1
|
Narayan M. The Non-native Disulfide-Bond-Containing Landscape Orthogonal to the Oxidative Protein-Folding Trajectory: A Necessary Evil? J Phys Chem B 2022; 126:10273-10284. [PMID: 36472840 DOI: 10.1021/acs.jpcb.2c04648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative protein folding describes the process by which disulfide-bond-containing proteins mature from their ribosomal, fully reduced and unfolded, origins. Over the past 40 years, a number of exemplar proteins including bovine pancreatic ribonuclease A (RNaseA), bovine pancreatic trypsin inhibitor (BPTI), and hen egg-white lysozyme (HEWL), among others, have provided rich insight into the nature of the intermolecular interactions that drive the formation of the native, biologically active fold. In this Review Article, we revisit the oxidative folding process of RNase A with a focus on reconciling the role of non-native disulfide-bond-containing species that populate the oxidative folding landscape. Toward gaining such an understanding, we project the regeneration pathway onto a Cartesian coordinate system. This helps not only to recognize the magnitude of the seemingly "fruitless", non-native disulfide-bond-containing species that lie orthogonal to the "native-protein-forming" reaction progress but also to reconcile a role for their existence in the regenerative trajectory. Finally, we superimpose the folding funnel onto the regeneration trajectory to draw parallels between oxidative folders and conformational folders (proteins that lack disulfide bonds). The overall objective is to provide the reader with a semi-quantitative description of oxidative protein folding and the barriers to successful regeneration while underscoring a role of seemingly fruitless intermediates.
Collapse
Affiliation(s)
- Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
2
|
Takayama M. Sensitive and resistant of the homologous disulfide-bridged proteins α-lactalbumin and lysozyme to attack of hydrogen-atoms, dithiothreitol and trifluoroacetic acid, examined by matrix-assisted laser desorption/ionization mass spectrometry. Biochem Biophys Rep 2022; 29:101212. [PMID: 35111980 PMCID: PMC8790284 DOI: 10.1016/j.bbrep.2022.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/26/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Evolutionarily homologous proteins bovine α-lactoalbumin (αLA) and hen egg-white lysozyme (HEL) are very similar in primary, secondary and tertiary structures involving the location of disulfide-bridges (S–S), and are resistant to the action of hydrolytic enzymes and reagents. It is of interest to examine and compare the difference in backbone cleavage characteristics, by using reductive and hydrolytic reagents. Methods In-source decay (ISD) combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), reductive treatment of αLA and HEL with dithiothreitol (DTT) and acid hydrolysis with trifluoroacetic acid (TFA) were employed to examine the difference in the backbone cleavage characteristics of αLA and HEL. Results The treatment of αLA and HEL with DTT/AcOHNH3 resulted in similar cleavage behaviors of the backbone N-Cα and S–S bonds, i.e., the enhancements of the intensity and m/z range of sequence-reflected fragment ions were very similar. However, the treatment of αLA with DTT/TFA resulted in unexpected residue-specific degradation at the peptide bond of the Asp-Xxx, Xxx-Ser/Thr, Gln-Xxx, Xxx-Gly and Gly-Xxx residues, while HEL did not occur such degradation. Conclusions The results obtained above indicate that acidic αLA is very sensitive to acidic additive such as TFA, while basic HEL is resistance to acidic additives. General significance The study demonstrates the sensitive and resistant of evolutionary homologous proteins αLA and HEL to the acid hydrolysis and these characters come from acidic and basic nature of the proteins. Evolutionary homologous proteins bovine alpha-lactoalbumin and hen egg-white lysozyme are quite different in the protection from acidic reagents. Alpha-lactoalbumin is easily hydrolyzed with acidic reagents at the specific Asp, Gly, Thr and Ser residues owing to the acidic protein with pI4.53 Lysozyme is perfectly resistant to acidic reagents due to the presence of strong basic Arg residues owing to the basic protein with pI10.7 Degradation characteristics at the backbone S–S and N-Cα bonds of both proteins are very similar.
Collapse
|
3
|
Iwaoka M, Hiyoshi Y, Arai S, Ito T. Synthesis of 4-Selenothreofuranose Derivatives via Pummerer-Type Reactions of trans-3,4-Dioxygenated Tetrahydroselenophenes Mediated by a Selenonium Intermediate. ACS OMEGA 2021; 6:17621-17634. [PMID: 34278147 PMCID: PMC8280693 DOI: 10.1021/acsomega.1c02160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 05/14/2023]
Abstract
Selenosugars are interesting targets of organic synthesis as they would possess potential biological activities. However, 4-selenotherofuranose derivatives, which have trans configuration for the two dihydroxy substituents at the 2,3-positions and a glycoside bond at the anomeric position, are not available in the current selenosugar library. In this study, racemic 4-selenothreofuranose derivatives were synthesized from trans-3,4-dioxygenated tetrahydroselenophenes in 77-99% yields with the α/β selectivity about 7:3 via oxidation and subsequent seleno-Pummerer rearrangement. The acetoxy group introduced at the anomeric position was then substituted with various nucleophiles, including activated 6-chloropurine, which afforded 4'-selenothreonucleoside derivatives, in the presence of BF3·OEt2 or TMSOTf. The stereochemistry of the selenosugar products was established by 1H NMR spectroscopy as well as X-ray analysis. The similar α/β selectivity observed in the latter glycosylation reaction to that in the former seleno-Pummerer rearrangement suggested the mediation of a common selenonium intermediate (-Se+=C<). It was also suggested that an unexpected interaction between the ester protecting group at the 3-position of the selenofuranose ring and the anomeric carbon atom decreases the α/β selectivity.
Collapse
|
4
|
Arai K, Iwaoka M. Flexible Folding: Disulfide-Containing Peptides and Proteins Choose the Pathway Depending on the Environments. Molecules 2021; 26:E195. [PMID: 33401729 PMCID: PMC7794709 DOI: 10.3390/molecules26010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.
Collapse
Affiliation(s)
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan;
| |
Collapse
|
5
|
α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020; 10:biom10091210. [PMID: 32825311 PMCID: PMC7565966 DOI: 10.3390/biom10091210] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
α-Lactalbumin (α-LA) is a small (Mr 14,200), acidic (pI 4–5), Ca2+-binding protein. α-LA is a regulatory component of lactose synthase enzyme system functioning in the lactating mammary gland. The protein possesses a single strong Ca2+-binding site, which can also bind Mg2+, Mn2+, Na+, K+, and some other metal cations. It contains several distinct Zn2+-binding sites. Physical properties of α-LA strongly depend on the occupation of its metal binding sites by metal ions. In the absence of bound metal ions, α-LA is in the molten globule-like state. The binding of metal ions, and especially of Ca2+, increases stability of α-LA against the action of heat, various denaturing agents and proteases, while the binding of Zn2+ to the Ca2+-loaded protein decreases its stability and causes its aggregation. At pH 2, the protein is in the classical molten globule state. α-LA can associate with membranes at neutral or slightly acidic pH at physiological temperatures. Depending on external conditions, α-LA can form amyloid fibrils, amorphous aggregates, nanoparticles, and nanotubes. Some of these aggregated states of α-LA can be used in practical applications such as drug delivery to tissues and organs. α-LA and some of its fragments possess bactericidal and antiviral activities. Complexes of partially unfolded α-LA with oleic acid are cytotoxic to various tumor and bacterial cells. α-LA in the cytotoxic complexes plays a role of a delivery carrier of cytotoxic fatty acid molecules into tumor and bacterial cells across the cell membrane. Perhaps in the future the complexes of α-LA with oleic acid will be used for development of new anti-cancer drugs.
Collapse
|
6
|
Zeller D, Tan P, Hong L, Di Bari D, Garcia Sakai V, Peters J. Differences between calcium rich and depleted alpha-lactalbumin investigated by molecular dynamics simulations and incoherent neutron scattering. Phys Rev E 2020; 101:032415. [PMID: 32289905 DOI: 10.1103/physreve.101.032415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/21/2020] [Indexed: 11/07/2022]
Abstract
We present a study comparing atomic motional amplitudes in calcium rich and depleted alpha-lactalbumin. The investigations were performed by elastic incoherent neutron scattering (EINS) and molecular dynamics (MD) simulations. As the variations were expected to be very small, three different hydration levels and timescales (instrumental resolutions) were measured. In addition, we used two models to extract the mean square displacements (MSDs) from the EINS data, one taking into account the motional heterogeneity of the MSD. At a timescale of several nanoseconds, small differences in the amplitudes between the calcium enriched and depleted alpha-lactalbumin are visible, whereas at lower timescales no changes can be concluded within the statistics. The results are compared to MD simulations at 280 and 300 K by extracting the MSDs of the trajectories in two separate ways: first by direct calculation, and second by a virtual neutron experiment using the same models as for the experimental data. We show that the simulated data give qualitatively similar results as the experimental data but quantitatively there are differences. Furthermore, the distribution of the MSDs in the simulations suggests that the inclusion of heterogeneity is reasonable for alpha-lactalbumin, but a bi-or trimodal approach may be sufficient.
Collapse
Affiliation(s)
- Dominik Zeller
- University Grenoble Alpes, LiPhy, CNRS, F-38000 Grenoble, France and Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
| | - Pan Tan
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniele Di Bari
- University Grenoble Alpes, LiPhy, CNRS, F-38000 Grenoble, France and Institut Laue Langevin, F-38042 Grenoble Cedex 9, France.,Physics Department, University of Perugia, 06123 Perugia, Italy
| | - Victoria Garcia Sakai
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, United Kingdom
| | - Judith Peters
- University Grenoble Alpes, LiPhy, CNRS, F-38000 Grenoble, France and Institut Laue Langevin, F-38042 Grenoble Cedex 9, France
| |
Collapse
|
7
|
Rodzik A, Pomastowski P, Sagandykova GN, Buszewski B. Interactions of Whey Proteins with Metal Ions. Int J Mol Sci 2020; 21:E2156. [PMID: 32245108 PMCID: PMC7139725 DOI: 10.3390/ijms21062156] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Whey proteins tend to interact with metal ions, which have implications in different fields related to human life quality. There are two impacts of such interactions: they can provide opportunities for applications in food and nutraceuticals, but may lead to analytical challenges related to their study and outcomes for food processing, storage, and food interactions. Moreover, interactions of whey proteins with metal ions are complicated, requiring deep understanding, leading to consequences, such as metalloproteins, metallocomplexes, nanoparticles, or aggregates, creating a biologically active system. To understand the phenomena of metal-protein interactions, it is important to develop analytical approaches combined with studies of changes in the biological activity and to analyze the impact of such interactions on different fields. The aim of this review was to discuss chemistry of β-lactoglobulin, α-lactalbumin, and lactotransferrin, their interactions with different metal ions, analytical techniques used to study them and the implications for food and nutraceuticals.
Collapse
Affiliation(s)
- Agnieszka Rodzik
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (G.N.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Gulyaim N. Sagandykova
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (G.N.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (G.N.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
8
|
A Novel SNPs in Alpha-Lactalbumin Gene Effects on Lactation Traits in Chinese Holstein Dairy Cows. Animals (Basel) 2019; 10:ani10010060. [PMID: 31905734 PMCID: PMC7023285 DOI: 10.3390/ani10010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Alpha-lactalbumin (α-LA) is a major whey protein component in mammalian milk, such as human (approximately 36%), bovine (approximately 17%), and other species, etc., It is involved in the regulation of lactose synthesis and has high nutritional value, especially in infant formula. Previous studies have confirmed that bovine α-LA gene 5′-flanking region has single nucleotide polymorphisms (SNPs), but little is known about polymorphisms in other regions, especially sequence coding for amino acids in protein (CDS) and their adjacent non-coding regions, including Chinese Holstein dairy cows. This study focused on investigated SNPs in the CDS and their adjacent non-coding regions of the α-LA gene in Chinese Holstein dairy cows, and assessed the association between SNPs and lactation traits. Sequence alignment showed that a potential SNPs (562th, G/A) in CDS2 region affect protein spatial structure, suggesting that this SNPs might affect the lactation traits of cows (milk type (Holstein and Jersey), and non-milk type (Bos Taurus)) need more in-depth study. More importantly, a novel SNPs at 1847th (T/C) bp in non-coding region near CDS4 was significantly associated with milk lactose composition, and lactose contents were significantly correlated with milk protein content, indicating that the SNPs could be used as a novel potential molecular marker for lactation traits in Chinese Holstein dairy cows. Abstract Alpha-lactalbumin (α-LA) is a major whey protein in bovine and other mammalian milk, which regulates synthesis of lactose. Little is known about its genetic polymorphism and whether can be used as a potential marker for dairy ingredients, milk yield traits, and milk properties. To investigate its polymorphisms and their relationship with milk lactation traits in Chinese Holstein dairy cows, single-strand conformation polymorphism method (PCR-SSCP) and direct sequencing method were used to mark the α-LA gene SNPs. AA (0.7402) and AB (0.2598) genotypes were screened out by PCR-SSCP bands analysis in two independent populations. Direct sequencing revealed that there is one SNP at 1847th (T/C) bp in noncoding region of α-LA gene with highly polymorphic (0.5 < PIC = 0.5623 or 0.5822), of which T is in AA genotype while C in AB. Association analysis also showed that lactose content (p < 0.05) was negatively correlated with fat and protein contents within subgroup, indicating that the SNPs (1847th, T/C) in α-LA gene could be used as a novel potential molecular marker for lactation traits in Chinese Holstein dairy cows.
Collapse
|
9
|
Iwaoka M, Mitsuji T, Shinozaki R. Oxidative folding pathways of bovine milk β-lactoglobulin with odd cysteine residues. FEBS Open Bio 2019; 9:1379-1391. [PMID: 31087497 PMCID: PMC6668375 DOI: 10.1002/2211-5463.12656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
Bovine β‐lactoglobulin (BLG) is a major whey protein with unique structural characteristics: it possesses a free Cys thiol (SH) and two disulfide (SS) bonds and consists of a β‐barrel core surrounded by one long and several short α helices. Although SS‐intact conformational folding has been studied in depth, the oxidative folding pathways and accompanying SS formation/rearrangement are poorly understood. In this study, we used trans‐3,4‐dihydroxyselenolane oxide, a water‐soluble selenoxide reagent which undergoes rapid and quantitative SS formation, to determine the oxidative folding pathways of BLG variant A (BLGA) at pH 8.0 and 25 °C. This was done by characterizing two key one‐SS intermediates, a particular folding intermediate having a Cys66–Cys160 SS bond (I‐1) and a particular folding intermediate having a Cys106–Cys119 SS bond (I‐2), which have a native Cys66–Cys160 and Cys106–Cys119 SS bond, respectively. In the major folding pathway, the reduced protein (R) with abundant α helices was oxidized to I‐1, which was then transformed to I‐2 through SS rearrangement. The native protein (N) was formed by oxidation of I‐2. The redundant Cys121 thiol facilitates SS rearrangement. N is also generated from an ensemble of folding intermediates having two SS bonds (2SS) intermediates with scrambled SS bonds through SS rearrangement, but this minor pathway is deteriorative due to aggregation or overoxidation of 2SS. During oxidative folding of BLGA, α→β conformational transition occurred as previously observed in SS‐intact folding. These findings are informative not only for elucidating oxidative folding pathways of other members of the β‐lactoglobulin family, but also for understanding the roles of a redundant Cys thiol in the oxidative folding process of a protein with odd Cys residues.
Collapse
Affiliation(s)
- Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| | - Takumi Mitsuji
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| | - Reina Shinozaki
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| |
Collapse
|
10
|
Abstract
trans-3,4-Dihydroxyselenolane oxide (DHSox), a water-soluble cyclic selenoxide reagent, is useful for rapid and quantitative formation of disulphide (SS) bonds in a reduced state of SS-containing proteins because the selenoxide is a strong but selective oxidant for thiol substrates (RSH) in a wide range of pH. Due to this advantage over common disulphide reagents, such as oxidized dithiothreitol (DTTox) and glutathione (GSSG), DHSox enables clear characterization of oxidative folding pathways of proteins. DHSox is also useful for facile diagnosis of weakly folded structure, or reactivity (i.e., pKa) of the thiols, present in a reduced polypeptide chain and the partially oxidized folding intermediates, identification of the key SS intermediates that can be oxidized directly to the native state, and preparation of SS-scrambled misfolded protein species. In this chapter, these diverse utilities of DHSox in protein folding study are demonstrated.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Hiratsuka-shi, Kanagawa, Japan.
| |
Collapse
|