data transformation procedure to map the original data space into a more discriminative one using biclustering, where features correspond to discriminative putative regulatory modules. RESULTS Through an ensemble of feature selection procedures, we identify a set of 14 genes highly representative of the result of an fuorodeoxyglucose Positron Emission Tomography (FDG-PET) after two courses of ABVD chemotherapy. The proposed methodology further presents an increased performance against reference levels, with the proposed space transformation yielding improvements in the majority of the tested predictive models (e.g. Decision Trees show an improvement of 20pp in both precision and recall). CONCLUSIONS Taken together, the results reveal improvements for predicting treatment response in HL disease by resorting to sophisticated statistical and ML principles. This work further consolidates the current hypothesis on the structural difficulty of this prognostic task, showing that there is still a considerable gap to be bridged for these technologies to reach the necessary maturity for clinical practice.
Collapse
Affiliation(s)
- André Patrício
- INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rafael S. Costa
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Henriques
- INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Caponnetto A, Battaglia R, Ragusa M, Barbagallo D, Lunelio F, Borzì P, Scollo P, Purrello M, Vento ME, Di Pietro C. Molecular profiling of follicular fluid microRNAs in young women affected by Hodgkin lymphoma. Reprod Biomed Online 2021; 43:1045-1056. [PMID: 34627683 DOI: 10.1016/j.rbmo.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
RESEARCH QUESTION Treatments for Hodgkin lymphoma have improved but one of their common effects is gonadal toxicity, which contributes to fertility damage of patients and induces temporary or irreversible loss of fertility. Could micro-RNA (miRNA) expression profiles in follicular fluid be influenced by Hodgkin lymphoma? Could their alteration affect molecular pathways involved in follicle growth and oocyte maturation? DESIGN miRNA expression profile was investigated in follicular fluid samples from young women affected by Hodgkin lymphoma compared with healthy controls by NanoString technology. Bioinformatic analysis was used to verify miRNA involvement in follicle development and miRNA deregulation with Hodgkin lymphoma in a larger cohort of follicular fluid samples was confirmed by real-time quantitative polymerase chain reaction. RESULTS Thirteen miRNAs are deregulated in Hodgkin lymphoma samples compared with controls and are involved in molecular pathways related to cancer, gametogenesis and embryogenesis. Among them, let-7b-5p, miR-423-5p, miR-503-5p, miR-574-5p and miR-1303 are implicated in biological processes related to follicle development and oocyte maturation. Let-7b-5p holds the central position in the regulatory network of miRNA-mRNA interactions, has the highest number of mRNA target genes shared with the other differentially expressed miRNAs and is significantly downregulated in Hodgkin lymphoma follicular fluid samples. CONCLUSIONS These data led us to question the potential influence of miRNA deregulation on oocyte quality. Further studies are needed to verify the reproductive potential of young patients with Hodgkin lymphoma before starting chemotherapy protocols and an adequate protocol of fertility preservation needs to be guaranteed.
Collapse
Affiliation(s)
- Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics 'Giovanni Sichel', University of Catania, Catania 95123, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics 'Giovanni Sichel', University of Catania, Catania 95123, Italy.
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics 'Giovanni Sichel', University of Catania, Catania 95123, Italy; Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics 'Giovanni Sichel', University of Catania, Catania 95123, Italy; Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, Catania 95123, Italy
| | | | | | | | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics 'Giovanni Sichel', University of Catania, Catania 95123, Italy
| | | | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics 'Giovanni Sichel', University of Catania, Catania 95123, Italy
| |
Collapse
|
4
|
MicroRNA signature in classical Hodgkin lymphoma. J Appl Genet 2021; 62:281-288. [PMID: 33544339 PMCID: PMC8032569 DOI: 10.1007/s13353-021-00614-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Classical Hodgkin lymphoma (cHL) is one of the most prevalent lymphomas with a unique cell composition compared to other lymphoma entities. Rare, malignant Hodgkin and Reed-Sternberg (HRS) cells embedded with an extensive but ineffective immune infiltration were previously characterized by a large number of genetic and epigenetic alterations. Recently, microRNA profiling studies highlighted the importance of small non-coding RNA in cHL. This review summarizes available literature data and provides a detailed comparison of four studies where cHL cell lines and microdissected HRS cells were used. Several microRNAs were found to be consistently up- (let-7-f, mir-9, mir-21, mir-23a, mir-27a, mir-155, and mir-196a) or downregulated (mir-138 and mir-150) in cHL. These deregulated microRNAs are involved in the processes crucial for cHL pathogenesis, such as impaired B cell development (mir-9, mir-150, and mir-155), NFκB hyperactivation (mir-155 and mir-196a), and immune evasion (mir-138). Therefore, the deregulation of microRNA expression can be considered a complementary mechanism to genetic alterations promoting lymphomagenesis. Moreover, the expression of let-7f, mir-9 and mir-27a is specific for cHL and can serve as a biomarker to distinguish this lymphoma from other B cell lymphomas. However, additional in-depth and high throughput analysis of microRNA expression in HRS cells is necessary to decipher the complete picture of microRNA in cHL.
Collapse
|
5
|
Peripheral Blood Cells from Patients with Hodgkin's and Diffuse Large B Cell Lymphomas May Be a Better Source of Candidate Diagnostic miRNAs Than Circulating miRNAs. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3212878. [PMID: 33628777 PMCID: PMC7880712 DOI: 10.1155/2021/3212878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
Hodgkin lymphoma (HL) and diffuse large B cell lymphoma (DLBCL) represent 15% and 20%, respectively, of all lymphoma types. The aim of this study was to identify and compare circulating serum miRNA (c-miRNA) and peripheral whole blood miRNA (wb-miRNA) profiles in patients with these lymphomas. Serum samples (20 HL, 21 DLBCL, and 30 healthy controls) and whole blood samples (21 HL, 17 DLBCL patients, and 30 healthy controls) were collected at the time of diagnosis. Serum and whole blood were also collected from 18 HL/17 DLBCL and eight HL/nine DLBCL patients, respectively, after treatment. Pairwise comparisons identified 125 c-miRNAs (adjusted P value < 0.05) showing significant dysregulation between 30 healthy controls and patients; of these, 47 and 55 differentiated controls from pretherapeutic HL and DLBCL patients, respectively. In addition, 60 and 16 c-miRNAs differentiated controls from posttherapeutic HL and DLBCL, respectively. Pairwise comparisons identified 292 wb-miRNAs (adjusted P value < 0.05) showing significant dysregulation between 30 controls and patients; of these, 103 and 169 differentiated controls from pretherapeutic HL and DLBCL, respectively, and 142 and 151 wb-miRNAs differentiated controls from posttherapeutic HL and DLBCL, respectively. Thus, lymphoma-associated miRNAs may be a better source of noninvasive candidate biomarkers than miRNAs in serum. It is unclear whether miRNA alterations in lymphoma cells are similar to those observed in white blood cells.
Collapse
|
6
|
The Tumor Suppressive mir-148a Is Epigenetically Inactivated in Classical Hodgkin Lymphoma. Cells 2020; 9:cells9102292. [PMID: 33066457 PMCID: PMC7602210 DOI: 10.3390/cells9102292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 01/06/2023] Open
Abstract
DNA methylation was shown previously to be a crucial mechanism responsible for transcriptional deregulation in the pathogenesis of classical Hodgkin lymphoma (cHL). To identify epigenetically inactivated miRNAs in cHL, we have analyzed the set of miRNAs downregulated in cHL cell lines using bisulfite pyrosequencing. We focused on miRNAs with promoter regions located within or <1000 bp from a CpG island. Most promising candidate miRNAs were further studied in primary Hodgkin and Reed-Sternberg (HRS) cells obtained by laser capture microdissection. Last, to evaluate the function of identified miRNAs, we performed a luciferase reporter assay to confirm miRNA: mRNA interactions and therefore established cHL cell lines with stable overexpression of selected miRNAs for proliferation tests. We found a significant reverse correlation between DNA methylation and expression levels of mir-339-3p, mir-148a-3p, mir-148a-5p and mir-193a-5 demonstrating epigenetic regulation of these miRNAs in cHL cell lines. Moreover, we demonstrated direct interaction between miR-148a-3p and IL15 and HOMER1 transcripts as well as between mir-148a-5p and SUB1 and SERPINH1 transcripts. Furthermore, mir-148a overexpression resulted in reduced cell proliferation in the KM-H2 cell line. In summary, we report that mir-148a is a novel tumor suppressor inactivated in cHL and that epigenetic silencing of miRNAs is a common phenomenon in cHL.
Collapse
|
7
|
Hernández-Walias FJ, Vázquez E, Pacheco Y, Rodríguez-Fernández JM, Pérez-Elías MJ, Dronda F, Casado JL, Moreno A, Hermida JM, Quereda C, Hernando A, Tejerina-Picado F, Asensi V, Galindo MJ, Leal M, Moreno S, Vallejo A. Risk, Diagnostic and Predictor Factors for Classical Hodgkin Lymphoma in HIV-1-Infected Individuals: Role of Plasma Exosome-Derived miR-20a and miR-21. J Clin Med 2020; 9:jcm9030760. [PMID: 32168859 PMCID: PMC7141191 DOI: 10.3390/jcm9030760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of classical Hodgkin lymphoma (cHL) in the HIV-1 setting has increased 5–25-fold compared to that observed in the general population. This study aimed to determine whether selected micro RNAs (miRs) and other soluble biomarkers and cellular subsets are dysregulated in cHL and could be used as biomarkers. This was a retrospective and longitudinal matched case-control study of 111 Caucasian, HIV-1-infected adult individuals, including 37 individuals with cHL and 74 with no type of cancer. Immunovirological data, plasma exosome-derived miR-16, miR-20a, miR-21, miR-221, miR-223, miR-106a, miR-185, miR-23, miR-30d, miR-222, miR-146a and miR-324, plasma IL-6, sCD14, sCD27, sCD30, sIL-2R, TNFR1, and cell phenotyping of T and B lymphocytes and natural killer (NK) cells were analyzed. Before cHL diagnosis, miR-20a, miR-21, and sCD30 were higher in cHL (p = 0.008, p = 0.009 and p = 0.042, respectively), while miR-16 was down-regulated (p = 0.040). miR-20a and miR-21 were independently associated with cHL (p = 0.049 and p = 0.035, respectively). The combination of miR-20a and miR-21 showed a good AUC value of 0.832 with a moderate likelihood ratio positive (LR+) value of 5.6 and a slight likelihood ratio negative (LR−) value of 0.23. At cHL diagnosis, miR-20a, miR-21 and miR-324 were overexpressed in cHL (p = 0.005, p = 0.024, and p = 0.001, respectively), while miR-223, miR-16, miR-185 and miR-106a were down regulated (p = 0.042, p = 0.007, p = 0.006, and p = 0.002, respectively). In addition, sCD14, sCD27, sCD30 and IL2R levels were higher in these individuals (p = 0.038, p = 0.010, p = 0.030, p = 0.006, respectively). miR-20a was independently associated with cHL (p = 0.011). The diagnostic value of miR-20a showed good AUC value of 0.754 (p = 0.074) with a slight LR+ value of 2 and a slight LR− of 0.25. After chemotherapy, miR-20a was higher in those individuals who had an adverse outcome (p < 0.001), while sCD14 and sCD30 were higher (p < 0.001). A specific signature of miRs and cytokines associated with a subsequent cHL diagnosis was found in this study, especially miR-20a and miR-21. Also, another biomarker signature was found at cHL diagnosis, with a relevant discriminant disease value for miR-20a. Of note, miR-20a expression was higher in those individuals who had an adverse clinical outcome after chemotherapy.
Collapse
Affiliation(s)
- Francisco J. Hernández-Walias
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Esther Vázquez
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Yolanda Pacheco
- Biomedicine Institute of Seville (IBiS), University Hospital Virgen del Rocío, 41013 Seville, Spain; (Y.P.); (M.L.)
| | | | - María J. Pérez-Elías
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Fernando Dronda
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - José L. Casado
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Ana Moreno
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - José M. Hermida
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Carmen Quereda
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Asunción Hernando
- Department of Medicine, 12 de Octubre University Hospital, Universidad European University of Madrid, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | | | - Víctor Asensi
- Infectious Diseases Department, Central University Hospital of Asturias, University Medical School, 33011 Oviedo, Spain;
- Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Manuel Leal
- Biomedicine Institute of Seville (IBiS), University Hospital Virgen del Rocío, 41013 Seville, Spain; (Y.P.); (M.L.)
- Department of Internal Medicine and Infectious Diseases, Viamed Hospital, Santa Ángela de la Cruz, 41014 Seville, Spain
| | - Santiago Moreno
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Alejandro Vallejo
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
- Correspondence:
| |
Collapse
|
8
|
Lei H, Liu W, Si J, Wang J, Zhang T. Analyzing the regulation of miRNAs on protein-protein interaction network in Hodgkin lymphoma. BMC Bioinformatics 2019; 20:449. [PMID: 31477006 PMCID: PMC6720096 DOI: 10.1186/s12859-019-3041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Hodgkin Lymphoma (HL) is a type of aggressive malignancy in lymphoma that has high incidence in young adults and elderly patients. Identification of reliable diagnostic markers and efficient therapeutic targets are especially important for the diagnosis and treatment of HL. Although many HL-related molecules have been identified, our understanding on the molecular mechanisms underlying the disease is still far from complete due to its complex and heterogeneous characteristics. In such situation, exploring the molecular mechanisms underlying HL via systems biology approaches provides a promising option. In this study, we try to elucidate the molecular mechanisms related to the disease and identify potential pharmaceutical targets from a network-based perspective. Results We constructed a series of network models. Based on the analysis of these networks, we attempted to identify the biomarkers and elucidate the molecular mechanisms underlying HL. Initially, we built three different but related protein networks, i.e., background network, HL-basic network and HL-specific network. By analyzing these three networks, we investigated the connection characteristic of the HL-related proteins. Subsequently, we explored the miRNA regulation on HL-specific network and analyzed three kinds of simple regulation patterns, i.e., co-regulation of protein pairs, as well as the direct and indirect regulation of triple proteins. Finally, we constructed a simplified protein network combined with the regulation of miRNAs on proteins to better understand the relation between HL-related proteins and miRNAs. Conclusions We find that the HL-related proteins are more likely to connect with each other compared to other proteins. Moreover, the HL-specific network can be further divided into five sub-networks and 49 proteins as the backbone of HL-specific network make up and connect these 5 sub-networks. Thus, they may be closely associated with HL. In addition, we find that the co-regulation of protein pairs is the main regulatory pattern of miRNAs on the protein network in the HL-specific network. According to the regulation of miRNA on protein network, we have identified 5 core miRNAs as the potential biomarkers for diagnostic of HL. Finally, several protein pathways have been identified to closely associated with HL, which provides deep insights into underlying mechanism of HL. Electronic supplementary material The online version of this article (10.1186/s12859-019-3041-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huimin Lei
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.,School of Continuation Education, Tianjin Medical University, Tianjin, China
| | - Wenxu Liu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jiarui Si
- School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Tao Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
9
|
Dolcino M, Tinazzi E, Vitali C, Del Papa N, Puccetti A, Lunardi C. Long Non-Coding RNAs Modulate Sjögren's Syndrome Associated Gene Expression and Are Involved in the Pathogenesis of the Disease. J Clin Med 2019; 8:jcm8091349. [PMID: 31480511 PMCID: PMC6780488 DOI: 10.3390/jcm8091349] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Primary Sjögren's syndrome (pSjS) is a chronic systemic autoimmune disorder, primarily affecting exocrine glands; its pathogenesis is still unclear. Long non-coding RNAs (lncRNAs) are thought to play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in pSjS is still lacking. To this aim, the expression of more than 540,000 human transcripts, including those ascribed to more than 50,000 lncRNAs is profiled at the same time, in a cohort of 16 peripheral blood mononuclear cells PBMCs samples (eight pSjS and eight healthy subjects). A complex network analysis is carried out on the global set of molecular interactions among modulated genes and lncRNAs, leading to the identification of reliable lncRNA-miRNA-gene functional interactions. Taking this approach, a few lncRNAs are identified as targeting highly connected genes in the pSjS transcriptome, since they have a major impact on gene modulation in the disease. Such genes are involved in biological processes and molecular pathways crucial in the pathogenesis of pSjS, including immune response, B cell development and function, inflammation, apoptosis, type I and gamma interferon, epithelial cell adhesion and polarization. The identification of deregulated lncRNAs that modulate genes involved in the typical features of the disease provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Claudio Vitali
- Sections of Rheumatology, Villa S. Giuseppe, Como and Casa di Cura di Lecco, 23900 Lecco, Italy
| | | | - Antonio Puccetti
- Department of Experimental Medicine, Section of Histology, University of Genova, Via G.B. Marsano 10, 16132 Genova, Italy
| | - Claudio Lunardi
- Department of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy.
| |
Collapse
|
10
|
Deng M, Yuan H, Liu S, Hu Z, Xiao H. Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy 2019; 21:96-106. [DOI: 10.1016/j.jcyt.2018.10.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/05/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023]
|
11
|
Szymczyk A, Macheta A, Podhorecka M. Abnormal microRNA expression in the course of hematological malignancies. Cancer Manag Res 2018; 10:4267-4277. [PMID: 30349361 PMCID: PMC6183594 DOI: 10.2147/cmar.s174476] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on the carcinogenesis process is currently focused primarily on understanding its genetic basis and molecular abnormalities that may be predictive factors and therapeutic targets. It was clearly confirmed recently that microRNAs are involved in the mechanisms of leukocyte development, differentiation, and apoptosis, as well as in the pathogenesis of proliferative diseases of the hematopoietic system. Currently, research strategies allow determination of the deregulation of microRNA profiles in relation to other cytogenetic aberrations, as well as prognostic factors and primary end points. The problem of the possibility of their use as therapeutic targets is also increasingly discussed. In this article, we analyze literature data on abnormalities in microRNA expression in proliferative diseases of the hematopoietic system in the context of classic cytogenetic and molecular aberrations.
Collapse
Affiliation(s)
- Agnieszka Szymczyk
- Independent Clinical Transplantology Unit, Medical University of Lublin, Lublin, Poland,
| | - Arkadiusz Macheta
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|