1
|
Chen S, Lei Z, Sun T. The critical role of miRNA in bacterial zoonosis. Int Immunopharmacol 2024; 143:113267. [PMID: 39374566 DOI: 10.1016/j.intimp.2024.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The public's health and the financial sustainability of international societies remain threatened by bacterial zoonoses, with limited reliable diagnostic and therapeutic options available for bacterial diseases. Bacterial infections influence mammalian miRNA expression in host-pathogen interactions. In order to counteract bacterial infections, miRNAs participate in gene-specific expression and play important regulatory roles that rely on translational inhibition and target gene degradation by binding to the 3' non-coding region of target genes. Intriguingly, according to current studies, that exogenous miRNAs derived from plants could potentially serve as effective medicinal components sourced from traditional Chinese medicine plants. These exogenous miRNAs exhibit stable functionality in mammals and mimic the regulatory roles of endogenous miRNAs, illuminating the molecular processes behind the therapeutic effects of plants. This review details the immune defense mechanisms of inflammation, apoptosis, autophagy and cell cycle disturbance caused by some typical bacterial infections, summarizes the role of some mammalian miRNAs in regulating these mechanisms, and introduces the cGAS-STING signaling pathway in detail. Evidence suggests that this newly discovered immune defense mechanism in mammalian cells can also be affected by miRNAs. Meanwhile, some examples of transboundary regulation of mammalian mRNA and even bacterial diseases by exogenous miRNAs from plants are also summarized. This viewpoint provides fresh understanding of microbial tactics and host mechanisms in the management of bacterial illnesses.
Collapse
Affiliation(s)
- Si Chen
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Sahu S, Rao AR, Sahu TK, Pandey J, Varshney S, Kumar A, Gaikwad K. Predictive Role of Cluster Bean ( Cyamopsis tetragonoloba) Derived miRNAs in Human and Cattle Health. Genes (Basel) 2024; 15:448. [PMID: 38674383 PMCID: PMC11049822 DOI: 10.3390/genes15040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 04/28/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding conserved molecules with lengths varying between 18-25nt. Plants miRNAs are very stable, and probably they might have been transferred across kingdoms via food intake. Such miRNAs are also called exogenous miRNAs, which regulate the gene expression in host organisms. The miRNAs present in the cluster bean, a drought tolerant legume crop having high commercial value, might have also played a regulatory role for the genes involved in nutrients synthesis or disease pathways in animals including humans due to dietary intake of plant parts of cluster beans. However, the predictive role of miRNAs of cluster beans for gene-disease association across kingdoms such as cattle and humans are not yet fully explored. Thus, the aim of the present study is to (i) find out the cluster bean miRNAs (cb-miRs) functionally similar to miRNAs of cattle and humans and predict their target genes' involvement in the occurrence of complex diseases, and (ii) identify the role of cb-miRs that are functionally non-similar to the miRNAs of cattle and humans and predict their targeted genes' association with complex diseases in host systems. Here, we predicted a total of 33 and 15 functionally similar cb-miRs (fs-cb-miRs) to human and cattle miRNAs, respectively. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the participation of targeted genes of fs-cb-miRs in 24 and 12 different pathways in humans and cattle, respectively. Few targeted genes in humans like LCP2, GABRA6, and MYH14 were predicted to be associated with disease pathways of Yesinia infection (hsa05135), neuroactive ligand-receptor interaction (hsa04080), and pathogenic Escherichia coli infection (hsa05130), respectively. However, targeted genes of fs-cb-miRs in humans like KLHL20, TNS1, and PAPD4 are associated with Alzheimer's, malignant tumor of the breast, and hepatitis C virus infection disease, respectively. Similarly, in cattle, targeted genes like ATG2B and DHRS11 of fs-cb-miRs participate in the pathways of Huntington disease and steroid biosynthesis, respectively. Additionally, the targeted genes like SURF4 and EDME2 of fs-cb-miRs are associated with mastitis and bovine osteoporosis, respectively. We also found a few cb-miRs that do not have functional similarity with human and cattle miRNAs but are found to target the genes in the host organisms and as well being associated with human and cattle diseases. Interestingly, a few genes such as NRM, PTPRE and SUZ12 were observed to be associated with Rheumatoid Arthritis, Asthma and Endometrial Stromal Sarcoma diseases, respectively, in humans and genes like SCNN1B associated with renal disease in cattle.
Collapse
Affiliation(s)
- Sarika Sahu
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Atmakuri Ramakrishna Rao
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
- Indian Council of Agricultural Research, New Delhi 110001, India
| | - Tanmaya Kumar Sahu
- Indian Grassland and Fodder Research Institute, ICAR, Jhansi 284003, India;
| | - Jaya Pandey
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
| | - Shivangi Varshney
- Indian Agricultural Statistics Research Institute, ICAR, New Delhi 110012, India; (S.S.); (J.P.); (S.V.)
| | - Archna Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Kishor Gaikwad
- National Institute for Plant Biotechnology, ICAR, New Delhi 110012, India;
| |
Collapse
|
3
|
Singh D, Mittal N, Verma S, Singh A, Siddiqui MH. Applications of some advanced sequencing, analytical, and computational approaches in medicinal plant research: a review. Mol Biol Rep 2023; 51:23. [PMID: 38117315 DOI: 10.1007/s11033-023-09057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
The potential active chemicals found in medicinal plants, which have long been employed as natural medicines, are abundant. Exploring the genes responsible for producing these compounds has given new insights into medicinal plant research. Previously, the authentication of medicinal plants was done via DNA marker sequencing. With the advancement of sequencing technology, several new techniques like next-generation sequencing, single molecule sequencing, and fourth-generation sequencing have emerged. These techniques enshrined the role of molecular approaches for medicinal plants because all the genes involved in the biosynthesis of medicinal compound(s) could be identified through RNA-seq analysis. In several research insights, transcriptome data have also been used for the identification of biosynthesis pathways. miRNAs in several medicinal plants and their role in the biosynthesis pathway as well as regulation of the disease-causing genes were also identified. In several research articles, an in silico study was also found to be effective in identifying the inhibitory effect of medicinal plant-based compounds against virus' gene(s). The use of advanced analytical methods like spectroscopy and chromatography in metabolite proofing of secondary metabolites has also been reported in several recent research findings. Furthermore, advancement in molecular and analytic methods will give new insight into studying the traditionally important medicinal plants that are still unexplored.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Nishu Mittal
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | - Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Anjali Singh
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | | |
Collapse
|
4
|
Lu Z, Fu J, Wu G, Yang Z, Wu X, Wang D, You Z, Nie Z, Sheng Q. Neuroprotection and Mechanism of Gas-miR36-5p from Gastrodia elata in an Alzheimer's Disease Model by Regulating Glycogen Synthase Kinase-3β. Int J Mol Sci 2023; 24:17295. [PMID: 38139125 PMCID: PMC10744203 DOI: 10.3390/ijms242417295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3β (GSK-3β) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3β. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3β. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Motwani H, Patel M, Nanavaty V, Dixit N, Rawal RM, Patel SK, Solanki HA. Small RNA sequencing and identification of Andrographis paniculata miRNAs with potential cross‑kingdom human gene targets. Funct Integr Genomics 2023; 23:55. [PMID: 36725761 DOI: 10.1007/s10142-023-00976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Cross-species post-transcriptional regulatory potential of plant derived small non-coding microRNAs (miRNAs) has been well documented by plenteous studies. MicroRNAs are transferred to host cells via oral ingestion wherein they play a decisive role in regulation of host genes; thus, miRNAs have evolved as the nascent bioactive molecules imparting pharmacological values to traditionally used medicinal plants. The present study aims to investigate small RNA profiling in order to uncover the potential regulatory role of miRNAs derived from Andrographis paniculata, one of the most widely used herb by tribal communities for liver disorders and document the pharmacological properties of A. paniculata miRNAs. In this study, high-throughput sequencing method was used to generate raw data, ~ 60 million sequences were generated from A. paniculata leaves. Using computational tools and bioinformatics approach, analyses of 3,480,097 clean reads resulted in identification of 3440 known and 51 putative novel miRNAs regulating 1365 and 192 human genes respectively. Remarkably, the identified plausible novel miRNAs apa-miR-5, apa-miR-1, apa-miR-26, and apa-miR-30 are projected to target significant host genes including CDK6, IKBKB, TRAF3, CHD4, MECP2, and ADIPOQ. Subsequent annotations revealed probable involvement of the target genes in various pathways for instance p38-MAPK, AKT, AMPK, NF-Kβ, ERK, WNT signalling, MYD88 dependant cascade, and pathways in cancer. Various diseases such as human papilloma virus infection, Alzheimer's, Non-alcoholic Fatty Liver, Alcoholic liver diseases, HepatoCellular Carcinoma (HCC), and numerous other cancers were predominantly found to be linked with target genes. Our findings postulate novel interpretations regarding modulation of human transcripts by A. paniculata miRNAs and exhibit the regulation of human diseases by plant-derived miRNAs. Though our study elucidates miRNAs as novel therapeutic agents, however, experimental validations for assessment of therapeutic potential of these miRNAs are still warranted.
Collapse
Affiliation(s)
- Harsha Motwani
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India
| | - Maulikkumar Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India
| | - Vishal Nanavaty
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad-380009, Gujarat, India
- Neuberg Centre for Genomic Medicine, Neuberg Supratech Reference Laboratory, Ahmedabad, Gujarat, India
| | - Nandan Dixit
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad-380009, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India.
| | - Hitesh A Solanki
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
6
|
Saiyed AN, Vasavada AR, Johar SRK. Employing in silico investigations to determine the cross-kingdom approach for Curcuma longa miRNAs and their human targets. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:3. [PMID: 36644780 PMCID: PMC9823259 DOI: 10.1186/s43088-022-00330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
Background Plant elements and extracts have been used for centuries to treat a wide range of diseases, from cancer to modern lifestyle ailments like viral infections. These plant-based miRNAs have the capacity to control physiological and pathological conditions in both humans and animals, and they might be helpful in the detection and treatment of a variety of diseases. The present study investigates the miRNA of the well-known spice Curcuma Longa and its prospective targets using a variety of bioinformatics techniques. Results Using the integrative database of animal, plant, and viral microRNAs known as miRNEST 2.0, nine C. longa miRNAs were predicted. psRNA target service foretells the presence of 23 human target genes linked to a variety of disorders. By interacting with a variety of cellular and metabolic processes, miRNAs 167, 1525, and 756 have been found to be critical regulators of tumour microenvironment. SARS-cov2 and influenza A virus regulation have been connected to ZFP36L1 from miRNA 1525 and ETV5 from miRNA 756, respectively. Conclusions The current cross-kingdom study offers fresh knowledge about how to increase the effectiveness of plant-based therapies for disease prevention and serves as a platform for in vitro and in vivo research development. Graphical abstract
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. Scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
7
|
MicroRNAs in Medicinal Plants. Int J Mol Sci 2022; 23:ijms231810477. [PMID: 36142389 PMCID: PMC9500639 DOI: 10.3390/ijms231810477] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal plant microRNAs (miRNAs) are an endogenous class of small RNA central to the posttranscriptional regulation of gene expression. Biosynthetic research has shown that the mature miRNAs in medicinal plants can be produced from either the standard messenger RNA splicing mechanism or the pre-ribosomal RNA splicing process. The medicinal plant miRNA function is separated into two levels: (1) the cross-kingdom level, which is the regulation of disease-related genes in animal cells by oral intake, and (2) the intra-kingdom level, which is the participation of metabolism, development, and stress adaptation in homologous or heterologous plants. Increasing research continues to enrich the biosynthesis and function of medicinal plant miRNAs. In this review, peer-reviewed papers on medicinal plant miRNAs published on the Web of Science were discussed, covering a total of 78 species. The feasibility of the emerging role of medicinal plant miRNAs in regulating animal gene function was critically evaluated. Staged progress in intra-kingdom miRNA research has only been found in a few medicinal plants, which may be mainly inhibited by their long growth cycle, high demand for growth environment, immature genetic transformation, and difficult RNA extraction. The present review clarifies the research significance, opportunities, and challenges of medicinal plant miRNAs in drug development and agricultural production. The discussion of the latest results furthers the understanding of medicinal plant miRNAs and helps the rational design of the corresponding miRNA/target genes functional modules.
Collapse
|
8
|
Mohanty JN, Sahoo S, Routray SP, Bhuyan R. Does the diverse source of miRNAs affect human health? An approach towards diagnosis and therapeutic management. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Zheng Z, Xu Z, Cai C, Liao Y, Yang C, Du X, Huang R, Deng Y. Circulating exosome miRNA, is it the novel nutrient molecule through cross-kingdom regulation mediated by food chain transmission from microalgae to bivalve? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101004. [PMID: 35644102 DOI: 10.1016/j.cbd.2022.101004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) can efficiently regulate gene expression at intracellular and extracellular levels. Plant-derived miRNAs are highly enriched in animal haemolymph and regulate mammalian gene expression. However, evidence for food-derived miRNAs in Mollusca species is lacking. In this study, we fed the microalga Nannochloropsis oculata to the pearl oyster Pinctada fucata martensii and detected dietary miRNAs in exosomes isolated from the haemolymph by RNA-seq. In total, 273 endogenous miRNAs were identified in all biological replicates. We identified 23 microalgae-derived miRNAs in the exosomes of pearl oyster haemolymph. Most microalgae-derived miRNAs showed high expression levels in both exosomes and microalgae and exhibited apparent variation among individuals. These food-derived miRNAs were predicted to participate in endocytosis, apoptosis, signal transduction, energy metabolism, and biomineralization by targeting multiple genes. These findings demonstrated the cross-kingdom transport of miRNAs from microalgae to bivalves and provide insights into novel nutrient transmission through the food chain.
Collapse
Affiliation(s)
- Zhe Zheng
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Zhijie Xu
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China
| | - Caixia Cai
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China
| | - Yongshan Liao
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Chuangye Yang
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Xiaodong Du
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Ronglian Huang
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Yuewen Deng
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.
| |
Collapse
|
10
|
A Method to Produce vsiRNAs in Plants with Cross-Kingdom Gene Silencing Capacity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants have evolved defense mechanisms to suppress viral transcription and replication by transcriptional and post-transcriptional gene silencing mediated by virus-derived small interfering RNAs (vsiRNAs). Based on this response, virus-induced gene silencing (VIGS)-based technology has been developed to silence target genes on either host plants or insect pests. This mechanism could also be used for the silencing of genes of interest in the medical field. We used the VIGS vector pEuMV-YP:Krt18, which was obtained by inserting the Mus musculus (M. musculus) Krt18 sequence into pEuMV-YP:ΔAV1. The objective was to evaluate the capacity of pEuMV-YP:Krt18 to induce Nicotiana benthamiana (N. benthamiana) production of vsiRNAs of a specific sequence that belongs to neither the plant genome nor the wild virus genome, which were used to induce cross-kingdom gene silencing between plants and mammals. The percentage of vsiRNA for each viral gene was calculated from an sRNA library of N. benthamiana plants infected by pEuMV-YP: Krt18. When the vsiRNAs were characterized, it was found that they corresponded to all the genes of the pEuMV-YP:Krt18 vector. These vsiRNAs induced the silencing of the Krt18 gene in M. musculus macrophages, supporting the ability to use VIGS vectors in plants as biofactories for the production of sRNAs that induce gene silencing in mammals.
Collapse
|
11
|
Jha N, Mangukia N, Gadhavi H, Patel M, Bhavsar M, Rawal R, Patel S. Small RNA sequencing and identification of papaya (Carica papaya L.) miRNAs with potential cross-kingdom human gene targets. Mol Genet Genomics 2022; 297:981-997. [PMID: 35570207 PMCID: PMC9107959 DOI: 10.1007/s00438-022-01904-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/23/2022] [Indexed: 12/11/2022]
Abstract
Several studies have demonstrated potential role of plant-derived miRNAs in cross-kingdom species relationships by transferring into non-plant host cells to regulate certain host cellular functions. How nutrient-rich plants regulate host cellular functions, which in turn alleviate physiological and disease conditions in the host remains to be explored in detail. This computational study explores the potential targets, putative role, and functional implications of miRNAs derived from Carica papaya L., one of the most cultivated tropical crops in the world and a rich source of phytochemicals and enzymes, in human diet. Using the next-generation sequencing, -Illumina HiSeq2500, ~ 30 million small RNA sequence reads were generated from C. papaya young leaves, resulting in the identification of a total of 1798 known and 49 novel miRNAs. Selected novel C. papaya miRNAs were predicted to regulate certain human targets, and subsequent annotation of gene functions indicated a probable role in various biological processes and pathways, such as MAPK, WNT, and GPCR signaling pathways, and platelet activation. These presumptive target gene in humans were predominantly linked to various diseases, including cancer, diabetes, mental illness, and platelet disorder. The computational finding of this study provides insights into how C. papaya-derived miRNAs may regulate certain conditions of human disease and provide a new perspective on human health. However, the therapeutic potential of C. papaya miRNA can be further explored through experimental studies.
Collapse
Affiliation(s)
- Neha Jha
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- BioInnovations, Bhayander (West), Mumbai, 401101, Maharashtra, India
| | - Harshida Gadhavi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Maulik Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- Advait Theragnostics Pvt. Ltd., Ahmedabad, Gujarat, India
| | - Mansi Bhavsar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
12
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
13
|
Manvar T, Mangukia N, Patel S, Rawal R. Understanding the Molecular Mechanisms of Betel miRNAs on Human Health. Microrna 2022; 11:45-56. [PMID: 35307000 DOI: 10.2174/2211536611666220318142031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Since ancient times, "betel leaf" (Piper betle) has been revered for its religious, cultural, and medicinal properties. Phytochemicals from the Piper betle are effective in a variety of conditions, including cancer. To date, however, no genomic study or evidence has been found to elucidate the regulatory mechanism that underpins its therapeutic properties. This is the first study of its kind to predict Piper betle miRNAs and also the first genomics source representation of Piper betle. According to previous research, miRNAs from the plants we eat can regulate gene expression. In line with this, our in-silico study revealed that Piper betle and human cross-kingdom control occurs. METHOD This study demonstrates the prediction and in-silico validation of Piper betle miRNAs from NGS-derived transcript sequences. The cross-kingdom regulation which can also be understood as inter-species RNA regulation was studied to identify human mRNA targets being controlled by Piper betle miRNAs. Functional annotation and gene-disease association of human targets were performed to understand the role of Piper betle miRNAs in human health and disease. The protein-protein interaction and expression study of targets was further carried out to decipher their role in cancer development. RESULTS Identified six Piper betle miRNAs belonging to miR156, miR164, miR172, and miR535 families were discovered to target 198 human mRNAs involved in various metabolic and disease processes. Angiogenesis and the cell surface signaling pathway were the most enriched gene ontology correlated with targets, both of which play a critical role in disease mechanisms, especially in the case of carcinoma. In an analysis of gene-disease interactions, 40 genes were found to be related to cancer. According to a protein-protein interaction, the CDK6 gene, which is thought to be a central regulator of cell cycle progression, was found as a hub protein, affecting the roles of CBFB, SAMD9, MDM4, AXIN2, and NOTCH2 onco genes. Further investigation revealed that pbe-miRNA164a can be used as a regulator to minimise disease severity in Acute Myeloid Leukemia, where CDK6 expression is highest compared to normal cells. CONCLUSION The predicted pbe-miRNA164a in this study can be a promising suppressor of CDK6 gene involved in tumour angiogenesis. In vivo validation of the pbe-miRNA164a mimic could pave the way for new opportunities to fight cancer and leverage the potential of Piper betle in the healthcare sector.
Collapse
Affiliation(s)
- Toral Manvar
- Department of Botany, Bioinformatics and Climate change impacts management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
- Xcelris Labs Ltd, Ahmedabad, Gujarat, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics and Climate change impacts management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
- BioInnovations, Mumbai, India
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate change impacts management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh Rawal
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Liu Y, Tan ML, Zhu WJ, Cao YN, Peng LX, Yan ZY, Zhao G. In Vitro Effects of Tartary Buckwheat-Derived Nanovesicles on Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2616-2629. [PMID: 35167751 DOI: 10.1021/acs.jafc.1c07658] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Evidence suggests that plant-derived nanovesicles may play a significant role in human health. Tartary buckwheat has several physiological activities; however, its underlying health-promoting mechanism remains unclear. In this study, first, Tartary buckwheat-derived nanovesicles (TBDNs) were collected, their structures were analyzed, and microRNA sequencing was performed. Next, target prediction and functional verification were conducted. Finally, the effects of TBDNs on gut microbiota and short-chain fatty acid levels were evaluated. The average size of TBDNs was 141.8 nm diameter. Through the sequencing analyses, 129 microRNAs, including 11 novel microRNAs were identified. Target gene prediction showed that some microRNAs could target functional genes in Escherichia coli and Lactobacillus rhamnosus-related physiological processes. TBDNs significantly promoted the growth of E. coli and L. rhamnosus, enhanced the diversity of fecal microorganisms and increased the short-chain fatty acid levels. These findings provided a new nutritional perspective for Tartary buckwheat and were conducive to promote the development and utilization of Tartary buckwheat.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Mao-Ling Tan
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
15
|
Sánchez-Romo D, Hernández-Vásquez CI, Pereyra-Alférez B, García-García JH. Identification of potential target genes in Homo sapiens, by miRNA of Triticum aestivum: A cross kingdom computational approach. Noncoding RNA Res 2022; 7:89-97. [PMID: 35387280 PMCID: PMC8961073 DOI: 10.1016/j.ncrna.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Plant-derived miRNAs can be found in the human body after dietary intake, and they can affect post-transcriptional gene regulation in human. It is important to identify targets to determine the possible effects in human genes by using computational approach. In this study, 787 possible mRNAs human targets were predicted by 84 miRNAs of wheat. A total of 14 miRNAs were identified with individual binding to 33 mRNAs associated with schizophrenia, epilepsy, neurodevelopmental disorders, and various cancers, located in the 3′UTR of the mRNA. A functional enrichment was carried out, where the results showed associations to pathways such as dopaminergic synapse (hsa04728), and signaling pathways, significantly associated with the target genes. The prediction of target mRNAs in humans by wheat miRNAs, offer candidates that could facilitate the search and verification, which could be of relevance for future projects and therefor contribute in the therapeutic treatment of various human diseases.
Collapse
|
16
|
Arda H, Doğanlar O. Stress-induced miRNAs isolated from wheat have a unique therapeutic potential in ultraviolet-stressed human keratinocyte cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17977-17996. [PMID: 34677776 DOI: 10.1007/s11356-021-17039-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence supports the existence of cross-kingdom gene regulation. However, the therapeutic potential of stress-specific plant miRNAs and their role in UV-related pathologies in human tissue remain largely unexplored. The aim of this study was to investigate the therapeutic potential and mechanisms of action of stress-induced miRNA cocktails (SI-WmiRs) from Einkorn wheat (Triticum monococcum L.) on human keratinocyte (HaCaT) cells exposed to a high dose of UV-B radiation. We used a biofactory approach and irradiated wheatgrass with UV-C for 240 min to obtain the specific SI-WmiRs that wheat produces to recover from UV stress. We followed the plant with molecular and biochemical analyses and extracted our SI-WmiRs at the most appropriate time (0 h and 6 h after UV-C application). Then, we applied the SI-WmiR cocktail to HaCaT cells exposed to high-dose of UV-B radiation. Our results show that UV-B radiation induced lipid peroxidation and DNA damage, as demonstrated by increased malondialdehyde (MDA) levels and changes in the RAPD band profile, respectively. UV stress also impaired IL6/JAK2/STAT3 signalling and activated the inflammatory mediators IL6 and TNF-α in HaCaT cells, leading to significant induction of apoptotic cell death. We found that SI-WmiR transfection prevents lipid peroxidation and oxidative stress-related DNA damage by increasing antioxidant (CuZn-SOD, Mn-SOD) and DNA repair (EXO1, SMUG1 and XRCC3) gene expression. In addition, SI-WmiRs regulated IL6/JAK2/STAT3 signalling by reducing JAK2 and STAT3 gene expression and phosphorylated protein levels compared to the control treatments. Moreover, SI-WmiRs inhibited pro-apoptotic BAX, Caspase 3 and Caspase 8 gene expression and protein levels to prevent apoptosis of UV-stressed HaCaT cells. Our results demonstrate that stress-induced wheat miRNAs produced using a biofactory approach have strong potential as a novel and effective alternative therapy for UV stress-related skin damage.
Collapse
Affiliation(s)
- Hayati Arda
- Department of Plant Physiology, Faculty of Science, Trakya University, 22030, Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey.
| |
Collapse
|
17
|
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into Health-Promoting Effects of Plant MicroRNAs: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14372-14386. [PMID: 34813309 DOI: 10.1021/acs.jafc.1c04737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant-derived microRNAs (miRNAs) play a significant role in human health and are "dark nutrients", as opposed to traditional plant nutrients, as well as important components of food diversification. Studies have revealed that multiple plant-derived miRNA pathways affect human health. First, plant miRNAs regulate plant growth and development and accumulation of metabolites, which alters the food quality and thus indirectly interferes with the health of the host. Moreover, when absorbed in vivo, some miRNAs may target the host cell mRNAs to affect protein expression. In addition, plant miRNAs target and reshape the human gut microbiota (GM), which interferes with the physiology and metabolism of the host. Therefore, miRNAs play a significant role in the cross-kingdom communication of plants, GM, and the host and in maintaining a balance of the three. Future contributions of plant miRNAs can bring new perspectives and opportunities to better understand food nutrition and health care research, which will facilitate the right exploitation of plant resources.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
18
|
Li D, Yang J, Yang Y, Liu J, Li H, Li R, Cao C, Shi L, Wu W, He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front Genet 2021; 12:613197. [PMID: 34012461 PMCID: PMC8126714 DOI: 10.3389/fgene.2021.613197] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) belong to a class of non-coding RNAs that suppress gene expression by complementary oligonucleotide binding to the sites in target messenger RNAs. Numerous studies have demonstrated that miRNAs play crucial role in virtually all cellular processes of both plants and animals, such as cell growth, cell division, differentiation, proliferation and apoptosis. The study of rice MIR168a has demonstrated for the first time that exogenous plant MIR168a influences cholesterol transport in mice by inhibiting low-density lipoprotein receptor adapter protein 1 expression. Inspired by this finding, the cross-kingdom regulation of plant-derived miRNAs has drawn a lot of attention because of its capability to provide novel therapeutic agents in the treatment of miRNA deregulation-related diseases. Notably, unlike mRNA, some plant miRNAs are robust because of their 3′ end modification, high G, C content, and the protection by microvesicles, miRNAs protein cofactors or plant ingredients. The stability of these small molecules guarantees the reliability of plant miRNAs in clinical application. Although the function of endogenous miRNAs has been widely investigated, the cross-kingdom regulation of plant-derived miRNAs is still in its infancy. Herein, this review summarizes the current knowledge regarding the anti-virus, anti-tumor, anti-inflammatory, anti-apoptosis, immune modulation, and intestinal function regulation effects of plant-derived miRNAs in mammals. It is expected that exploring the versatile role of plant-derived miRNAs may lay the foundation for further study and application of these newly recognized, non-toxic, and inexpensive plant active ingredients.
Collapse
Affiliation(s)
- Dan Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Jianhui Yang
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianxin Liu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Hui Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Rongfei Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Chunya Cao
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Liping Shi
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Weihua Wu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| |
Collapse
|
19
|
Exogenous miRNA: A Perspective Role as Therapeutic in Rheumatoid Arthritis. Curr Rheumatol Rep 2021; 23:43. [PMID: 33939021 DOI: 10.1007/s11926-021-01009-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease that causes joint deformation. Till now several studies has been carried out promising its cure, but curing has not yet achieved to the satisfactory levels. Herbal approach to treat disease by a cross-kingdom mechanism via exogenous miRNA is an emerging trend to target associated genes with RA pathogenesis as a therapeutic potential. The concept of acquired/exogenous miRNA into pathophysiological prospect provides an opportunity to explore inter-species kingdom like regulation of plant miRNAs on human health. The change in gene expression was attributed by a short 22-24 nucleotide long sequence that binds to its complementary region to suppress/silence the gene expression. This makes exogenous miRNA a novel approach for targeted therapy to treat complex chronic inflammatory diseases. Here, aim of the review was to address significance of plant derived miRNA based targeted therapy to regulate inflammation in RA.
Collapse
|
20
|
Ayachit G, Shaikh I, Pandya H, Das J. Salient Features, Data and Algorithms for MicroRNA Screening from Plants: A Review on the Gains and Pitfalls of Machine Learning Techniques. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200601121756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The era of big data and high-throughput genomic technology has enabled scientists to
have a clear view of plant genomic profiles. However, it has also led to a massive need for
computational tools and strategies to interpret this data. In this scenario of huge data inflow,
machine learning (ML) approaches are emerging to be the most promising for analysing
heterogeneous and unstructured biological datasets. Extending its application to healthcare and
agriculture, ML approaches are being useful for microRNA (miRNA) screening as well.
Identification of miRNAs is a crucial step towards understanding post-transcriptional gene
regulation and miRNA-related pathology. The use of ML tools is becoming indispensable in
analysing such data and identifying species-specific, non-conserved miRNA. However, these
techniques have their own benefits and lacunas. In this review, we will discuss the current scenario
and pitfalls of ML-based tools for plant miRNA identification and provide some insights into the
important features, the need for deep learning models and direction in which studies are needed.
Collapse
Affiliation(s)
- Garima Ayachit
- Department of Botany, Bioinformatics and Climate Change, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad – 380009, India
| | - Inayatullah Shaikh
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Himanshu Pandya
- Department of Botany, Bioinformatics and Climate Change, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad – 380009, India
| | - Jayashankar Das
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| |
Collapse
|
21
|
Dávalos A, Pinilla L, López de Las Hazas MC, Pinto-Hernández P, Barbé F, Iglesias-Gutiérrez E, de Gonzalo-Calvo D. Dietary microRNAs and cancer: A new therapeutic approach? Semin Cancer Biol 2020; 73:19-29. [PMID: 33086083 DOI: 10.1016/j.semcancer.2020.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Cancer is one of the leading causes of premature death and constitutes a challenge for both low- and high-income societies. Previous evidence supports a close association between modifiable risk factors, including dietary habits, and cancer risk. Investigation of molecular mechanisms that mediate the pro-oncogenic and anti-oncogenic effects of diet is therefore fundamental. MicroRNAs (miRNAs) have received much attention in the past few decades as crucial molecular elements of human physiology and disease. Aberrant expression patterns of these small noncoding transcripts have been observed in a wide array of cancers. Interestingly, human miRNAs not only can be modulated by bioactive dietary components, but it has also been proposed that diet-derived miRNAs may contribute to the pool of human miRNAs. Results from independent groups have suggested that these exogenous miRNAs may be functional in organisms. These findings open the door to novel and innovative approaches to cancer therapy. Here, we provide an overview of the biology of miRNAs, with a special focus on plant-derived dietary miRNAs, summarize recent findings in the field of cancer, address the possible applications to clinical practice and discuss obstacles and challenges in the field.
Collapse
Affiliation(s)
- Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Crta. de, Carr. de Canto Blanco, nº8, E, 28049 Madrid, Spain
| | - Lucía Pinilla
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Crta. de, Carr. de Canto Blanco, nº8, E, 28049 Madrid, Spain
| | - Paola Pinto-Hernández
- Department of Functional Biology, Physiology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, Physiology, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Av. Roma, s/n, 33011 Oviedo, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
22
|
Samad AFA, Kamaroddin MF, Sajad M. Cross-Kingdom Regulation by Plant microRNAs Provides Novel Insight into Gene Regulation. Adv Nutr 2020; 12:197-211. [PMID: 32862223 PMCID: PMC7850022 DOI: 10.1093/advances/nmaa095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are well known as major players in mammalian and plant genetic systems that act by regulating gene expression at the post-transcriptional level. These tiny molecules can regulate target genes (mRNAs) through either cleavage or translational inhibition. Recently, the discovery of plant-derived miRNAs showing cross-kingdom abilities to regulate mammalian gene expression has prompted exciting discussions among researchers. After being acquired orally through the diet, plant miRNAs can survive in the digestive tract, enter the circulatory system, and regulate endogenous mRNAs. Here, we review current knowledge regarding the cross-kingdom mechanisms of plant miRNAs, related controversies, and potential applications of these miRNAs in dietary therapy, which will provide new insights for plant miRNA investigations related to health issues in humans.
Collapse
Affiliation(s)
| | - Mohd Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Muhammad Sajad
- Department of Plant Breeding and Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
23
|
Ayachit G, Pandya H, Das J. miRDetect: A combinatorial approach for automated detection of novel miRNA precursors from plant EST data using homology and Random Forest classification. Genomics 2020; 112:3201-3206. [PMID: 32380232 DOI: 10.1016/j.ygeno.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 01/23/2023]
Abstract
Identification of microRNAs from plants is a crucial step for understanding the mechanisms of pathways and regulation of genes. A number of tools have been developed for the detection of microRNAs from small RNA-seq data. However, there is a lack of pipeline for detection of miRNA from EST dataset even when a huge resource is publicly available and the method is known. Here we present miRDetect, a python implementation to detect novel miRNA precursors from plant EST data using homology and machine learning approach. 10-fold cross validation was applied to choose best classifier based on ROC, accuracy, MCC and F1-scores using 112 features. miRDetect achieved a classification accuracy of 93.35% on a Random Forest classifier and outperformed other precursor detection tools in terms of performance. The miRDetect pipeline aids in identifying novel plant precursors using a mixed approach and will be helpful to researchers with less informatics background.
Collapse
Affiliation(s)
- Garima Ayachit
- Department of Botany, Bioinformatics and Climate Change, Gujarat University, Ahmedabad, India
| | - Himanshu Pandya
- Department of Botany, Bioinformatics and Climate Change, Gujarat University, Ahmedabad, India.
| | - Jayashankar Das
- Centre for Genomics & Biomedical Informatics, IMS and SUM Hospital, Siksha "O" Anusandhan University (Deemed to be), K8, Kalinga Nagar, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
24
|
Gadhavi H, Patel M, Mangukia N, Shah K, Bhadresha K, Patel SK, Rawal RM, Pandya HA. Transcriptome-wide miRNA identification of Bacopa monnieri: a cross-kingdom approach. PLANT SIGNALING & BEHAVIOR 2020; 15:1699265. [PMID: 31797719 PMCID: PMC7012157 DOI: 10.1080/15592324.2019.1699265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bacopa monnieri known as 'Brahmi' is a well-known medicinal plant belonging to Scrophulariaceae family for its nootropic properties. To the best of our knowledge, no characterization data is available on the potential role of micro RNAs (miRNAs) from this plant till date. We present here the first report of computational characterizations of miRNAs from B. monnieri. Owing to the high conservation of miRNAs in nature, new and potential miRNAs can be identified in plants using in silico techniques. Using the plant miRNA sequences present in the miRBase repository, a total of 12 miRNAs were identified from B. monnieri which pertained to 11 miRNA families from the shoot and root transcriptome data. Furthermore, gene ontology analysis of the identified 68 human target genes exhibited significance in various biological processes. These human target genes were associated with signaling pathways like NF-kB and MAPK with TRAF2, CBX1, IL1B, ITGA4 and ITGB1BP1 as the top five hub nodes. This cross-kingdom study provides initial insights about the potential of miRNA-mediated cross-kingdom regulation and unravels the essential target genes of human with implications in numerous human diseases including cancer.
Collapse
Affiliation(s)
- Harshida Gadhavi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Maulikkumar Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kanisha Shah
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kinjal Bhadresha
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, India
| | - Saumya K. Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M. Rawal
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, India
| | - Himanshu A. Pandya
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
- CONTACT Himanshu A. Pandya Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
25
|
Ma X, Meng Y, Wang P, Tang Z, Wang H, Xie T. Bioinformatics-assisted, integrated omics studies on medicinal plants. Brief Bioinform 2019; 21:1857-1874. [PMID: 32706024 DOI: 10.1093/bib/bbz132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
The immense therapeutic and economic values of medicinal plants have attracted increasing attention from the worldwide researchers. It has been recognized that production of the authentic and high-quality herbal drugs became the prerequisite for maintaining the healthy development of the traditional medicine industry. To this end, intensive research efforts have been devoted to the basic studies, in order to pave a way for standardized authentication of the plant materials, and bioengineering of the metabolic pathways in the medicinal plants. In this paper, the recent advances of omics studies on the medicinal plants were summarized from several aspects, including phenomics and taxonomics, genomics, transcriptomics, proteomics and metabolomics. We proposed a multi-omics data-based workflow for medicinal plant research. It was emphasized that integration of the omics data was important for plant authentication and mechanistic studies on plant metabolism. Additionally, the computational tools for proper storage, efficient processing and high-throughput analyses of the omics data have been introduced into the workflow. According to the workflow, authentication of the medicinal plant materials should not only be performed at the phenomics level but also be implemented by genomic and metabolomic marker-based examination. On the other hand, functional genomics studies, transcriptional regulatory networks and protein-protein interactions will contribute greatly for deciphering the secondary metabolic pathways. Finally, we hope that our work could inspire further efforts on the bioinformatics-assisted, integrated omics studies on the medicinal plants.
Collapse
Affiliation(s)
- Xiaoxia Ma
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yijun Meng
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Tian Xie
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China
| |
Collapse
|
26
|
De novo transcriptome of Gymnema sylvestre identified putative lncRNA and genes regulating terpenoid biosynthesis pathway. Sci Rep 2019; 9:14876. [PMID: 31619732 PMCID: PMC6795813 DOI: 10.1038/s41598-019-51355-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023] Open
Abstract
Gymnema sylvestre is a highly valuable medicinal plant in traditional Indian system of medicine and used in many polyherbal formulations especially in treating diabetes. However, the lack of genomic resources has impeded its research at molecular level. The present study investigated functional gene profile of G. sylvestre via RNA sequencing technology. The de novo assembly of 88.9 million high quality reads yielded 23,126 unigenes, of which 18116 were annotated against databases such as NCBI nr database, gene ontology (GO), KEGG, Pfam, CDD, PlantTFcat, UniProt & GreeNC. Total 808 unigenes mapped to 78 different Transcription Factor families, whereas 39 unigenes assigned to CYP450 and 111 unigenes coding for enzymes involved in the biosynthesis of terpenoids including transcripts for synthesis of important compounds like Vitamin E, beta-amyrin and squalene. Among them, presence of six important enzyme coding transcripts were validated using qRT-PCR, which showed high expression of enzymes involved in methyl-erythritol phosphate (MEP) pathway. This study also revealed 1428 simple sequence repeats (SSRs), which may aid in molecular breeding studies. Besides this, 8 putative long non-coding RNAs (lncRNAs) were predicted from un-annotated sequences, which may hold key role in regulation of essential biological processes in G. sylvestre. The study provides an opportunity for future functional genomic studies and to uncover functions of the lncRNAs in G. sylvestre.
Collapse
|
27
|
Zhang LL, Jing XD, Chen W, Wang Y, Lin JH, Zheng L, Dong YH, Zhou L, Li FF, Yang FY, Peng L, Vasseur L, He WY, You MS. Host Plant-Derived miRNAs Potentially Modulate the Development of a Cosmopolitan Insect Pest, Plutella xylostella. Biomolecules 2019; 9:biom9100602. [PMID: 31614786 PMCID: PMC6843310 DOI: 10.3390/biom9100602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 01/02/2023] Open
Abstract
Plant microRNAs (miRNAs) have recently been reported to be involved in the cross-kingdom regulation of specific cellular and physiological processes in animals. However, little of this phenomenon is known for the communication between host plant and insect herbivore. In this study, the plant-derived miRNAs in the hemolymph of a cruciferous specialist Plutella xylostella were identified by small RNAs sequencing. A total of 39 miRNAs with typical characteristics of plant miRNAs were detected, of which 24 had read counts ≥ 2 in each library. Three plant-derived miRNAs with the highest read counts were validated, and all of them were predicted to target the hemocyanin domains-containing genes of P. xylostella. The luciferase assays in the Drosophila S2 cell demonstrated that miR159a and novel-7703-5p could target BJHSP1 and PPO2 respectively, possibly in an incomplete complementary pairing mode. We further found that treatment with agomir-7703-5p significantly influenced the pupal development and egg-hatching rate when reared on the artificial diet. The developments of both pupae and adults were severely affected upon their transfer to Arabidopsis thaliana, but this might be independent of the cross-kingdom regulation of the three plant-derived miRNAs on their target genes in P. xylostella, based on expression analysis. Taken together, our work reveals that the plant-derived miRNAs could break the barrier of the insect mid-gut to enter the circulatory system, and potentially regulate the development of P. xylostella. Our findings provide new insights into the co-evolution of insect herbivore and host plant, and novel direction for pest control using plant-derived miRNAs.
Collapse
Affiliation(s)
- Ling-Ling Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiao-Dong Jing
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yue Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Han Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ling Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu-Hong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Li Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fei-Fei Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fei-Ying Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lu Peng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S3A1, Canada.
| | - Wei-Yi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Min-Sheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
28
|
Pirim D, Dogan B. In silico identification of putative roles of food-derived xeno-mirs on diet-associated cancer. Nutr Cancer 2019; 72:481-488. [DOI: 10.1080/01635581.2019.1670854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dilek Pirim
- Department of Molecular Biology and Genetics, Uludag University, Bursa, Turkey
| | - Berkcan Dogan
- Department of Biology and Genetics, Istanbul University Institute of Graduate Studies in Science, Istanbul, Turkey
| |
Collapse
|
29
|
Patel M, Mangukia N, Jha N, Gadhavi H, Shah K, Patel S, Mankad A, Pandya H, Rawal R. Computational identification of miRNA and their cross kingdom targets from expressed sequence tags of Ocimum basilicum. Mol Biol Rep 2019; 46:2979-2995. [PMID: 31066002 DOI: 10.1007/s11033-019-04759-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are conserved small non coding RNAs, which are typically 22-24 nucleotides long and play an important role in post transcription regulation andin various biological processes in both animals and plants. Ocimum basilicum is an important medicinal plant having different bioactive compounds eugenol and essential oils that possess numerous therapeutic properties. However, only a few miRNAs of Ocimum basilicum and its function have been studied till date. The present study focusses on the identification of miRNA from expressed sequenced tags by carrying out computational approaches based on the homology search method. A total of 10 potential miRNAs with 8 different families were predicted in O.basilicum. Furthermore, the psRNA target server was used to predict cross kingdom target genes on human transcriptome for identification ofpotential miRNAs. Eight miRNA families were found to modulate the 87 human target genes which were associated with RAS/MAPK signalling cascade, cardiomyopathy, HIV, breast cancer, lung cancer, Alzheimer's diseases and several neurological disorders. Moreover, O.basilicum miRNAs regulate the key human target genes having significance in various diseases and important biological networks with 10 hub nodes interactions. Thus this study gives the pave for further studies to explore the potential of miRNA mediated cross kingdom regulation and treatment of various diseases including cancer.
Collapse
Affiliation(s)
- Maulikkumar Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics and Climate Change Impacts Management School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Neha Jha
- Department of Botany, Bioinformatics and Climate Change Impacts Management School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Harshida Gadhavi
- Department of Botany, Bioinformatics and Climate Change Impacts Management School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Kanisha Shah
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Archana Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Himanshu Pandya
- Department of Botany, Bioinformatics and Climate Change Impacts Management School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh Rawal
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
30
|
Abstract
Insights in RNA biology have opened up a plethora of opportunities to explore the small regulatory RNAs from various natural and artificial sources. These small RNAs have been suggested to play a role too in tumor progression by either as oncogenic or tumor suppressor small RNAs. In this study, authors have attempted to evaluate the therapeutic potential of small RNAs fractionated from corn (Zea mays) upon growth and survival of HeLa. Here, authors have employed standard cellular-based approaches including microscopy, spectroscopy, and flow cytometry-based staining assays. Our data indicate that corn small RNAs fraction can appreciably decrease HeLa cell proliferation and survival, which is supported by a number of complementary assays such as Trypan blue dye exclusion, MTT, propidium iodide, and Annexin V/PI apoptotic cell death. Taken together, present finding suggests that corn small RNAs fraction may display up to 70% reduction in HeLa cell viability. Furthermore, these data indicate that around 40-50% of HeLa cells become apoptotic due to exogenous use of corn small. Overall, this finding proposes that possibility of cross-kingdom anticancer use of small RNAs from corn and present data need to be explored in depth.
Collapse
Affiliation(s)
- Mamta Shekhawat
- a Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth , Pune , India
| | - Devashree Jahagirdar
- a Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth , Pune , India
| | - Sunny Yadav
- a Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth , Pune , India
| | - Nilesh Kumar Sharma
- a Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth , Pune , India
| |
Collapse
|
31
|
Shekhawat M, Jahagirdar D, Yadav S, Sharma NK. Induction of Apoptosis in HeLa by Corn Small RNAs. Nutr Cancer 2019; 71:348-358. [DOI: 10.1080/01635581.2018.1526307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mamta Shekhawat
- Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, India
| | - Sunny Yadav
- Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
32
|
Shekhawat M, Jahagirdar D, Yadav S, Sharma NK. Induction of Apoptosis in HeLa by Corn Small RNAs. Nutr Cancer 2019. [DOI: 10.1080/01635581.2018.1526307 [in press] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mamta Shekhawat
- Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, India
| | - Sunny Yadav
- Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr D. Y. Patil Biotechnology & Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
33
|
Sanchita, Trivedi R, Asif MH, Trivedi PK. Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation. RNA Biol 2018; 15:1433-1439. [PMID: 30474479 PMCID: PMC6333437 DOI: 10.1080/15476286.2018.1551693] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 01/08/2023] Open
Abstract
Cross-kingdom gene regulation by microRNAs (miRNAs) initiated a hot debate on the effective role of orally acquired plant miRNAs on human gene expression. It resulted in the expansion of gene regulation theories and role of plant miRNAs in cross-kingdom regulation of gene expression. This opened up the discussion that 'Whether we really get what we eat?' and 'Whether the orally acquired miRNAs really have a biologically important consequences after entering our digestive and circulatory system?' The reports of orally acquired plant miRNAs inside human alimentary canal have been a topic of discussion in the scientific community. The cross-kingdom gene regulations have raised our hopes to explore the exciting world of plant miRNAs as therapeutic potential and dietary supplements. However, there are reports which have raised concerns over any such cross-kingdom regulation and argued that technical flaws in the experiments might have led to such hypothesis. This review will give the complete understanding of exogenous application and cross-kingdom regulation of plant miRNAs on human health. Here, we provide update and discuss the consequences of plant miRNA mediated cross-kingdom gene regulation and possibilities for this exciting regulatory mechanism as an augmented therapy against various diseases.
Collapse
Affiliation(s)
- Sanchita
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Mehar Hasan Asif
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Prabodh Kumar Trivedi
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
34
|
Lian XY, Zhang W, Wu DH, Ma JC, Zhou JD, Zhang ZH, Wen XM, Xu ZJ, Lin J, Qian J. Methylation-independent ITGA2 overexpression is associated with poor prognosis in de novo acute myeloid leukemia. J Cell Physiol 2018; 233:9584-9593. [PMID: 30132837 DOI: 10.1002/jcp.26866] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
Previous studies have been indicated that integrin α2 (ITGA2) may be important in cell migration, invasion, survival, and angiogenesis. However, the correlation between ITGA2 expression and acute myeloid leukemia (AML) is still unclear. Real-time quantitative polymerase chain reaction was carried out to analyze ITGA2 messenger RNA level. Methylation-specific polymerase chain reaction (PCR) and bisulfite sequencing PCR were performed to detect the methylation of ITGA2 promoter. ITGA2 expression was significantly upregulated in 134 de novo AML patients compared with 33 controls (p = 0.007). ITGA2high group had markedly lower complete remission (CR) rate than ITGA2low group (p = 0.011). Furthermore, the overall survival in ITGA2high patients was significantly shorter than ITGA2low patients throughout AML cohort, non-acute promyelocytic leukemia (APL) and cytogenetic normal-AML (p = 0.001, 0.002, and 0.044, respectively). Multivariate analysis confirmed that ITGA2 overexpression served as an independent prognostic factor in both whole-cohort AML patients (p = 0.018) and non-APL AML patients (p = 0.021). Besides, ITGA2 expression level was significantly decreased in AML patients after CR (p = 0.011), and was returned at the time of relapse phase (p = 0.021). Moreover, unmethylated ITGA2 promoter was identified in normal controls, leukemia cell lines, and primary leukemia cells with low or high ITGA2 expression. In conclusions, methylation-independent ITGA2 overexpression is associated with poor prognosis in AML.
Collapse
Affiliation(s)
- Xin-Yue Lian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - De-Hong Wu
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Department of Hematology, The Third People's Hospital of Kunshan City, Kunshan, China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - Zhi-Hui Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - Xiang-Mei Wen
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zi-Jun Xu
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| |
Collapse
|
35
|
Minutolo A, Potestà M, Gismondi A, Pirrò S, Cirilli M, Gattabria F, Galgani A, Sessa L, Mattei M, Canini A, Muleo R, Colizzi V, Montesano C. Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response. Sci Rep 2018; 8:12413. [PMID: 30120339 PMCID: PMC6098056 DOI: 10.1038/s41598-018-30718-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Functional foods include compounds with nutritional and health properties. The human diet could play a stronger role in cancer prevention. Only a few studies have described the presence of plant small RNA, in humans who were fed with plant foods, which demonstrated the ability of these molecules to modulate consumer's genes and evidenced the existence of a plant-animal regulation. Through in silico prediction, Olea europaea small RNAs (sRs), which had been previously reported as miRNAs, were identified, each with functional homology to hsa-miR34a. According to this initial funding, we investigated the ability of oeu-sRs to regulate tumorigenesis in human cells. The transfection of these synthetic oeu-sRs reduced the protein expression of hsa-miR34a mRNA targets, increased apoptosis and decreased proliferation in different tumor cells; by contrast, no effect was observed in PBMCs from healthy donors. The introduction of oeu-small RNA in hsa-miR34a-deficient tumor cells restores its function, whereas cells with normal expression of endogenous hsa-miR34a remained unaffected. The natural oeu-small RNAs that were extracted from O. europaea drupes induce the same effects as synthetic sRs. Careful research on the small RNA sequences executed for mapping and annotation in the genome of O. europaea var. Sylvestris and var. Farga led to the hypothesis that RNA fragments with functional homology to human miRNAs could be generated from the degradation of regions of RNA transcripts. These results indicate the possibility of developing novel natural non-toxic drugs that contain active plant-derived tumor-suppressing small RNA with functional homology to hsa-miRNAs and that can support antineoplastic strategies.
Collapse
Affiliation(s)
| | - Marina Potestà
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Pirrò
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Mir-Nat s.r.l, Rome, Italy
| | - Marco Cirilli
- Department of Agricultural and Forestry, Science, University of Tuscia, Viterbo, Italy
| | - Fabiano Gattabria
- Department of Agricultural and Forestry, Science, University of Tuscia, Viterbo, Italy
| | - Andrea Galgani
- Mir-Nat s.r.l, Rome, Italy
- Interdepartmental Center for Animal Technology, University of Rome "Tor Vergata", Rome, Italy
| | - Libera Sessa
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Maurizio Mattei
- Interdepartmental Center for Animal Technology, University of Rome "Tor Vergata", Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Rosario Muleo
- Department of Agricultural and Forestry, Science, University of Tuscia, Viterbo, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Mir-Nat s.r.l, Rome, Italy
| | - Carla Montesano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
36
|
Patel M, Mangukia N, Jha N, Patel S, Rawal RM. Meaningful interpretation by reanalyzing the publicly available dataset: A case study of Salvia miltiorrhiza. CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-a19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|