1
|
Levee V, Sivaganesh K, Schaeffer A, Karunaratne K. POLG epilepsy presenting as new-onset refractory status epilepticus (NORSE) in pregnancy. Pract Neurol 2025; 25:56-59. [PMID: 39209381 DOI: 10.1136/pn-2024-004232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
A 21-year-old woman developed explosive new-onset refractory status epilepticus when 18 weeks pregnant. She had been previously well with no history of seizures and a normal developmental history. She had initially presented with focal impaired awareness seizures but subsequently developed status epilepticus requiring intensive care unit admission and was successfully treated with multiple anti-seizure medications. Once stabilised she was stepped down to the inpatient neurology ward and then transferred to the tertiary centre for a planned late termination of pregnancy, which was the patient's choice. Following transfer, she again developed refractory status epilepticus, requiring intensive care readmission. Subsequent investigations identified a compound heterozygous POLG genetic mutation. We discuss the challenges in the acute clinical situation and important considerations in the diagnosis and management of POLG-related epilepsy.
Collapse
Affiliation(s)
- Viva Levee
- Imperial College Healthcare NHS Trust, London, UK
| | | | - Andrew Schaeffer
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Mitochondrial Research Group, Newcastle upon Tyne, UK
| | | |
Collapse
|
2
|
Mickelsson N, Hirvonen J, Martikainen MH. Clinical features and treatment of stroke-like episodes in mitochondrial disease: a cohort-based study. J Neurol 2024; 272:47. [PMID: 39666093 PMCID: PMC11638336 DOI: 10.1007/s00415-024-12745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Stroke-like episode (SLE) is a subacute evolving brain syndrome in patients with primary mitochondrial diseases. Despite previous research, the understanding of the clinical spectrum, treatment, and outcomes of mitochondrial SLEs is far from complete. In this single centre study, we report the clinical symptoms and radiological findings as well as the medical treatment and outcomes of SLEs in patients with mitochondrial disease. METHODS This retrospective, observational study during years 2000-2023 was based on a cohort of patients diagnosed with mitochondrial disease at Turku University Hospital (TUH; Turku, Finland) in the region of Southwest Finland. Data were obtained from the hospital electronic medical record system. RESULTS The investigated cohort consisted of 76 patients (37 men, 39 women) with a diagnosis of mitochondrial disease. Among these, 12 patients had a history of at least one SLE; the total number of SLEs was 20. The most common genetic aetiology among patients with SLEs was m.3243A > G (N = 7). The mean age at first SLE was 40 years (range: 5-66 years), and the mean interval between episodes was 4.8 years (range: 4 months-10 years). The duration of episodes varied between 1 and 193 days (median 14 days, mean 37 days); 10 patients needed intensive care unit (ICU) treatment. The mean survival time between the first SLE and death was 3.6 years (range: 0-16 years). CONCLUSION Our study highlights the importance of early recognition and prompt management of SLE symptoms, especially epileptic seizures, in this life-threatening entity.
Collapse
Affiliation(s)
- Nora Mickelsson
- Clinical Neurosciences, Department of Clinical Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, Turku University Hospital, Turku, Finland
- Department of Radiology, Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Mika H Martikainen
- Clinical Neurosciences, Department of Clinical Medicine, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.
- Neurocenter and Medical Research Center, Oulu University Hospital, Oulu, Finland.
- Faculty of Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| |
Collapse
|
3
|
Cai AJ, Gao K, Zhang F, Jiang YW. Recent advances and current status of gene therapy for epilepsy. World J Pediatr 2024; 20:1115-1137. [PMID: 39395088 DOI: 10.1007/s12519-024-00843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disorder with complex pathogenic mechanisms, and refractory epilepsy often lacks effective treatments. Gene therapy is a promising therapeutic option, with various preclinical experiments achieving positive results, some of which have progressed to clinical studies. DATA SOURCES This narrative review was conducted by searching for papers published in PubMed/MEDLINE with the following single and/or combination keywords: epilepsy, children, neurodevelopmental disorders, genetics, gene therapy, vectors, transgenes, receptors, ion channels, micro RNAs (miRNAs), clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9 (CRISPR/Cas9), expression regulation, optogenetics, chemical genetics, mitochondrial epilepsy, challenges, ethics, and disease models. RESULTS Currently, gene therapy research in epilepsy primarily focuses on symptoms attenuation mediated by viral vectors such as adeno-associated virus and other types. Advances in gene therapy technologies, such as CRISPR/Cas9, have provided a new direction for epilepsy treatment. However, the clinical application still faces several challenges, including issues related to vectors, models, expression controllability, and ethical considerations. CONCLUSIONS Here, we summarize the relevant research and clinical advances in gene therapy for epilepsy and outline the challenges facing its clinical application. In addition to the shortcomings inherent in gene therapy components, the reconfiguration of excitatory and inhibitory properties in epilepsy treatment is a delicate process. On-demand, cell-autonomous treatments and multidisciplinary collaborations may be crucial in addressing these issues. Understanding gene therapy for epilepsy will help clinicians gain a clearer perception of the research progress and challenges, guiding the design of future clinical protocols and research decisions.
Collapse
Affiliation(s)
- Ao-Jie Cai
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
4
|
Tsalouchidou PE, Juenemann C, Hahn W, Zahnert F, Möller L, Hakel L, Kemmling A, Menzler K, Simon OJ, Timmermann L, Knake S, Bernhard F. Adult-onset status epilepticus in patients with COQ8A coenzyme Q10 deficiency: A case series. Epilepsy Behav Rep 2024; 28:100716. [PMID: 39712550 PMCID: PMC11659957 DOI: 10.1016/j.ebr.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 12/24/2024] Open
Abstract
This case series describes the clinical features, diagnostic challenges, treatment approaches, and outcomes of three adult patients with COQ8A-related CoQ10 deficiency presenting with focal status epilepticus, who were effectively treated at the Department of Neurology, Philipps University Marburg, Marburg, Germany. The patients, all from consanguineous families with the first two being siblings, presented with a late onset of the disease, characterized by progressive cerebellar ataxia and epilepsy, with clinical deterioration and focal status epilepticus occurring in adulthood. The first patient exhibited myoclonic status, while the second and third patients presented with bilateral tonic-clonic seizures followed by focal status epilepticus manifesting with cortical blindness. Despite differing semiologies, all patients displayed similar EEG findings with continuous or nearly continuous occipital sharp waves and spikes. MRI findings revealed focal changes in the Diffusion-Weighted Imaging (DWI) and Fluid Attenuated Inversion Recovery (FLAIR) sequences. Significant clinical improvement was observed following treatment with high doses of CoQ10, with the diffusion restriction abnormalities being reversible after therapy. In conclusion, consistent with existing literature, we observed a characteristic EEG pattern that can help identify the disease and facilitate early diagnosis and treatment. The diffusion restriction abnormalities on MRI were reversible after therapy, and high doses of CoQ10 proved beneficial even in cases of status epilepticus.
Collapse
Affiliation(s)
- Panagiota-Eleni Tsalouchidou
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Clara Juenemann
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Wiebke Hahn
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Felix Zahnert
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Leona Möller
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Lukas Hakel
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - André Kemmling
- Department of Neuroradiology, Philipps University Marburg, Marburg, Germany
| | - Katja Menzler
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Ole J. Simon
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Susanne Knake
- Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Felix Bernhard
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
5
|
Hikmat O, Naess K, Engvall M, Klingenberg C, Rasmussen M, Brodtkorb E, Ostergaard E, de Coo I, Pias-Peleteiro L, Isohanni P, Uusimaa J, Majamaa K, Kärppä M, Ortigoza-Escobar JD, Tangeraas T, Berland S, Harrison E, Biggs H, Horvath R, Darin N, Rahman S, Bindoff LA. Status epilepticus in POLG disease: a large multinational study. J Neurol 2024; 271:5156-5164. [PMID: 38822839 PMCID: PMC11319559 DOI: 10.1007/s00415-024-12463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
We aimed to provide a detailed phenotypic description of status epilepticus (SE) in a large cohort of patients with POLG disease and identify prognostic biomarkers to improve the management of this life-threatening condition. In a multinational, retrospective study with data on patients with POLG disease from seven European countries, we identified those who had SE. The age of SE onset, accompanying clinical, laboratory, imaging and genetic findings were analysed. One hundred and ninety-five patients with genetically confirmed POLG disease were recruited, of whom 67% (130/194) had epilepsy. SE was identified in 77% (97/126), with a median age of SE onset of 7 years. SE was the presenting symptom of the disease in 43% (40/93) of those with SE, while 57% (53/93) developed SE during the disease course. Convulsive SE was reported in 97% (91/94) followed by epilepsia partialis continua in 67% (56/84). Liver impairment 78% (74/95), ataxia 69% (60/87), stroke-like episodes 57% (50/88), were the major comorbidities. In the majority (66%; 57/86) with SE this became refractory or super-refractory. The presence of seizures was associated with significantly higher mortality compared to those without (P ≤ 0.001). The median time from SE debut to death was 5 months. SE is a major clinical feature of POLG disease in early and juvenile to adult-onset disease and can be the presenting feature or arise as part of a multisystem disease. It is associated with high morbidity and mortality, with the majority of patients with SE going on to develop refractory or super-refractory SE.
Collapse
Affiliation(s)
- Omar Hikmat
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.
- European Reference Network for Hereditary Metabolic Disorders, Oslo, Norway.
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Neuropediatrics, Astrid Lindgren Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Claus Klingenberg
- Department of Paediatric and Adolescent Medicine, University Hospital of North Norway, Tromso, Norway
- Paediatric Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromso, Norway
| | - Magnhild Rasmussen
- Division of Paediatric and Adolescent Medicine, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Unit for Congenital and Hereditary Neuromuscular Disorders, Oslo University Hospital, Oslo, Norway
| | - Eylert Brodtkorb
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irenaeus de Coo
- Faculty of Health, Medicine and Life Sciences, Department of Toxicology, University of Maastricht, Maastricht, The Netherlands
| | - Leticia Pias-Peleteiro
- Neurometabolic Disorders Unit, Department of Child Neurology/ Department of Genetics and Molecular Medicine, Sant Joan de Déu Children´S Hospital, Barcelona, Spain
| | - Pirjo Isohanni
- Department of Pediatric Neurology, Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- European Reference Network for Hereditary Metabolic Disorders, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatric Neurology, Clinic for Children and Adolescents and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Kari Majamaa
- Research Unit of Clinical Medicine, Neurology, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Mikko Kärppä
- Research Unit of Clinical Medicine, Neurology, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII, Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Trine Tangeraas
- European Reference Network for Hereditary Metabolic Disorders, Oslo, Norway
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Emma Harrison
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Heather Biggs
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
- European Reference Network for Hereditary Metabolic Disorders, London, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
- European Reference Network for Hereditary Metabolic Disorders, Oslo, Norway
- Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| |
Collapse
|
6
|
Değerliyurt A, Gülleroğlu NB, Kibar Gül AE. Primary CoQ 10 deficiency with a severe phenotype due to the c.901 C > T (p.R301W) mutation in the COQ8A gene. Int J Neurosci 2024; 134:148-152. [PMID: 35757998 DOI: 10.1080/00207454.2022.2095269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE A patient with primary CoQ10 deficiency associated with the c.901 C > T (p.R301W) (rs140246430) homozygous missense pathogenic variant in the COQ8A gene, who presented with recurrent status epilepticus, stroke-like lesions, and hypertrophic cardiomyopathy while being followed-up with early-onset autosomal recessive cerebellar ataxia will be reported in this article. CASE REPORT A 16-year-old patient who was being followed up at an external center with a diagnosis of ataxia with cerebellar atrophy had been seen 3 different times within a year for status epilepticus. The cerebral MRI showed severe cerebellar atrophy, stroke like lesions, and an inverted double- lactate peak on spectroscopy. Her echocardiography revealed marked left ventricular hypertrophy. Mitochondrial cocktail therapy containing a standard dose of CoQ10 was started, considering mitochondrial disease. The patient died due to cardiomyopathy. Mitochondrial panel analysis revealed the presence of the c.901 C > T (p.R301W) homozygous missense mutation in the COQ8A gene. CONCLUSIONS Primary Coenzyme Q10 deficiency should be considered in patients presenting with autosomal recessive stable-appearing progressive ataxia, emerging attacks of status epilepticus, stroke-like lesions on neuroimaging, and cardiomyopathy. Since there is a case with the same mutation with a similar fatal course in the literature, detection of c.901 C > T (p.R301W) mutation homozygously should be a warning for a severe prognosis and more aggressive treatment should be started without delay with a high dose of CoQ10 instead of the lower doses used in the treatment of mitochondrial disease.
Collapse
Affiliation(s)
- Aydan Değerliyurt
- Deparment of Pediatric Neurology, Ankara City Hospital, Ankara, Turkey
| | | | | |
Collapse
|
7
|
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int J Mol Sci 2023; 24:16746. [PMID: 38069070 PMCID: PMC10706469 DOI: 10.3390/ijms242316746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95213 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| |
Collapse
|
8
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
9
|
Verma M, Francis L, Lizama BN, Callio J, Fricklas G, Wang KZQ, Kaufman BA, D'Aiuto L, Stolz DB, Watkins SC, Nimgaonkar VL, Soto-Gutierrez A, Goldstein A, Chu CT. iPSC-Derived Neurons from Patients with POLG Mutations Exhibit Decreased Mitochondrial Content and Dendrite Simplification. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:201-212. [PMID: 36414085 PMCID: PMC9976192 DOI: 10.1016/j.ajpath.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Mutations in POLG, the gene encoding the catalytic subunit of DNA polymerase gamma, result in clinical syndromes characterized by mitochondrial DNA (mtDNA) depletion in affected tissues with variable organ involvement. The brain is one of the most affected organs, and symptoms include intractable seizures, developmental delay, dementia, and ataxia. Patient-derived induced pluripotent stem cells (iPSCs) provide opportunities to explore mechanisms in affected cell types and potential therapeutic strategies. Fibroblasts from two patients were reprogrammed to create new iPSC models of POLG-related mitochondrial diseases. Compared with iPSC-derived control neurons, mtDNA depletion was observed upon differentiation of the POLG-mutated lines to cortical neurons. POLG-mutated neurons exhibited neurite simplification with decreased mitochondrial content, abnormal mitochondrial structure and function, and increased cell death. Expression of the mitochondrial kinase PTEN-induced kinase 1 (PINK1) mRNA was decreased in patient neurons. Overexpression of PINK1 increased mitochondrial content and ATP:ADP ratios in neurites, decreasing cell death and rescuing neuritic complexity. These data indicate an intersection of polymerase gamma and PINK1 pathways that may offer a novel therapeutic option for patients affected by this spectrum of disorders.
Collapse
Affiliation(s)
- Manish Verma
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lily Francis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Britney N Lizama
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jason Callio
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gabriella Fricklas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kent Z Q Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brett A Kaufman
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | | | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Malyshev SM, Popov KD, Simakov KV, Marichev AO, Topuzova MP, Smirnova AY, Ryzhkov AV, Basek IV, Yanishevskij SN, Alekseeva TM, Schlyakhto EV. [Status epilepticus in a pregnant patient with a previously unrecognized POLG-associated disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:129-135. [PMID: 37966452 DOI: 10.17116/jnevro2023123101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
POLG-associated diseases are rare causes of pharmacoresistant epilepsy and status epilepticus, especially in adult patients. Phenotypic and genotypic variability in these conditions causes the complexity of their diagnosis. In the study, we report a case of a 33-year-old female patient who developed recurrent convulsive status epilepticus with focal clonic onset at the week 22/23 of pregnancy. Intensive anti-seizure therapy was administered, including the use of valproic acid, as well as the treatment of somatic complications. Given the acute onset, the semiology of seizures, the presence of psychopathological symptoms, autoimmune etiology of the disease was initially suspected. A month after the withdrawal of valproic acid, the patient began to show signs of toxic hepatitis, which eventually led to death. According to the results of whole-exome sequencing obtained later, the patient was a carrier of a pathogenic homozygous variant c.2243G>C (p.W748S) in the POLG gene. The presented case highlights the importance of molecular genetic testing and the risk associated with valproic acid hepatotoxicity in patients with cryptogenic epileptic status.
Collapse
Affiliation(s)
- S M Malyshev
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - K D Popov
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - K V Simakov
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A O Marichev
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - M P Topuzova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A Yu Smirnova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A V Ryzhkov
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - I V Basek
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | - T M Alekseeva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - E V Schlyakhto
- Almazov National Medical Research Centre, St Petersburg, Russia
| |
Collapse
|
11
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Lopriore P, Gomes F, Montano V, Siciliano G, Mancuso M. Mitochondrial Epilepsy, a Challenge for Neurologists. Int J Mol Sci 2022; 23:ijms232113216. [PMID: 36362003 PMCID: PMC9656379 DOI: 10.3390/ijms232113216] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/29/2023] Open
Abstract
Primary mitochondrial diseases are relatively common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. These disorders typically affect tissues with high energy requirements, including the brain. Epilepsy affects >1% of the worldwide population, making it one of the most common neurological illnesses; it may be the presenting feature of a mitochondrial disease, but is often part of a multisystem clinical presentation. The major genetic causes of mitochondrial epilepsy are mutations in mitochondrial DNA and in the nuclear-encoded gene POLG. Treatment of mitochondrial epilepsy may be challenging, often representing a poor prognostic feature. This narrative review will cover the most recent advances in the field of mitochondrial epilepsy, from pathophysiology and genetic etiologies to phenotype and treatment options.
Collapse
Affiliation(s)
- Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Fábio Gomes
- Neurology Department, Coimbra University Hospital Centre, 3004-561 Coimbra, Portugal
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
13
|
Fine AL, Liebo G, Gavrilova RH, Britton JW. Seizure Semiology, EEG, and Imaging Findings in Epilepsy Secondary to Mitochondrial Disease. Front Neurol 2021; 12:779052. [PMID: 34912288 PMCID: PMC8666417 DOI: 10.3389/fneur.2021.779052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
Background: Identification of an underlying mitochondrial disorder can be challenging due to the significant phenotypic variability between and within specific disorders. Epilepsy can be a presenting symptom with several mitochondrial disorders. In this study, we evaluated clinical, electrophysiologic, and imaging features in patients with epilepsy and mitochondrial disorders to identify common features, which could aid in earlier identification of a mitochondrial etiology. Methods: This is a retrospective case series from January 2011 to December 2019 at a tertiary referral center of patients with epilepsy and a genetically confirmed diagnosis of a mitochondrial disorder. A total of 164 patients were reviewed with 20 patients fulfilling inclusion criteria. Results: A total of 20 patients (14 females, 6 males) aged 0.5-61 years with epilepsy and genetically confirmed mitochondrial disorders were identified. Status epilepticus occurred in 15 patients, with focal status epilepticus in 13 patients, including 9 patients with visual features. Abnormalities over the posterior cerebral regions were seen in 66% of ictal recordings and 44% of imaging studies. All the patients were on nutraceutical supplementation with no significant change in disease progression seen. At last follow-up, eight patients were deceased and the remainder had moderate-to-severe disability. Discussion: In this series of patients with epilepsy and mitochondrial disorders, we found increased propensity for seizures arising from the posterior cerebral regions. Over time, electroencephalogram (EEG) and imaging abnormalities increasingly occurred over the posterior cerebral regions. Focal seizures and focal status epilepticus with visual symptoms were common. Additional study is needed on nutraceutical supplementation in mitochondrial disorders.
Collapse
Affiliation(s)
- Anthony L. Fine
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Greta Liebo
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Ralitza H. Gavrilova
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
14
|
Gonçalves FG, Alves CAPF, Heuer B, Peterson J, Viaene AN, Reis Teixeira S, Martín-Saavedra JS, Andronikou S, Goldstein A, Vossough A. Primary Mitochondrial Disorders of the Pediatric Central Nervous System: Neuroimaging Findings. Radiographics 2021; 40:2042-2067. [PMID: 33136487 DOI: 10.1148/rg.2020200052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Primary mitochondrial disorders (PMDs) constitute the most common cause of inborn errors of metabolism in children, and they frequently affect the central nervous system. Neuroimaging findings of PMDs are variable, ranging from unremarkable and nonspecific to florid and highly suggestive. An overview of PMDs, including a synopsis of the basic genetic concepts, main clinical symptoms, and neuropathologic features, is presented. In addition, eight of the most common PMDs that have a characteristic imaging phenotype in children are reviewed in detail. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - César Augusto Pinheiro Ferreira Alves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Beth Heuer
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - James Peterson
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Angela N Viaene
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Sara Reis Teixeira
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Juan Sebastián Martín-Saavedra
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Savvas Andronikou
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Amy Goldstein
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Arastoo Vossough
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| |
Collapse
|
15
|
PPFIA4 mutation: A second hit in POLG related disease? Epilepsy Behav Rep 2021; 16:100455. [PMID: 34095804 PMCID: PMC8164014 DOI: 10.1016/j.ebr.2021.100455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
POLG-related epilepsy usually involves biallelic mutations causing neuronal loss. Monoallelic POLG mutations have been reported in a few patients with seizures. In these patients a second mutation has been anticipated, but not identified. We identified a PPFIA4 variant that could decrease neuronal survival. Hence, we hypothesize an oligogenic, rather than a monogenic, etiology.
Epilepsy in POLG related disease usually involves biallelic recessive mutations causing chronic neuronal loss and neuronal death. However, monoallelic POLG mutations have been reported in patients with neurological features such as seizures [1]. In these patients a second allele/gene was anticipated but not identified. The genetic etiology in epilepsy can contribute to better treatment strategies. For example, valproic acid (VPA) should be avoided in patients with POLG related epilepsy due to possible hepatotoxicity. We report a 12-year old boy with initially drug-resistant focal onset epilepsy, a mild developmental delay and behavioral issues. He carries potential pathogenic variants in the DNA polymerase gamma (POLG) gene (from asymptomatic mother) and in the liprin-alpha-4 (PPFIA4) gene (from asymptomatic father). This latter gene has never been related to (neurological) disorders, although its gene product interacts with several genes that play a role in excitatory neurotransmission and epileptogenesis. Hence, we hypothesize that the phenotype of our patient could be due to combination of detrimental effects to the neurons by the two aforementioned pathogenic variants. Nonetheless, we cannot exclude another undetected POLG mutation. In essence, genetic research should be aware that unexplained neurological disease can be caused by an oligogenic, rather than a monogenic, etiology.
Collapse
|
16
|
POLG-associated ataxias can represent a substantial part of recessive and sporadic ataxias in adults. Clin Neurol Neurosurg 2021; 201:106462. [PMID: 33434755 DOI: 10.1016/j.clineuro.2020.106462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We aimed to analyze prevalence, clinical, and genetic characteristics of the POLG-associated ataxias in a cohort of recessive and sporadic ataxias in adults with previously excluded acquired ataxias. METHODS We did a retrospective analysis of the medical records of 74 patients older than 18 years referred to the Research Center of Neurology between 2012 and 2019 with progressive sporadic or autosomal recessive ataxia with onset before 50 years of age. A stepwise approach in genetic testing was used. All patients with genetically confirmed POLG-associated disorders underwent clinical, biochemical, electrophysiological, and neuroimaging assessments. RESULTS In our cohort of 74 adult patients with autosomal recessive and sporadic ataxias, POLG-related disease was identified in 11 individuals (14.9 %). The median age of onset was 30 years. One patient had a positive family history. The core clinical syndrome included external ophthalmoparesis, cerebellar signs, and sensory neuropathy. In all patients, the Montreal Cognitive Assessment score was less than 26. All but 3 patients had specific brain MRI changes. Mutation spectrum of the POLG gene in our cohort is discussed. CONCLUSION Our study shows that POLG-associated ataxias comprise a significant part of the recessive and sporadic ataxias in adults in the Russian population after excluding acquired causes of ataxic disorders. We suggest first screening patients with specific clinical and (or) neuroimaging features for the population-specific common POLG mutations, followed by the NGS panel testing where necessary. In future clinical studies, thorough cognitive and neuropsychiatric profiling is needed to complete the phenotype of the POLG-related disorders.
Collapse
|
17
|
Liang KX, Vatne GH, Kristiansen CK, Ievglevskyi O, Kondratskaya E, Glover JC, Chen A, Sullivan GJ, Bindoff LA. N-acetylcysteine amide ameliorates mitochondrial dysfunction and reduces oxidative stress in hiPSC-derived dopaminergic neurons with POLG mutation. Exp Neurol 2020; 337:113536. [PMID: 33264635 DOI: 10.1016/j.expneurol.2020.113536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 01/03/2023]
Abstract
The inability to reliably replicate mitochondrial DNA (mtDNA) by mitochondrial DNA polymerase gamma (POLG) leads to a subset of common mitochondrial diseases associated with neuronal death and depletion of neuronal mtDNA. Defining disease mechanisms in neurons remains difficult due to the limited access to human tissue. Using human induced pluripotent stem cells (hiPSCs), we generated functional dopaminergic (DA) neurons showing positive expression of dopaminergic markers TH and DAT, mature neuronal marker MAP2 and functional synaptic markers synaptophysin and PSD-95. These DA neurons were electrophysiologically characterized, and exhibited inward Na + currents, overshooting action potentials and spontaneous postsynaptic currents (sPSCs). POLG patient-specific DA neurons (POLG-DA neurons) manifested a phenotype that replicated the molecular and biochemical changes found in patient post-mortem brain samples namely loss of complex I and depletion of mtDNA. Compared to disease-free hiPSC-derived DA neurons, POLG-DA neurons exhibited loss of mitochondrial membrane potential, loss of complex I and loss of mtDNA and TFAM expression. POLG driven mitochondrial dysfunction also led to neuronal ROS overproduction and increased cellular senescence. This deficit was selectively rescued by treatment with N-acetylcysteine amide (NACA). In conclusion, our study illustrates the promise of hiPSC technology for assessing pathogenetic mechanisms associated with POLG disease, and that NACA can be a promising potential therapy for mitochondrial diseases such as those caused by POLG mutation.
Collapse
Affiliation(s)
- Kristina Xiao Liang
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway.
| | - Guro Helén Vatne
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| | - Cecilie Katrin Kristiansen
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway
| | - Oleksandr Ievglevskyi
- The Intervention Centre, Oslo University Hospital, P. O. Box 4950, Nydalen, 0424 Oslo, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1103, Blindern, 0317 Oslo, Norway
| | - Elena Kondratskaya
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1103, Blindern, 0317 Oslo, Norway
| | - Joel C Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1103, Blindern, 0317 Oslo, Norway; Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, P. O. Box 4950, Nydalen, 0424 Oslo, Norway
| | - Anbin Chen
- Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway; Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong Province, China; Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong Province, China
| | - Gareth John Sullivan
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, P. O. Box 4950, Nydalen, 0424 Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1105, Blindern, 0317 Oslo, Norway; Institute of Immunology, Oslo University Hospital, PO Box 4950, 0424 Oslo, Norway; Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1110, Blindern, 0317 Oslo, Norway; Department of Pediatric Research, Oslo University Hospital, P. O. Box 4950, Nydalen, 0424 Oslo, Norway
| | - Laurence A Bindoff
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Jonas Lies vei 87, P. O. Box 7804, 5021 Bergen, Norway.
| |
Collapse
|
18
|
Hikmat O, Naess K, Engvall M, Klingenberg C, Rasmussen M, Tallaksen CME, Samsonsen C, Brodtkorb E, Ostergaard E, de Coo R, Pias-Peleteiro L, Isohanni P, Uusimaa J, Darin N, Rahman S, Bindoff LA. The impact of gender, puberty, and pregnancy in patients with POLG disease. Ann Clin Transl Neurol 2020; 7:2019-2025. [PMID: 32949115 PMCID: PMC7545595 DOI: 10.1002/acn3.51199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022] Open
Abstract
Objective To study the impact of gender, puberty, and pregnancy on the expression of POLG disease, one of the most common mitochondrial diseases known. Methods Clinical, laboratory, and genetic data were collected retrospectively from 155 patients with genetically confirmed POLG disease recruited from seven European countries. We used the available data to study the impact of gender, puberty, and pregnancy on disease onset and deterioration. Results We found that disease onset early in life was common in both sexes but there was also a second peak in females around the time of puberty. Further, pregnancy had a negative impact with 10 of 14 women (71%) experiencing disease onset or deterioration during pregnancy. Interpretation Gender clearly influences the expression of POLG disease. While onset very early in life was common in both males and females, puberty in females appeared associated both with disease onset and increased disease activity. Further, both disease onset and deterioration, including seizure aggravation and status epilepticus, appeared to be associated with pregnancy. Thus, whereas disease activity appears maximal early in life with no subsequent peaks in males, both menarche and pregnancy appear associated with disease onset or worsening in females. This suggests that hormonal changes may be a modulating factor.
Collapse
Affiliation(s)
- Omar Hikmat
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, 5021, Norway.,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Claus Klingenberg
- Department of Paediatric and Adolescent Medicine, University Hospital of North Norway, Tromso, Norway.,Paediatric Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromso, Norway
| | - Magnhild Rasmussen
- Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway.,Unit for Congenital and Hereditary Neuromuscular Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Chantal M E Tallaksen
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian Samsonsen
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway
| | - Eylert Brodtkorb
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rene de Coo
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands.,Department of Genetics and Cell Biology, University of Maastricht, Maastricht, The Netherlands
| | | | - Pirjo Isohanni
- Department of Pediatric Neurology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Pediatric Neurology, Clinic for Children and Adolescents, Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Niklas Darin
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Metabolic Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, 5021, Norway
| |
Collapse
|
19
|
Surana S, Rossor T, Hassell J, Boyd S, D'Arco F, Aylett S, Bhate S, Carr L, Das K, DeVile C, Eltze C, Hemingway C, Kaliakatsos M, O'Callaghan F, Prabhakar P, Robinson R, Varadkar S, Helen Cross J, Hacohen Y. Diagnostic algorithm for children presenting with epilepsia partialis continua. Epilepsia 2020; 61:2224-2233. [PMID: 32875551 DOI: 10.1111/epi.16650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To characterize a cohort of children with epilepsia partialis continua (EPC) and develop a diagnostic algorithm incorporating key differential diagnoses. METHODS Children presenting with EPC to a tertiary pediatric neurology center between 2002 and 2019 were characterized. RESULTS Fifty-four children fulfilled EPC criteria. Median age at onset was 7 years (range 0.6-15), with median follow-up of 4.3 years (range 0.2-16). The diagnosis was Rasmussen encephalitis (RE) in 30 of 54 (56%), a mitochondrial disorder in 12 of 54 (22.2%), and magnetic resonance imaging (MRI) lesion-positive focal epilepsy in 6 of 54 (11.1%). No diagnosis was made in 5 of 54 (9%). Children with mitochondrial disorders developed EPC earlier; each additional year at presentation reduced the odds of a mitochondrial diagnosis by 26% (P = .02). Preceding developmental concerns (odds ratio [OR] 22, P < .001), no seizures prior to EPC (OR 22, P < .001), bilateral slowing on electroencephalogram (EEG) (OR 26, P < .001), and increased cerebrospinal fluid (CSF) protein level (OR 16) predicted a mitochondrial disorder. Asymmetry or hemiatrophy was evident on MRI at presentation with EPC in 18 of 30 (60%) children with RE, and in the remainder at a median of 6 months (range 3-15) after EPC onset. The first diagnostic test is brain MRI. Hemiatrophy may permit a diagnosis of RE with unilateral clinical and EEG findings. For children in whom a diagnosis of RE cannot be made on first scan but the clinical and radiological presentation resembles RE, repeat imaging every 6 months is recommended to detect progressive unicortical hemiatrophy, and brain biopsy should be considered. Evidence of intrathecal inflammation (oligoclonal bands and raised neopterin) can be supportive. In children with bihemispheric EPC, rapid polymerase gamma testing is recommended and if negative, sequencing mtDNA and whole-exome sequencing on blood-derived DNA should be performed. SIGNIFICANCE Children presenting with EPC due to a mitochondrial disorder show clinical features distinguishing them from RE and structural epilepsies. A diagnostic algorithm for children with EPC will allow targeted investigation and timely diagnosis.
Collapse
Affiliation(s)
- Snehal Surana
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Thomas Rossor
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Jane Hassell
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Stewart Boyd
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, UK
| | - Felice D'Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | - Sarah Aylett
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Sanjay Bhate
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Lucinda Carr
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Krishna Das
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Catherine DeVile
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Christin Eltze
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Cheryl Hemingway
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK.,Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, UK
| | - Marios Kaliakatsos
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Finbar O'Callaghan
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK.,Developmental of Neuroscience, Institute of Child Health, UCL, London, UK
| | - Prab Prabhakar
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Robert Robinson
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Sophia Varadkar
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - J Helen Cross
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK.,Developmental of Neuroscience, Institute of Child Health, UCL, London, UK
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK.,Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, UK
| |
Collapse
|
20
|
Affiliation(s)
- Yi Shiau Ng
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne, UK .,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Gonçalves FG, Hill B, Guo Y, Muraresku CC, McCormick E, Alves CAPF, Teixeira SR, Martin-Saavedra JS, Zolkipli-Cunningham Z, Falk MJ, Vossough A, Goldstein A, Zuccoli G. The Perirolandic Sign: A Unique Imaging Finding Observed in Association with Polymerase γ-Related Disorders. AJNR Am J Neuroradiol 2020; 41:917-922. [PMID: 32381541 DOI: 10.3174/ajnr.a6514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/27/2020] [Indexed: 11/07/2022]
Abstract
Pathogenic variants in the polymerase γ gene (POLG) cause a diverse group of pathologies known as POLG-related disorders. In this report, we describe brain MR imaging findings and electroencephalogram correlates of 13 children with POLG-related disorders at diagnosis and follow-up. At diagnosis, all patients had seizures and 12 had abnormal MR imaging findings. The most common imaging findings were unilateral or bilateral perirolandic (54%) and unilateral or bilateral thalamic signal changes (77%). Association of epilepsia partialis continua with perirolandic and thalamic signal changes was present in 86% and 70% of the patients, respectively. The occipital lobe was affected in 2 patients. On follow-up, 92% of the patients had disease progression or fatal outcome. Rapid volume loss was seen in 77% of the patients. The occipital lobe (61%) and thalamus (61%) were the most affected brain regions. Perirolandic signal changes and seizures may represent a brain imaging biomarker of early-onset pediatric POLG-related disorders.
Collapse
Affiliation(s)
- F G Gonçalves
- From the Departments of Radiology and Division of Neuroradiology (F.G.G., B.H., C.A.P.F.A., S.R.T., J.S.M.-S., A.V., G.Z.)
| | - B Hill
- From the Departments of Radiology and Division of Neuroradiology (F.G.G., B.H., C.A.P.F.A., S.R.T., J.S.M.-S., A.V., G.Z.)
| | - Y Guo
- Departments of Pediatrics (Y.G., Z.Z.-C., M.J.F., A.G.)
| | - C C Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics (C.C.M., E.M., Z.Z.-C., M.J.F., A.G.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - E McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics (C.C.M., E.M., Z.Z.-C., M.J.F., A.G.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - C A P F Alves
- From the Departments of Radiology and Division of Neuroradiology (F.G.G., B.H., C.A.P.F.A., S.R.T., J.S.M.-S., A.V., G.Z.)
| | - S R Teixeira
- From the Departments of Radiology and Division of Neuroradiology (F.G.G., B.H., C.A.P.F.A., S.R.T., J.S.M.-S., A.V., G.Z.)
| | - J S Martin-Saavedra
- From the Departments of Radiology and Division of Neuroradiology (F.G.G., B.H., C.A.P.F.A., S.R.T., J.S.M.-S., A.V., G.Z.)
| | - Z Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics (C.C.M., E.M., Z.Z.-C., M.J.F., A.G.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Departments of Pediatrics (Y.G., Z.Z.-C., M.J.F., A.G.)
| | - M J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics (C.C.M., E.M., Z.Z.-C., M.J.F., A.G.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Departments of Pediatrics (Y.G., Z.Z.-C., M.J.F., A.G.)
| | - A Vossough
- From the Departments of Radiology and Division of Neuroradiology (F.G.G., B.H., C.A.P.F.A., S.R.T., J.S.M.-S., A.V., G.Z.).,Radiology (A.V.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - A Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics (C.C.M., E.M., Z.Z.-C., M.J.F., A.G.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Departments of Pediatrics (Y.G., Z.Z.-C., M.J.F., A.G.)
| | - G Zuccoli
- From the Departments of Radiology and Division of Neuroradiology (F.G.G., B.H., C.A.P.F.A., S.R.T., J.S.M.-S., A.V., G.Z.).,The Program for the Study of Neurodevelopment in Rare Disorders (NDRD) (G.Z.), Children's Hospital of Pittsburgh of UPMC
| |
Collapse
|
22
|
Wilton KM, Morales‐Rosado JA, Selcen D, Muthusamy K, Ewing S, Agre K, Nickels K, Klee EW, Ho M, Morava E. Developmental brain abnormalities and acute encephalopathy in a patient with myopathy with extrapyramidal signs secondary to pathogenic variants in MICU1. JIMD Rep 2020; 53:22-28. [PMID: 32395406 PMCID: PMC7203647 DOI: 10.1002/jmd2.12114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/09/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondria play a variety of roles in the cell, far beyond their widely recognized role in ATP generation. One such role is the regulation and sequestration of calcium, which is done with the help of the mitochondrial calcium uniporter (MCU) and its regulators, MICU1 and MICU2. Genetic variations in MICU1 and MICU2 have been reported to cause myopathy, developmental disability and neurological symptoms typical of mitochondrial disorders. The symptoms of MICU1/2 deficiency have generally been attributed to calcium regulation in the metabolic and biochemical roles of mitochondria. Here, we report a female child with heterozygous MICU1 variants and multiple congenital brain malformations on MRI. Specifically, she shows anterior perisylvian polymicrogyria, dysmorphic basal ganglia, and cerebellar dysplasia in addition to white matter abnormalities. These novel findings suggest that MICU1 is necessary for proper neurodevelopment through a variety of potential mechanisms, including calcium-mediated regulation of the neuronal cytoskeleton, Miro1-MCU complex-mediated mitochondrial movement, or enhancing ATP production. This case provides new insight into the molecular pathogenesis of MCU dysfunction and may represent a novel diagnostic feature of calcium-based mitochondrial disease.
Collapse
Affiliation(s)
- Katelynn M. Wilton
- Medical Scientist Training Program, Mayo Clinic Alix College of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Joel A. Morales‐Rosado
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Health Science Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesotaUSA
| | - Duygu Selcen
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | - Sarah Ewing
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Katherine Agre
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | | | - Eric W. Klee
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Health Science Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesotaUSA
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Mai‐Lan Ho
- Department of RadiologyNationwide Children's HospitalColumbusOhioUSA
| | - Eva Morava
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
23
|
Mitochondrial epilepsy: a cross-sectional nationwide Italian survey. Neurogenetics 2020; 21:87-96. [DOI: 10.1007/s10048-019-00601-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
|
24
|
Marquardt L, Eichele T, Bindoff LA, Olberg HK, Veiby G, Eichele H, Kusztrits I, Hirnstein M. No effect of electrical transcranial direct current stimulation adjunct treatment for epilepsia partialis continua in POLG disease. Epilepsy Behav Rep 2019; 12:100339. [PMID: 31737865 PMCID: PMC6849077 DOI: 10.1016/j.ebr.2019.100339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 01/23/2023] Open
Abstract
We report a 15-year-old female with POLG-related mitochondrial disease who developed severe multifocal epilepsia partialis continua, unresponsive to standard anti seizure drug treatment and general anesthesia. Based on an earlier case report, we treated her focal seizures that affected her right upper limb with 20-min sessions of transcranial direct current stimulation (tDCS) at an intensity of 2 mA on each of five consecutive days. The cathode was placed over the left primary motor cortex, the anode over the contralateral orbitofrontal cortex. Surface electromyography (EMG) were recorded 20 min before, 20 min during, and 20 min after four of five tDCS sessions to measure its effect on the muscle jerks. The electroencephalography (EEG) was recorded before and after tDCS to measure the frequency of spikes. Our results showed no statistically or clinically significant reduction of seizures or epileptiform activity using EEG and EMG, with this treatment protocol. To our knowledge, this is only the second time that adjunct tDCS treatment of epileptic seizures has been tried in POLG-related mitochondrial disease. Taken together with the positive findings from the earlier case report, the present study highlights that more data are needed to determine if, and under which parameters, the treatment is effective. Case report of multifocal epilepsy in POLG disease with upper limp myoclonus. Epileptic activity resulting in myoclonus was treated with 5 days of 20 minutes cathodal 2 mA tDCS over left motor cortex. tDCS treatment did not yield significant reduction of myoclonus activity.
Collapse
Affiliation(s)
- Lynn Marquardt
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies vei 21, 5009 Bergen, Norway
| | - Tom Eichele
- Department of Neurology, Haukeland University Hospital, Bergen, Jonas Lies vei 71, 5053 Bergen, Norway
| | - Laurence A Bindoff
- Department of Neurology, Haukeland University Hospital, Bergen, Jonas Lies vei 71, 5053 Bergen, Norway.,Department of Neurology, Section for Clinical Neurophysiology, Haukeland
| | - Henning Kristian Olberg
- Department of Neurology, Haukeland University Hospital, Bergen, Jonas Lies vei 71, 5053 Bergen, Norway
| | - Gyri Veiby
- Department of Neurology, Haukeland University Hospital, Bergen, Jonas Lies vei 71, 5053 Bergen, Norway
| | - Heike Eichele
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies vei 21, 5009 Bergen, Norway.,Regional Resource Center for Autism, ADHD, Tourette Syndrome and Narcolepsy, Western Norway, Haukeland University Hospital, Fjøsangerveien 36, 5054 Bergen, Norway
| | - Isabella Kusztrits
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies vei 21, 5009 Bergen, Norway
| | - Marco Hirnstein
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies vei 21, 5009 Bergen, Norway
| |
Collapse
|
25
|
Zerem A, Yosovich K, Rappaport YC, Libzon S, Blumkin L, Ben-Sira L, Lev D, Lerman-Sagie T. Metabolic stroke in a patient with bi-allelic OPA1 mutations. Metab Brain Dis 2019; 34:1043-1048. [PMID: 30972688 DOI: 10.1007/s11011-019-00415-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/31/2019] [Indexed: 02/07/2023]
Abstract
OPA1 related disorders include: classic autosomal dominant optic atrophy syndrome (ADOA), ADOA plus syndrome and a bi-allelic OPA1 complex neurological disorder. We describe metabolic stroke in a patient with bi-allelic OPA1 mutations. A twelve-year old girl presented with a complex neurological disorder that includes: early onset optic atrophy at one year of age, progressive gait ataxia, dysarthria, tremor and learning impairment. A metabolic stroke occurred at the age of 12 years. The patient was found to harbor a de novo heterozygous frame shift mutation c.1963_1964dupAT; p.Lys656fs (NM_015560.2) and a missense mutation c.1146A > G; Ile382Met (NM_015560.2) inherited from her mother. The mother, aunt, and grandmother are heterozygous for the Ile382Met mutation and are asymptomatic. The co-occurrence of bi-allelic mutations can explain the severity and the early onset of her disease. This case adds to a growing number of patients recently discovered with bi-allelic OPA1 mutations presenting with a complex and early onset neurological disorder resembling Behr syndrome. To the best of our knowledge metabolic stroke has not been described before as an OPA1 related manifestation. It is important to be aware of this clinical feature for a prompt diagnosis and consideration of available treatment.
Collapse
Affiliation(s)
- Ayelet Zerem
- Metabolic Neurogenetic Service, Pediatric Neurology Unit, Wolfson Medical Center, Halochamim 62, Holon, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Haim Levanon 55, Tel-Aviv, Israel.
| | - Keren Yosovich
- Metabolic Neurogenetic Service, Genetics Institute, Wolfson Medical Center, Halochamim 62, Holon, Israel
| | - Yael Cohen Rappaport
- Metabolic Neurogenetic Service, Pediatric Neurology Unit, Wolfson Medical Center, Halochamim 62, Holon, Israel
| | - Stephanie Libzon
- Metabolic Neurogenetic Service, Pediatric Neurology Unit, Wolfson Medical Center, Halochamim 62, Holon, Israel
| | - Lubov Blumkin
- Metabolic Neurogenetic Service, Pediatric Neurology Unit, Wolfson Medical Center, Halochamim 62, Holon, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Haim Levanon 55, Tel-Aviv, Israel
| | - Liat Ben-Sira
- Sackler Faculty of Medicine, Tel-Aviv University, Haim Levanon 55, Tel-Aviv, Israel
- Division of Pediatric Radiology, Department of Radiology, Dana Children's Hospital, Tel-Aviv Medical Center, Weizmann 6, Tel Aviv, Israel
| | - Dorit Lev
- Sackler Faculty of Medicine, Tel-Aviv University, Haim Levanon 55, Tel-Aviv, Israel
- Metabolic Neurogenetic Service, Genetics Institute, Wolfson Medical Center, Halochamim 62, Holon, Israel
| | - Tally Lerman-Sagie
- Metabolic Neurogenetic Service, Pediatric Neurology Unit, Wolfson Medical Center, Halochamim 62, Holon, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Haim Levanon 55, Tel-Aviv, Israel
| |
Collapse
|
26
|
Nikkanen J, Landoni JC, Balboa D, Haugas M, Partanen J, Paetau A, Isohanni P, Brilhante V, Suomalainen A. A complex genomic locus drives mtDNA replicase POLG expression to its disease-related nervous system regions. EMBO Mol Med 2019; 10:13-21. [PMID: 29109127 PMCID: PMC5760859 DOI: 10.15252/emmm.201707993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA polymerase gamma (POLG), the mtDNA replicase, is a common cause of mitochondrial neurodegeneration. Why POLG defects especially cause central nervous system (CNS) diseases is unknown. We discovered a complex genomic regulatory locus for POLG, containing three functional CNS‐specific enhancers that drive expression specifically in oculomotor complex and sensory interneurons of the spinal cord, completely overlapping with the regions showing neuronal death in POLG patients. The regulatory locus also expresses two functional RNAs, LINC00925‐RNA and MIR9‐3, which are coexpressed with POLG. The MIR9‐3 targets include NR2E1, a transcription factor maintaining neural stem cells in undifferentiated state, and MTHFD2, the regulatory enzyme of mitochondrial folate cycle, linking POLG expression to stem cell differentiation and folate metabolism. Our evidence suggests that distant genomic non‐coding regions contribute to regulation of genes encoding mitochondrial proteins. Such genomic arrangement of POLG locus, driving expression to CNS regions affected in POLG patients, presents a potential mechanism for CNS‐specific manifestations in POLG disease.
Collapse
Affiliation(s)
- Joni Nikkanen
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Juan Cruz Landoni
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Maarja Haugas
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Anders Paetau
- HUSLAB and Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Virginia Brilhante
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland .,Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Zhou Z, Austin GL, Young LEA, Johnson LA, Sun R. Mitochondrial Metabolism in Major Neurological Diseases. Cells 2018; 7:E229. [PMID: 30477120 PMCID: PMC6316877 DOI: 10.3390/cells7120229] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are bilayer sub-cellular organelles that are an integral part of normal cellular physiology. They are responsible for producing the majority of a cell's ATP, thus supplying energy for a variety of key cellular processes, especially in the brain. Although energy production is a key aspect of mitochondrial metabolism, its role extends far beyond energy production to cell signaling and epigenetic regulation⁻functions that contribute to cellular proliferation, differentiation, apoptosis, migration, and autophagy. Recent research on neurological disorders suggest a major metabolic component in disease pathophysiology, and mitochondria have been shown to be in the center of metabolic dysregulation and possibly disease manifestation. This review will discuss the basic functions of mitochondria and how alterations in mitochondrial activity lead to neurological disease progression.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Grant L Austin
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lyndsay E A Young
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| | - Ramon Sun
- Molecular & Cellular Biochemistry Department, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
28
|
Hikmat O, Naess K, Engvall M, Klingenberg C, Rasmussen M, Tallaksen CME, Brodtkorb E, Fiskerstrand T, Isohanni P, Uusimaa J, Darin N, Rahman S, Bindoff LA. Elevated cerebrospinal fluid protein inPOLG-related epilepsy: Diagnostic and prognostic implications. Epilepsia 2018; 59:1595-1602. [DOI: 10.1111/epi.14459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Omar Hikmat
- Department of Pediatrics; Haukeland University Hospital; Bergen Norway
- Department of Clinical Medicine (K1); University of Bergen; Bergen Norway
| | - Karin Naess
- Center for Inherited Metabolic Diseases; Karolinska University Hospital; Stockholm Sweden
- Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
| | - Martin Engvall
- Center for Inherited Metabolic Diseases; Karolinska University Hospital; Stockholm Sweden
- Department of Molecular Medicine and Surgery; Karolinska Institute; Stockholm Sweden
| | - Claus Klingenberg
- Department of Pediatric and Adolescent Medicine; University Hospital of North Norway; Tromso Norway
- Pediatric Research Group; Department of Clinical Medicine; UiT-Arctic University of Norway; Tromso Norway
| | - Magnhild Rasmussen
- Women and Children's Division; Department of Clinical Neurosciences for Children; Oslo University Hospital; Oslo Norway
- Unit for Congenital and Hereditary Neuromuscular Disorders; Department of Neurology; Oslo University Hospital; Oslo Norway
| | - Chantal M. E. Tallaksen
- Department of Neurology; Oslo University Hospital; Oslo Norway
- Institute of Clinical Medicine; Faculty of Medicine; University of Oslo; Oslo Norway
| | - Eylert Brodtkorb
- Department of Neuroscience; Norwegian University of Science and Technology; Trondheim Norway
- Department of Neurology and Clinical Neurophysiology; St. Olav's University Hospital; Trondheim Norway
| | - Torunn Fiskerstrand
- Department of Medical Genetics and Molecular Medicine; Haukeland University Hospital; Bergen Norway
- Department of Clinical Science (K2); University of Bergen; Bergen Norway
| | - Pirjo Isohanni
- Department of Pediatric Neurology; Children's Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Research Programs Unit; Molecular Neurology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit and Biocenter Oulu; University of Oulu; Oulu Finland
- Department of Children and Adolescents; Medical Research Center; Oulu University Hospital; Oulu Finland
| | - Niklas Darin
- Department of Pediatrics; Queen Silvia Children's Hospital; University of Gothenburg; Gothenburg Sweden
| | - Shamima Rahman
- Mitochondrial Research Group; University College London Great Ormond Street Institute of Child Health; London UK
- Metabolic Unit; Great Ormond Street Hospital for Children; National Health Service Foundation Trust; London UK
| | - Laurence A. Bindoff
- Department of Clinical Medicine (K1); University of Bergen; Bergen Norway
- Department of Neurology; Haukeland University Hospital; Bergen Norway
| |
Collapse
|
29
|
Puusepp S, Reinson K, Pajusalu S, Murumets Ü, Õiglane-Shlik E, Rein R, Talvik I, Rodenburg RJ, Õunap K. Effectiveness of whole exome sequencing in unsolved patients with a clinical suspicion of a mitochondrial disorder in Estonia. Mol Genet Metab Rep 2018; 15:80-89. [PMID: 30009132 PMCID: PMC6043467 DOI: 10.1016/j.ymgmr.2018.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Reaching a genetic diagnosis of mitochondrial disorders (MDs) is challenging due to their broad phenotypic and genotypic heterogeneity. However, there is growing evidence that the use of whole exome sequencing (WES) for diagnosing patients with a clinical suspicion of an MD is effective (39-60%). We aimed to study the effectiveness of WES in clinical practice in Estonia, in patients with an unsolved, but suspected MD. We also show our first results of mtDNA analysis obtained from standard WES reads. METHODS Retrospective cases were selected from a database of 181 patients whose fibroblast cell cultures had been stored from 2003 to 2013. Prospective cases were selected during the period of 2014-2016 from patients referred to a clinical geneticist in whom an MD was suspected. We scored each patient according to the mitochondrial disease criteria (MDC) (Morava et al., 2006) after re-evaluation of their clinical data, and then performed WES analysis. RESULTS A total of 28 patients were selected to the study group. A disease-causing variant was found in 16 patients (57%) using WES. An MD was diagnosed in four patients (14%), with variants in the SLC25A4, POLG, SPATA5, and NDUFB11 genes. Other variants found were associated with a neuromuscular disease (SMN1, MYH2, and LMNA genes), neurodegenerative disorder (TSPOAP1, CACNA1A, ALS2, and SCN2A genes), multisystemic disease (EPG5, NKX1-2, ATRX, and ABCC6 genes), and one in an isolated cardiomyopathy causing gene (MYBPC3). The mtDNA point mutation was found in the MT-ATP6 gene of one patient upon mtDNA analysis. CONCLUSIONS The diagnostic yield of WES in our cohort was 57%, proving to be a very good effectiveness. However, MDs were found in only 14% of the patients. We suggest WES analysis as a first-tier method in clinical genetic practice for children with any multisystem, neurological, and/or neuromuscular problem, as nuclear DNA variants are more common in children with MDs; a large number of patients harbor disease-causing variants in genes other than the mitochondria-related ones, and the clinical presentation might not always point towards an MD. We have also successfully conducted analysis of mtDNA from standard WES reads, providing further evidence that this method could be routinely used in the future.
Collapse
Affiliation(s)
- Sanna Puusepp
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 2 L. Puusepa Street, Tartu 51014, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 2 L. Puusepa Street, Tartu 51014, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 2 L. Puusepa Street, Tartu 51014, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| | - Ülle Murumets
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| | - Eve Õiglane-Shlik
- Children's Clinic, Tartu University Hospital, 6 Lunini Street, Tartu 51014, Estonia
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, 6 Lunini Street, Tartu 51014, Estonia
| | - Reet Rein
- Children's Clinic, Tartu University Hospital, 6 Lunini Street, Tartu 51014, Estonia
| | - Inga Talvik
- Tallinn Children's Hospital, 28 Tervise Street, Tallinn 13419, Estonia
| | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine, 830 Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 2 L. Puusepa Street, Tartu 51014, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| |
Collapse
|
30
|
Kovács R, Kunz WS. Metabolic Epilepsies-Commemorative Issue in Honor of Professor Uwe Heinemann. Int J Mol Sci 2017; 18:ijms18112499. [PMID: 29165369 PMCID: PMC5713464 DOI: 10.3390/ijms18112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Affiliation(s)
- Richard Kovács
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Wolfram S Kunz
- Department of Epileptology and Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany.
| |
Collapse
|