1
|
González Arbeláez LF, Ciocci Pardo A, Burgos JI, Vila Petroff MG, Godoy Coto J, Ennis IL, Mosca SM, Fantinelli JC. New advances in the protective mechanisms of acidic pH after ischemia: Participation of NO. Arch Biochem Biophys 2024; 758:110059. [PMID: 38936683 DOI: 10.1016/j.abb.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND It has been previously demonstrated that the maintenance of ischemic acidic pH or the delay of intracellular pH recovery at the onset of reperfusion decreases ischemic-induced cardiomyocyte death. OBJECTIVE To examine the role played by nitric oxide synthase (NOS)/NO-dependent pathways in the effects of acidic reperfusion in a regional ischemia model. METHODS Isolated rat hearts perfused by Langendorff technique were submitted to 40 min of left coronary artery occlusion followed by 60 min of reperfusion (IC). A group of hearts received an acid solution (pH = 6.4) during the first 2 min of reperfusion (AR) in absence or in presence of l-NAME (NOS inhibitor). Infarct size (IS) and myocardial function were determined. In cardiac homogenates, the expression of P-Akt, P-endothelial and inducible isoforms of NOS (P-eNOS and iNOS) and the level of 3-nitrotyrosine were measured. In isolated cardiomyocytes, the intracellular NO production was assessed by confocal microscopy, under control and acidic conditions. Mitochondrial swelling after Ca2+ addition and mitochondrial membrane potential (Δψ) were also determined under control and acidosis. RESULTS AR decreased IS, improved postischemic myocardial function recovery, increased P-Akt and P-eNOS, and decreased iNOS and 3-nitrotyrosine. NO production increased while mitochondrial swelling and Δψ decreased in acidic conditions. l-NAME prevented the beneficial effects of AR. CONCLUSIONS Our data strongly supports that a brief acidic reperfusion protects the myocardium against the ischemia-reperfusion injury through eNOS/NO-dependent pathways.
Collapse
Affiliation(s)
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Martín Gerardo Vila Petroff
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Susana María Mosca
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juliana Catalina Fantinelli
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Ozsvár D, Bózsity N, Zupkó I, Szakonyi Z. Synthesis and Study of the Structure-Activity Relationship of Antiproliferative N-Substituted Isosteviol-Based 1,3-Aminoalcohols. Pharmaceuticals (Basel) 2024; 17:262. [PMID: 38399477 PMCID: PMC10893060 DOI: 10.3390/ph17020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Starting from isosteviol, a series of diterpenoid 1,3-aminoalcohol derivatives were prepared via stereoselective transformations. The acid-catalysed hydrolysis and rearrangement of natural stevioside produced isosteviol, which was transformed into the key intermediate methyl ester. In the next step, an 1,3-aminoalcohol library was prepared by the reductive amination of the intermediate 3-hydroxyaldehyde obtained from isosteviol in a two-step synthesis. To study the effect of the carboxylate ester function at position 4, the free carboxylic acid, benzyl ester and acryloyl ester analogues were prepared as elongated derivatives in comparison with our earlier results in this field. The antiproliferative activity of compounds against human tumour cell lines (A2780, HeLa, MCF-7 and MDA-MB-231) was investigated. In our preliminary study, the 1,3-aminoalcohol function with N-benzyl or (1H-imidazol-1-yl)-propyl substitution and benzyl ester moiety seemed essential for the reliable antiproliferative activity. The results obtained could be a good starting point to further functionalisation towards more efficient antiproliferative diterpenes.
Collapse
Affiliation(s)
- Dániel Ozsvár
- Interdisciplinary Excellence Center, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary;
| | - Noémi Bózsity
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (N.B.); (I.Z.)
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (N.B.); (I.Z.)
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Zsolt Szakonyi
- Interdisciplinary Excellence Center, Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary;
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Yang Y, Zhao L, Wang T, Zheng X, Wu Y. Biological activity and structural modification of isosteviol over the past 15 years. Bioorg Chem 2024; 143:107074. [PMID: 38176378 DOI: 10.1016/j.bioorg.2023.107074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Isosteviol is a tetracyclic diterpenoid obtained by hydrolysis of stevioside. Due to its unique molecular skeleton and extensive pharmacological activities, isosteviol has attracted more and more attention from researchers. This review summarized the structural modification, pharmacological activity and microbial transformation of isosteviol from 04/2008 to 10/2023. In addition, the research history, structural characterization, and pharmacokinetics of isosteviol were also briefly reviewed. This review aims to provide useful literature resources and inspirations for the exploration of diterpenoid drugs.
Collapse
Affiliation(s)
- Youfu Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Lijun Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tongsheng Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Ya Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| |
Collapse
|
4
|
Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol 2022; 75:466-481. [PMID: 36508341 DOI: 10.1093/jpp/rgac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Acute myocardial ischemia is one of the major causes of illness in western society. Reduced coronary blood supply leads to cell death and loss of cardiomyocyte population, resulting in serious and often irreversible consequences on myocardial function. Mitochondrial potassium (mitoK) channels have been identified as fine regulators of mitochondrial function and, consequently, in the metabolism of the whole cell, and in the mechanisms underlying the cardioprotection. Interestingly, mitoK channels represent a novel putative target for treating cardiovascular diseases, particularly myocardial infarction, and their modulators represent an interesting tool for pharmacological intervention. In this review, we took up the challenge of selecting flavonoids that show cardioprotective properties through the activation of mitoK channels.
Key findings
A brief overview of the main information on mitoK channels and their participation in the induction of cytoprotective processes was provided. Then, naringenin, quercetin, morin, theaflavin, baicalein, epigallocatechin gallate, genistein, puerarin, luteolin and proanthocyanidins demonstrated to be effective modulators of mitoK channels activity, mediating many beneficial effects.
Summary
The pathophysiological role of mitoK channels has been investigated as well as the impact of flavonoids on this target with particular attention to their potential role in the prevention of cardiovascular disorders.
Collapse
Affiliation(s)
- Rafał P Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Department of Pharmacy, University of Pisa , Italy
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
- Faculty of Chemistry, University of Warsaw , Warsaw , Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, SGGW , Warsaw , Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS , Warsaw , Poland
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa , Italy
| |
Collapse
|
5
|
Flori L, Petrarolo G, Brogi S, La Motta C, Testai L, Calderone V. Identification of novel SIRT1 activators endowed with cardioprotective profile. Eur J Pharm Sci 2021; 165:105930. [PMID: 34265406 DOI: 10.1016/j.ejps.2021.105930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 07/03/2021] [Indexed: 12/25/2022]
Abstract
Drugs targeting epigenetic mechanisms are attracting the attention of scientists since it was observed that the modulation of this post-translational apparatus, could help to identify innovative therapeutic strategies. Among the epigenetic druggable targets, the positive modulation of SIRT1 has also been related to significant cardioprotective effects. Unfortunately, actual SIRT1 activators (natural products and synthetic molecules) suffer from several drawbacks, particularly poor pharmacokinetic profiles. Accordingly, in this article we present the development of an integrated screening platform aimed at identifying novel SIRT1 activators with favorable drug-like features as cardioprotective agents. Encompassing several competencies (in silico, medicinal chemistry, and pharmacology), we describe a multidisciplinary approach for rapidly identifying SIRT1 activators and their preliminary pharmacological characterization. In the first step, we virtually screened an in-house chemical library comprising synthetic molecules inspired by nature, against SIRT1 enzyme. To this end, we combined molecular docking-based approach with the estimation of relative ligand binding energy, using the crystal structure of SIRT1 enzyme in complex with resveratrol. Eleven computational hits were identified, synthesized and tested against the isolated enzyme for validating the in silico strategy. Among the tested molecules, five of them behave as SIRT1 enzyme activators. Due to the superior response in activating the enzyme and its favorable calculated physico-chemical properties, compound 8 was further characterized in ex vivo studies on isolated and perfused rat hearts submitted to ischemia/reperfusion (I/R) period. The pharmacological profile of compound 8, suggests that this molecule represents a prototypic SIRT1 activator with satisfactory drug-like profile, paving the way for developing novel epigenetic cardioprotective agents.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy.
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy.
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| |
Collapse
|
6
|
Zhang H, Liu B, Xu G, Xu C, Ou E, Liu J, Sun X, Zhao Y. Synthesis and in vivo screening of isosteviol derivatives as new cardioprotective agents. Eur J Med Chem 2021; 219:113396. [PMID: 33862515 DOI: 10.1016/j.ejmech.2021.113396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Isosteviol, an ent-beyerane diterpenoid, has been repeatedly reported to possess potent cardioprotective activity. With the aim of discovering new cardioprotective derivatives from isosteviol, 47 compounds, including 40 new ones, were synthesized and evaluated in vivo using the easy-handling and efficient zebrafish model. The structure-activity relationship of this type of compounds was thus discussed. Of these compounds, new derivative 15d exhibited the most pronounced efficacy in vivo. Our results indicated that 15d could effectively prevent the doxorubicin-induced morphological distortions and cardiac dysfunction in zebrafish. Its cardioprotective activity is much better than that of isosteviol, and Levosimendan in zebrafish model. The molecular mechanism underlying in H9c2 cells indicated that 15d protected cardiomyocyte death and damage through inhibiting the reactive oxygen species overproduction, restoring the mitochondrial membrane potential and maintaining morphology of mitochondrial. Thus, 15d merits further development as a potential cardioprotective clinical trial candidate. The present study is a successful example to combine synthesis, structure-activity relationship study and in vivo screening to effectively discover new cardioprotective agents from isosteviol.
Collapse
Affiliation(s)
- Hanyuan Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bo Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Geng Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chao Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - E Ou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiansong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - XiaoOu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yu Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Voloshina AD, Sapunova AS, Kulik NV, Belenok MG, Strobykina IY, Lyubina AP, Gumerova SK, Kataev VE. Antimicrobial and cytotoxic effects of ammonium derivatives of diterpenoids steviol and isosteviol. Bioorg Med Chem 2020; 32:115974. [PMID: 33461146 DOI: 10.1016/j.bmc.2020.115974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Antimicrobial and cytotoxic activities of several ammonium derivatives of diterpenoids steviol and isosteviol have been investigated in vitro. The results have showed that these compounds possess high antibacterial activity against MRSA strains and cytotoxic effect against cancer cell lines MCF-7, M-HeLa, A-549, PC3, HepG2, T98G. Lead compounds 4 and 5 were detected, which, in the case of the MCF-7 cell line (human breast adenocarcinoma), showed IC50 at the doxorubicin level with a selectivity index of 5.0-5.2. Flow cytometry and laser confocal microscopy analysis demonstrated that the mechanism of cytotoxic effects of the tested compounds on MCF-7 cells could be associated with the induction of apoptosis along the mitochondrial pathway. At the same time, they did not cause hemolysis and showed only slight cytotoxicity with respect to normal human cells of embryonic lung (Wi-38). The obtained results allow us to consider the studied compounds as promising scaffolds for the design of new effective antibacterial drugs and anticancer agents targeting mitochondria.
Collapse
Affiliation(s)
- Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia.
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Natalia V Kulik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Syumbelya K Gumerova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| |
Collapse
|
8
|
Testai L, Sestito S, Martelli A, Gorica E, Flori L, Calderone V, Rapposelli S. Synthesis and pharmacological characterization of mitochondrial K ATP channel openers with enhanced mitochondriotropic effects. Bioorg Chem 2020; 107:104572. [PMID: 33418316 DOI: 10.1016/j.bioorg.2020.104572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
Mitochondria play a key role for deciding fate of cells and thus are considered an attractive target for pharmacological interventions focused on containment of myocardial ischemia/reperfusion (I/R) injury. Notably, the activation of mitochondrial potassium (mitoK) channels produces a mild depolarization of mitochondrial membrane, that contributes to reduce the driving force to calcium uptake and prevents the formation of mitochondrial transition membrane pore (MPTP); these events underlie anti-ischemic cardioprotection. However, an ideal mitoK channel opener should possess the fundamental requirement to be delivered at mitochondrial level; therefore, to improve the mitochondrial delivery of a previously characterized spirocyclic benzopyrane F81, new compounds have been developed. The three original triphenylphosphonium (TPP+)-derivatives of F81 (1-3), were evaluated for their cardioprotective activity on both isolated cardiac mitochondria and cardiac H9c2 cell line. Compound 1 was further investigated in an in vivo infarct model. This work confirms that the TPP+ strategy applied to mitoKATP openers could foster mitochondrial delivery and enhance the cardioprotective effects of mitochondrial activators of potassium channels.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Sestito
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Era Gorica
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, 56126 Pisa, Italy.
| |
Collapse
|
9
|
Khasiyatullina NR, Gubaidullin AT, Shinkareva AM, Islamov DR, Mironov VF. New bisphosphonium salt containing a 1,4-dihydroxynaphthalene moiety: molecular and supramolecular structure. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-3012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Forini F, Canale P, Nicolini G, Iervasi G. Mitochondria-Targeted Drug Delivery in Cardiovascular Disease: A Long Road to Nano-Cardio Medicine. Pharmaceutics 2020; 12:E1122. [PMID: 33233847 PMCID: PMC7699942 DOI: 10.3390/pharmaceutics12111122] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) represents a major threat for human health. The available preventive and treatment interventions are insufficient to revert the underlying pathological processes, which underscores the urgency of alternative approaches. Mitochondria dysfunction plays a key role in the etiopathogenesis of CVD and is regarded as an intriguing target for the development of innovative therapies. Oxidative stress, mitochondrial permeability transition pore opening, and excessive fission are major noxious pathways amenable to drug therapy. Thanks to the advancements of nanotechnology research, several mitochondria-targeted drug delivery systems (DDS) have been optimized with improved pharmacokinetic and biocompatibility, and lower toxicity and antigenicity for application in the cardiovascular field. This review summarizes the recent progress and remaining obstacles in targeting mitochondria as a novel therapeutic option for CVD. The advantages of nanoparticle delivery over un-targeted strategies are also discussed.
Collapse
Affiliation(s)
- Francesca Forini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Paola Canale
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
- Department of Biology, University of Pisa, Via Volta 4 bis, 56126 Pisa, Italy
| | - Giuseppina Nicolini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Giorgio Iervasi
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| |
Collapse
|
11
|
Shemakhina ME, Nemtarev AV, Fayzullin RR, Khasiyatullina NR, Grigor’eva LR, Mironov VF. Reaction of R-pulegone with P–H phosphonium salts. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Andreeva OV, Garifullin BF, Sharipova RR, Strobykina IY, Sapunova AS, Voloshina AD, Belenok MG, Dobrynin AB, Khabibulina LR, Kataev VE. Glycosides and Glycoconjugates of the Diterpenoid Isosteviol with a 1,2,3-Triazolyl Moiety: Synthesis and Cytotoxicity Evaluation. JOURNAL OF NATURAL PRODUCTS 2020; 83:2367-2380. [PMID: 32786882 DOI: 10.1021/acs.jnatprod.0c00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several glycoconjugates of the diterpenoid isosteviol (16-oxo-ent-beyeran-19-oic acid) with a 1,2,3-triazolyl moiety were synthesized, and their cytotoxicity was evaluated against some human cancer and normal cell lines. Most of the synthesized compounds demonstrated weak inhibitory activities against the M-HeLa and MCF-7 human cancer cell lines. Three lead compounds, 54, 56 and 57, exhibited high selective cytotoxic activity against M-HeLa cells (IC50 = 1.7-1.9 μM) that corresponded to the activity of the anticancer drug doxorubicin (IC50 = 3.0 μM). Moreover, the lead compounds were not cytotoxic with respect to a Chang liver human normal cell line (IC50 > 100 μM), whereas doxorubicin was cytotoxic to this cell line (IC50 = 3.0 μM). It was found that cytotoxic activity of the lead compounds is due to induction of apoptosis proceeding along the mitochondrial pathway. The present findings suggest that 1,2,3-triazolyl-ring-containing glycoconjugates of isosteviol are a promising scaffold for the design of novel anticancer agents.
Collapse
Affiliation(s)
- Olga V Andreeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Radmila R Sharipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Anastasiya S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Alexey B Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Leysan R Khabibulina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| |
Collapse
|
13
|
Structure-activity relationships study of isothiocyanates for H 2S releasing properties: 3-Pyridyl-isothiocyanate as a new promising cardioprotective agent. J Adv Res 2020; 27:41-53. [PMID: 33318865 PMCID: PMC7728584 DOI: 10.1016/j.jare.2020.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction The gasotransmitter hydrogen sulphide (H2S), an endogenous ubiquitous signalling molecule, is known for its beneficial effects on different mammalian systems. H2S exhibits cardioprotective activity against ischemia/reperfusion (I/R) or hypoxic injury. Methods A library of forty-five isothiocyanates, selected for their different chemical properties, has been evaluated for its hydrogen sulfide (H2S) releasing capacity. The obtained results allowed to correlate several factors such as steric hindrance, electronic effects and position of the substituents to the observed H2S production. Moreover, the chemical-physical profiles of the selected compounds have been studied by an in silico approach and from a combination of the obtained results, 3-pyridyl-isothiocyanate (25) has been selected as the most promising one. A detailed pharmacological characterization of its cardioprotective action has been performed. Results The results herein obtained strongly indicate 3-pyridyl-isothiocyanate (25) as a suitable pharmacological option in anti-ischemic therapy. The cardioprotective effects of compound 25 were tested in vivo and found to exhibit a positive effect. Conclusion Results strongly suggest that isothiocyanate-based H2S-releasing drugs, such as compound 25, can trigger a ‘‘pharmacological pre-conditioning” and could represent a suitable pharmacological option in antiischemic therapy.
Collapse
|
14
|
Garifullin BF, Strobykina IY, Khabibulina LR, Sapunova AS, Voloshina AD, Sharipova RR, Khairutdinov BI, Zuev YF, Kataev VE. Synthesis and cytotoxicity of the conjugates of diterpenoid isosteviol and N-acetyl-D-glucosamine. Nat Prod Res 2019; 35:1372-1378. [PMID: 31402704 DOI: 10.1080/14786419.2019.1650355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of conjugates of diterpenoid isosteviol (16-oxo-ent-beyeran-19-oic acid) and N-acetyl-D-glucosamine was synthesised and their cytotoxicity against several human cancer cell lines (M-Hela, MCF-7, Hep G2, Panc-1, PC-3), as well as normal human cell lines (WI-38, Chang liver) was assayed. Most of the conjugates were found to be cytotoxic against the mentioned cancer cell lines in the range of IC50 values 13-89 µM. Two lead compounds 14a and 14b showed selective cytotoxicity against M-Hela (IC50 13 and 14 µM) that was two times as high as the cytotoxicity of the anti-cancer drug Tamoxifen in control (IC50 28 µM). It was found that cytotoxic activity of the lead compounds against M-Hela cells is due to induction of apoptosis.
Collapse
Affiliation(s)
- Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Leysan R Khabibulina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Anastasiya S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Aleksandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Radmila R Sharipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Bulat I Khairutdinov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation.,Kazan State Power Engineering University, Kazan, Russian Federation
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
15
|
Sharipova RR, Belenok MG, Garifullin BF, Sapunova AS, Voloshina AD, Andreeva OV, Strobykina IY, Skvortsova PV, Zuev YF, Kataev VE. Synthesis and anti-cancer activities of glycosides and glycoconjugates of diterpenoid isosteviol. MEDCHEMCOMM 2019; 10:1488-1498. [PMID: 31673312 PMCID: PMC6786240 DOI: 10.1039/c9md00242a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 11/21/2022]
Abstract
A series of glycosides and glycoconjugates of diterpenoid isosteviol (16-oxo-ent-beyeran-19-oic acid) with various monosaccharide residues were synthesized and their cytotoxicity against some human cancer and normal cell lines was assayed. Most of the synthesized compounds demonstrated moderate to significant cytotoxicity against human cancer cell lines M-HeLa and MCF-7. Three lead compounds exhibited selective cytotoxic activities against M-HeLa (IC50 = 10.0-15.1 μM) that were three times better than the cytotoxicity of the anti-cancer drug Tamoxifen (IC50 = 28.0 μM). Moreover, the lead compounds were not cytotoxic with respect to the normal human cell line Chang liver (IC50 > 100 μM), whereas Tamoxifen inhibited the viability of normal human Chang liver cells with an IC50 value of 46.0 μM. It was determined that the cytotoxicity of the lead compounds was due to induction of apoptosis proceeding along the mitochondrial pathway. The cytotoxic activity of the synthesized compounds substantially depended on the nature of the monosaccharide residue and its position, that is, whether the monosaccharide residue was attached directly to the isosteviol skeleton or was moved away from it by means of a polymethylene linker.
Collapse
Affiliation(s)
- Radmila R Sharipova
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center , Russian Academy of Sciences , Arbuzov str., 8 , Kazan , 420088 , Russian Federation .
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center , Russian Academy of Sciences , Arbuzov str., 8 , Kazan , 420088 , Russian Federation .
| | - Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center , Russian Academy of Sciences , Arbuzov str., 8 , Kazan , 420088 , Russian Federation .
| | - Anastasiya S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center , Russian Academy of Sciences , Arbuzov str., 8 , Kazan , 420088 , Russian Federation .
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center , Russian Academy of Sciences , Arbuzov str., 8 , Kazan , 420088 , Russian Federation .
| | - Olga V Andreeva
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center , Russian Academy of Sciences , Arbuzov str., 8 , Kazan , 420088 , Russian Federation .
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center , Russian Academy of Sciences , Arbuzov str., 8 , Kazan , 420088 , Russian Federation .
| | - Polina V Skvortsova
- Kazan Institute of Biochemistry and Biophysics , FRC Kazan Scientific Center , Russian Academy of Sciences , Lobachevsky Str., 2/31 , Kazan , 420111 , Russian Federation
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics , FRC Kazan Scientific Center , Russian Academy of Sciences , Lobachevsky Str., 2/31 , Kazan , 420111 , Russian Federation
- Kazan State Power Engineering University , 51, Krasnoselskaya str. , Kazan , 420066 , Russian Federation
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center , Russian Academy of Sciences , Arbuzov str., 8 , Kazan , 420088 , Russian Federation .
| |
Collapse
|
16
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
17
|
Khasiyatullina NR, Mironov VF, Voloshina AD, Sapunova AS. Synthesis and Antimicrobial Properties of Novel Phosphonium Salts Bearing 1,4-Dihydroxyaryl Fragment. Chem Biodivers 2019; 16:e1900039. [PMID: 30817850 DOI: 10.1002/cbdv.201900039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 01/23/2023]
Abstract
A versatile two-step pathway to the synthesis of triaryl(2,5-dihydroxy-6-methyl-3-(propan-2-yl)phenyl)- and triaryl(1,4-dihydroxynaphthyl)phosphonium salts from triarylphosphonium trifluoroacetates was developed. The reaction proceeds under mild conditions (20 °C, CH2 Cl2 ) with high yields (88-95 %). Some representatives of this series possess low hemolytic and high bactericidal activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Nadezhda R Khasiyatullina
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| | - Vladimir F Mironov
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| | - Alexandra D Voloshina
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| | - Anastasiya S Sapunova
- FRC Kazan Scientific Center of RAS, A.E. Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, Kazan, 420088, Russia
| |
Collapse
|
18
|
Sharipova RR, Belenok MG, Strobykina IY, Kataev VE. Phosphorylated Glycoconjugates Based on Isosteviol, d-Arabinofuranose, and d-Ribofuranose. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019040158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Tatarinov DA, Terekhova NV, Voloshina AD, Sapunova AS, Lyubina AP, Mironov VF. Synthesis and Antimicrobial Activity of New Dialkyl(diaryl)-2-(5-chloro-2-hydroxyphenyl)-2-(phenylethenyl)pentylphosphonium Salts. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218090062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Khasiyatullina NR, Bogdanov AV, Mironov VF. Reaction of 6-Bromo-1,2-naphthoquinone with Tertiary ortho-Anisylphosphines as a Convenient Synthetic Approach to 1,2-Dihydroxynaphthylphosphonium Salts. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Wang M, Li H, Xu F, Gao X, Li J, Xu S, Zhang D, Wu X, Xu J, Hua H, Li D. Diterpenoid lead stevioside and its hydrolysis products steviol and isosteviol: Biological activity and structural modification. Eur J Med Chem 2018; 156:885-906. [DOI: 10.1016/j.ejmech.2018.07.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/17/2022]
|
22
|
Kataev VE, Khaybullin RN, Garifullin BF, Sharipova RR. New Targets for Growth Inhibition of Mycobacterium tuberculosis: Why Do Natural Terpenoids Exhibit Antitubercular Activity? RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
|
24
|
Gu W, Rebsdorf A, Hermansen K, Gregersen S, Jeppesen PB. The Dynamic Effects of Isosteviol on Insulin Secretion and Its Inability to Counteract the Impaired β-Cell Function during Gluco-, Lipo-, and Aminoacidotoxicity: Studies In Vitro. Nutrients 2018; 10:nu10020127. [PMID: 29373526 PMCID: PMC5852703 DOI: 10.3390/nu10020127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/10/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Isosteviol (ISV), a diterpene molecule, is an isomer of the backbone structure of a group of substances with proven antidiabetic capabilities. The aim of this study was to investigate if ISV elicits dynamic insulin release from pancreatic islets and concomitantly is able to ameliorate gluco-, lipo-, and aminoacidotoxicity in clonal β-cell line (INS-1E) in relation to cell viability and insulin secretion. Isolated mice islets placed into perifusion chambers were perifused with 3.3 mM and 16.7 mM glucose with/without 10−7 M ISV. INS-1E cells were incubated for 72 h with either 30 mM glucose, 1 mM palmitate or 10 mM leucine with or without 10−7 M ISV. Cell viability was evaluated with a Cytotoxic Fluoro-test and insulin secretion was measured in Krebs-Ringer Buffer at 3.3 mM and 16.7 mM glucose. In the presence of 3.3 mM glucose, 10−7 M ISV did not change basal insulin secretion from perifused islets. However, at a high glucose level of 16.7 mM, 10−7 M ISV elicited a 2.5-fold increase (−ISV: 109.92 ± 18.64 ng/mL vs. +ISV: 280.15 ± 34.97 ng/mL; p < 0.01). After 72 h gluco-, lipo-, or aminoacidotoxicity in INS-1E cells, ISV treatment did not significantly affect cell viability (glucotoxicity, −ISV: 19.23 ± 0.83%, +ISV: 18.41 ± 0.90%; lipotoxicity, −ISV: 70.46 ± 3.15%, +ISV: 65.38 ± 2.81%; aminoacidotoxicity: −ISV: 8.12 ± 0.63%; +ISV: 7.75 ± 0.38%, all nonsignificant). ISV did not improve impaired insulin secretion (glucotoxicity, −ISV: 52.22 ± 2.90 ng/mL, +ISV: 47.24 ± 3.61 ng/mL; lipotoxicity, −ISV: 19.94 ± 4.10 ng/mL, +ISV: 22.12 ± 3.94 ng/mL; aminoacidotoxicity: −ISV: 32.13 ± 1.00 ng/mL; +ISV: 30.61 ± 1.54 ng/mL, all nonsignificant). In conclusion, ISV acutely stimulates insulin secretion at high but not at low glucose concentrations. However, ISV did not counteract cell viability or cell dysfunction during gluco-, lipo-, or aminoacidotoxicity in INS-1E cells.
Collapse
Affiliation(s)
- Wenqian Gu
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark.
| | - Andreas Rebsdorf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark.
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark.
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark.
| | - Per Bendix Jeppesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark.
| |
Collapse
|