1
|
Piñar-Gutiérrez A, Mangas-Cruz MÁ, de Lara-Rodríguez I, Remón-Ruiz P, Del Can-Sánchez D, Tous Castillo M, Pumar-López A. Familial bilateral macronodular adrenal hyperplasia due to a novel ARMC 5 germline mutation: Clinical status and possible association with other neoplasms. ENDOCRINOL DIAB NUTR 2024; 71:119-123. [PMID: 38555108 DOI: 10.1016/j.endien.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/14/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION/OBJECTIVES Mutations in the ARMC5 (armadillo repeat containing 5, OMIM 615549) gene, a putative tumor suppressor gene, have recently been identified as a common cause of sporadic and familial bilateral macronodular adrenal hyperplasia (BMAH). Familial BMAH is thought to be caused by two mutations, one germline and the other somatic, as suggested by the 2-hit theory. The objective is to describe a new mutation and develop its clinical characteristics and implications. METHODS, RESULTS AND CONCLUSIONS We present an affected family with 11 members carrying a novel mutation of the ARMC5 gene (NM_001288767.1): c.2162T>C p. (Leu721Pro). Two of the carriers developed clinical Cushing's syndrome (CS), two mild autonomous cortisol secretion (MACS) and one presented with autonomous cortisol secretion (ACS). Four patients developed other tumors, three of whom died from this cause. It is not known whether these tumors could be related to the described mutation.
Collapse
Affiliation(s)
- Ana Piñar-Gutiérrez
- UGC Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | - Pablo Remón-Ruiz
- UGC Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Diego Del Can-Sánchez
- UGC Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - María Tous Castillo
- UGC Endocrinología y Nutrición, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Alfonso Pumar-López
- UGC Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
2
|
Wu L, Shan L, Xu D, Lin D, Bai B. Pyroptosis in cancer treatment and prevention: the role of natural products and their bioactive compounds. Med Oncol 2024; 41:66. [PMID: 38281254 DOI: 10.1007/s12032-023-02293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Targeting programmed cell death (PCD) has been emerging as a promising therapeutic strategy in cancer. Pyroptosis, as a type of PCDs, leads to the cleavage of the gasdermin family and the secretion of pro-inflammatory factors. Gasdermin D (GSDMD) and gasdermin E (GSDME) are the two main executors of pyroptosis. Pyroptosis in tumor and immune cells is essential for tumor progression. Natural products, especially Chinese medicinal herb and their bioactive compounds have recently been regarded as anti-tumor agents that regulate cell pyroptosis under different circumstances. Here, we review the underlying mechanisms of natural products that activate pyroptosis in tumor cells and inhibit pyroptosis in immune cells. Pyroptosis activation in tumor cells leads to tumor cell death, yet pyroptosis inhibition in immune cells may prevent tumor occurrence. Elucidation of the signaling pathways involved in pyroptosis contributes to the understanding of the anti-tumor role of natural products and their potential clinical applications. Therefore, we outline a promising strategy for cancer therapy and prevention using natural products via modulation of pyroptosis.
Collapse
Affiliation(s)
- Liyi Wu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, People's Republic of China
| | - Lina Shan
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengyong Xu
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengfeng Lin
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Bingjun Bai
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China.
| |
Collapse
|
3
|
Wu D, Fu Z, Liu W, Zhao Y, Li W, Liu Q, Liang Y. Bioinformatics analysis and identification of upregulated tumor suppressor genes associated with suppressing colon cancer progression by curcumin treatment. Front Pharmacol 2023; 14:1218046. [PMID: 37731740 PMCID: PMC10507696 DOI: 10.3389/fphar.2023.1218046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Tumor suppressor genes (TSGs) are commonly downregulated in colon cancer and play a negative role in tumorigenesis and cancer progression by affecting genomic integrity, the cell cycle, and cell proliferation. Curcumin (CUR), a Chinese herb-derived phytochemical, exerts antitumor effects on colon cancer. However, it remains unclear whether CUR exerts its antitumor effects by reactivating TSGs in colon cancer. Here, we demonstrated that CUR inhibited HT29 and HCT116 proliferation and migration by cell-counting kit-8, colony-formation, and wound-healing assays. Furthermore, the comprehensive bioinformatics analysis of mRNA sequencing revealed that 3,505 genes were significantly upregulated in response to CUR in HCT116 cells. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses showed that the most upregulated genes were enriched in cancer pathways containing 37 TSGs. Five (ARHGEF12, APAF1, VHL, CEBPA, and CASP8) of the 37 upregulated TSGs were randomly selected for real-time fluorescence polymerase chain reaction and the verification results showed that these five genes were significantly reactivated after CUR treatment, suggesting that TSGs are related to CUR-mediated colon cancer inhibition. ARHGEF12 is a newly identified TSG and a potential therapeutic target for colon cancer. Furthermore, molecular docking was performed to predict the binding sites of CUR and ARHGEF12, suggesting that CUR can prevent colon cancer cell invasion and metastasis by inhibiting ARHGEF12 and RhoA binding. In conclusion, the present study reveals that CUR inhibits colon cancer cell proliferation and migration by reactivating TSGs, revealing a new mechanism and potential target for colon cancer treatment.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacy, Drug Development Center, Precision Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhenkai Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenna Liu
- Department of Pharmacy, Drug Development Center, Precision Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yujia Zhao
- Department of Oncology, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenxuan Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingqing Liu
- Department of Pharmacy, Drug Development Center, Precision Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ying Liang
- Department of Pharmacy, Drug Development Center, Precision Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Koukourikis P, Papaioannou M, Georgopoulos P, Apostolidis I, Pervana S, Apostolidis A. A Study of DNA Methylation of Bladder Cancer Biomarkers in the Urine of Patients with Neurogenic Lower Urinary Tract Dysfunction. BIOLOGY 2023; 12:1126. [PMID: 37627010 PMCID: PMC10452268 DOI: 10.3390/biology12081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Background: Bladder cancer (BCa) in patients suffering from neurogenic lower urinary tract dysfunction (NLUTD) is a significant concern due to its advanced stage at diagnosis and high mortality rate. Currently, there is a scarcity of specific guidelines for BCa screening in these patients. The development of urine biomarkers for BCa seems to be an attractive non-invasive method of screening or risk stratification in this patient population. DNA methylation is an epigenetic modification, resulting in the transcriptional silencing of tumor suppression genes, that is frequently detected in the urine of BCa patients. Objectives: We aimed to investigate DNA hypermethylation in five gene promoters, previously associated with BCa, in the urine of NLUTD patients, and in comparison with healthy controls. Design, setting and participants: This was a prospective case-control study that recruited neurourology outpatients from a public teaching hospital who had suffered from NLUTD for at least 5 years. They all underwent cystoscopy combined with biopsy for BCa screening following written informed consent. DNA was extracted and DNA methylation was assessed for the RASSF1, RARβ, DAPK, TERT and APC gene promoters via quantitative methylation-specific PCR in urine specimens from the patients and controls. Results: Forty-one patients of mixed NLUTD etiology and 35 controls were enrolled. DNA was detected in 36 patients' urine specimens and in those of 22 controls. In the urine specimens, DNA was hypermethylated in at least one of five gene promoters in 17/36 patients and in 3/22 controls (47.22% vs. 13.64%, respectively, p = 0.009). RASSF1 was hypermethylated in 10/17 (58.82%) specimens with detected methylation, APC in 7/17 (41.18%), DAPK in 4/17 (23.53%), RAR-β2 in 3/17 (17.56%) and TERT in none. According to a multivariate logistic regression analysis, NLUTD and male gender were significantly associated with hypermethylation (OR = 7.43, p = 0.007 and OR = 4.21; p = 0.04, respectively). In the tissue specimens, histology revealed TaLG BCa in two patients and urothelial squamous metaplasia in five patients. Chronic bladder inflammation was present in 35/41 bladder biopsies. Conclusions: DNA hypermethylation in a panel of five BCa-associated genes in the urine was significantly more frequent in NLUTD patients than in the controls. Our results warrant further evaluation in longitudinal studies assessing the clinical implications and possible associations between DNA hypermethylation, chronic inflammation and BCa in the NLUTD population.
Collapse
Affiliation(s)
- Periklis Koukourikis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Maria Papaioannou
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Petros Georgopoulos
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
- Pelvic Floor Unit, Department of Urology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Ioannis Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Stavroula Pervana
- Department of Pathology, General Hospital Papageorgiou, 56429 Thessaloniki, Greece;
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| |
Collapse
|
5
|
Wu YY, Xu YM, Lau ATY. Epigenetic effects of herbal medicine. Clin Epigenetics 2023; 15:85. [PMID: 37179342 PMCID: PMC10183144 DOI: 10.1186/s13148-023-01481-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/08/2023] [Indexed: 05/15/2023] Open
Abstract
Epigenetic memory is essential for life that governs the predefined functional features of cells. Recent evidence has indicated that the epigenetic modification provides a potential link to gene expression changes that may be involved in the development of various chronic diseases, and targeting the epigenome becomes a plausible method for treating diseases. Traditional herbal medicine has gradually entered the vision of researchers due to its low toxicity and its effectiveness in treating diseases. As a matter of fact, researchers found that the possessed epigenetic modification capacity of herbal medicine had the ability to combat the progression of the disease, such as various types of cancer, diabetes, inflammation, amnesia, liver fibrosis, asthma, and hypertension-induced renal injury. Studies on the epigenetic effects of herbal medicine will provide valuable insights into the molecular mechanisms of human diseases, which may lead to new therapeutic approaches and diagnoses. Thus, this review summarized the impact of herbal medicine and its bioactive components on disease epigenome as examples of how utilization of epigenetic plasticity could be useful as the basis for the future development of targeted therapies in chronic diseases.
Collapse
Affiliation(s)
- Yu-Yao Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Song K, Artibani M. The role of DNA methylation in ovarian cancer chemoresistance: A narrative review. Health Sci Rep 2023; 6:e1235. [PMID: 37123549 PMCID: PMC10140645 DOI: 10.1002/hsr2.1235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Background and Aims Ovarian cancer (OC) is the most lethal gynecological cancer. In 2018, it was responsible for over 180,000 deaths worldwide. The high mortality rate is the culmination of a lack of early diagnosis and high rates of chemotherapy resistance, which is synonymous with disease recurrence. Over the last two decades, an increasingly significant role of epigenetic mechanisms, in particular DNA methylation, has emerged. This review will discuss several of the most significant genes whose hypo/hypermethylation profiles are associated with chemoresistance. Aside from functionally elucidating and evaluating these epimutations, this review will discuss recent trials of DNA methyltransferase inhibitors (DNMTi). Finally, we will propose future directions that could enhance the feasibility of utilizing these candidate epimutations as clinical biomarkers. Methods To perform this review, a comprehensive literature search based on our keywords was conducted across the online databases PubMed and Google Scholar for identifying relevant studies published up until August 2022. Results Epimutations affecting MLH1, MSH2, and Ras-association domain family 1 isoform A (DNA damage repair and apoptosis); ATP-binding cassette subfamily B member 1 and methylation-controlled J (drug export); secreted frizzled-related proteins (Wnt/β-catenin signaling), neurocalcin delta (calcium and G protein-coupled receptor signaling), and zinc finger protein 671 all have potential as biomarkers for chemoresistance. However, specific uncertainties relating to these epimutations include histotype-specific differences, intrinsic versus acquired chemoresistance, and the interplay with complete surgical debulking. DNMTi for chemoresistant OC patients has shown some promise; however, issues surrounding their efficacy and dose-limiting toxicities remain; a personalized approach is required to maximize their effectiveness. Conclusion Establishing a panel of aberrantly methylated chemoresistance-related genes to predict chemoresponsiveness and patients' suitability to DNMTi could significantly reduce OC recurrence, while improving DNMTi therapy viability. To achieve this, a large-scale prospective genome-wide DNA methylation profile study that spans different histotypes, includes paired samples (before and after chemotherapy), and integrates transcriptomic and methylomic analysis, is warranted.
Collapse
Affiliation(s)
- Kaiyang Song
- Green Templeton CollegeUniversity of OxfordOxfordUK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
8
|
Gao H, Yang J, He L, Wang W, Liu Y, Hu Y, Ge M, Ding J, Ye Q. The Diagnostic Potential of SHOX2 and RASSF1A DNA Methylation in Early Lung Adenocarcinoma. Front Oncol 2022; 12:849024. [PMID: 35837113 PMCID: PMC9273978 DOI: 10.3389/fonc.2022.849024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveMethylation of the promoters of SHOX2 and RASSF1A are potentially informative biomarkers for the diagnosis of early lung adenocarcinoma (LUAD). Abnormal methylation of SHOX2 and RASSF1A promoters may promote the occurrence and facilitate the progression of LUAD.Materials and MethodsWe selected 54 patients with early LUAD and 31 patients with benign lung nodules as a NJDT cohort and evaluated their DNA methylation and mRNA sequencing levels. The DNA methylation sequencing, mRNA sequencing, and clinical data for patients with LUAD were obtained from The Cancer Genome Atlas, and served as a TCGA cohort. We evaluated the diagnostic potential of a SHOX2 and RASSF1A combined promoter methylation assay for detection of early LUAD in the NJDT cohort. Then we explored the promoter methylation levels of SHOX2 and RASSF1A and their gene expression between normal and tumor samples at different stages in both cohorts. Pathways enriched between tumor and normal samples of methylation-positive patients in the NJDT cohort were analyzed.ResultsIn the NJDT cohort, the sensitivity of the combined promoter methylation assay on tumor samples was 74.07%, the sensitivity on paired tumor and paracancerous samples was 77.78%, and the specificities in both contexts were 100%. The combined promoter methylation-positive patients had clinicopathologic features including older age, larger tumors, deeper invasion, and higher Ki-67 expression. In both cohorts, SHOX2 expression increased and RASSF1A expression decreased in tumor samples. The promoter methylation level of SHOX2 and RASSF1A was significantly higher in tumor samples at stage I-II than that in normal samples. The promoter methylation levels of these two genes were both negative associated with their expression in early tumor samples. In the NJDT cohort, methylation-positive patients of both individual SHOX2 and RASSF1A assays exhibited upregulation of folate acid metabolism and nucleotide metabolism in tumor samples. The SHOX2 methylation-positive and RASSF1A methylation-positive patients showed the downregulation of pathways related to cell proliferation and apoptosis and pathways involved in DNA repair, cell growth and cell adhesion, respectively.ConclusionThe combined promoter methylation assay for SHOX2 and RASSF1A can be used for screening and diagnosis of early LUAD, with good sensitivity and specificity. The promoter methylation levels of SHOX2 and RASSF1A were associated with their abnormal mRNA expression, and affected DNA instability, cell proliferation, apoptosis and tumor microenvironment in patients with LUAD.
Collapse
Affiliation(s)
- Hong Gao
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu He
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanhong Liu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Hu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meiling Ge
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Ding
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Ye
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Qing Ye,
| |
Collapse
|
9
|
Zhu D, Li A, Lv Y, Fan Q. Traditional Chinese Medicine: A Class of Potentially Reliable Epigenetic Drugs. Front Pharmacol 2022; 13:907031. [PMID: 35774614 PMCID: PMC9237213 DOI: 10.3389/fphar.2022.907031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic modification, especially DNA methylation, plays a nonnegligible role in the occurrence and development of tumors. Increasing studies are indicating that traditional Chinese medicine (TCM) plays a considerable anti-tumor role by regulating the process of DNA methylation modification. Studies on TCM regulating DNA methylation modification mostly focus on the whole genome and abnormal methylation status by active ingredients or single compounds and Chinese herb formula (CHF). The balance and overall concept of TCM theory coincides with the balance of DNA methylation modification in the tumor environment. Regardless of how TCM modulates epigenetics in tumor, it has been shown to bet a class of potentially reliable epigenetic drug.
Collapse
Affiliation(s)
- Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Aiwu Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Lv
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Qin Fan,
| |
Collapse
|
10
|
Ye L, He Z, Li D, Chen L, Chen S, Guo P, Yu D, Ma L, Niu Y, Duan H, Xing X, Xiao Y, Zeng X, Wang Q, Dong G, Aschner M, Zheng Y, Chen W. CpG site-specific methylation as epi-biomarkers for the prediction of health risk in PAHs-exposed populations. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128538. [PMID: 35231813 DOI: 10.1016/j.jhazmat.2022.128538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Environmental insults can lead to alteration in DNA methylation of specific genes. To address the role of altered DNA methylation in prediction of polycyclic aromatic hydrocarbons (PAHs) exposure-induced genetic damage, we recruited two populations, including diesel engine exhausts (low-level) and coke oven emissions (high-level) exposed subjects. The positive correlation was observed between the internal exposure marker (1-hydroxypyrene) and the extents of DNA damage (P < 0.05). The methylation of representative genes, including TRIM36, RASSF1a, and MGMT in peripheral blood lymphocytes was quantitatively examined by bisulfite-pyrosequencing assay. The DNA methylation of these three genes in response to PAHs exposure were changed in a CpG-site-specific manner. The identified hot CpG site-specific methylation of three genes exhibited higher predictive power for DNA damage than the respective single genes in both populations. Furthermore, the dose-response relationship analysis revealed a nonlinear U-shape curve of TRIM36 or RASSF1a methylation in combined population, which led to determination of the threshold of health risk. Furthermore, we established a prediction model for genetic damage based on the unidirectional-alteration MGMT methylation levels. In conclusion, this study provides new insight into the application of multiple epi-biomarkers for health risk assessment upon PAHs exposure.
Collapse
Affiliation(s)
- Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhini He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Guo
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Lu Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
11
|
Aleotti V, Catoni C, Poggiana C, Rosato A, Facchinetti A, Scaini MC. Methylation Markers in Cutaneous Melanoma: Unravelling the Potential Utility of Their Tracking by Liquid Biopsy. Cancers (Basel) 2021; 13:6217. [PMID: 34944843 PMCID: PMC8699653 DOI: 10.3390/cancers13246217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| |
Collapse
|
12
|
Zhang X, Ma L, Tang Y, Han J, Qi Y, Huang D. Low-dose cadmium exposure facilitates cell proliferation by promoter hypermethylation of RASSF1A and DAPK1 genes. ENVIRONMENTAL TOXICOLOGY 2021; 36:2313-2321. [PMID: 34402589 DOI: 10.1002/tox.23345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) at low concentrations has a potential to promote cell proliferation. However, the molecular mechanisms of Cd-induced proliferation are not well understood. Here, we reported that Cd (0-500 nM) significantly promoted the proliferation of HepG2 cells as demonstrated by elevated cell viability, more EdU-positive cells and increased gene expression of KI-67 and COX-2. Meanwhile, the gene expression of DNA methyltransferases was found to be elevated while that of tumor suppressor genes DAPK1 and RASSF1A were decreased under Cd exposure. Correspondingly, the methylation level of promoters in DAPK1 and RASSF1A were increased. Specifically, the CpG sites at -461 (Chr3:50, 374, 481) of RASSF1A promoter, and that at -260 (Chr9:90, 113, 207), -239 (Chr9:90, 113, 228), and -68 (Chr9:90, 113, 399) of DAPK1 promoter, were significantly hypermethylated. Moreover, 5-azacytidine (an inhibitor of DNA methyltransferase) partly impaired Cd-induced promoter hypermethylation of RASSF1A and DAPK1 genes, increased their expressions and slowed down Cd-induced cell proliferation, suggesting that DNA methylation play an essential part in Cd-boosted proliferation. The study showed that Cd caused promoter hypermethylation of RASSF1A and DAPK1, decreasing their expression and leading to higher level of cell proliferation. Furthermore, Cd at low concentrations could influence DNA methylation, which may serve as the proliferative mechanism of Cd.
Collapse
Affiliation(s)
- Xingjie Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
- Department of Wildlife Management, Administration of Wildlife, Gansu Province, Lanzhou, China
| | - Lin Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yue Tang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
McKenna S, García-Gutiérrez L. Resistance to Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing? Int J Mol Sci 2021; 22:5115. [PMID: 34066022 PMCID: PMC8150731 DOI: 10.3390/ijms22105115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer and is therapeutically challenging, considering its high mutation rate. Following the development of therapies to target BRAF, the most frequently found mutation in melanoma, promising therapeutic responses were observed. While mono- and combination therapies to target the MAPK cascade did induce a therapeutic response in BRAF-mutated melanomas, the development of resistance to MAPK-targeted therapies remains a challenge for a high proportion of patients. Resistance mechanisms are varied and can be categorised as intrinsic, acquired, and adaptive. RASSF1A is a tumour suppressor that plays an integral role in the maintenance of cellular homeostasis as a central signalling hub. RASSF1A tumour suppressor activity is commonly lost in melanoma, mainly by aberrant promoter hypermethylation. RASSF1A loss could be associated with several mechanisms of resistance to MAPK inhibition considering that most of the signalling pathways that RASSF1A controls are found to be altered targeted therapy resistant melanomas. Herein, we discuss resistance mechanisms in detail and the potential role for RASSF1A reactivation to re-sensitise BRAF mutant melanomas to therapy.
Collapse
Affiliation(s)
| | - Lucía García-Gutiérrez
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
14
|
Saliva Gene Promoter Hypermethylation as a Biomarker in Oral Cancer. J Clin Med 2021; 10:jcm10091931. [PMID: 33947071 PMCID: PMC8124791 DOI: 10.3390/jcm10091931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Oral carcinogenesis is a multistep process characterized by a summation of multiple genetic and epigenetic alterations in key regulatory genes. The silencing of genes by aberrant promoter hypermethylation is thought to be an important epigenetic event in cancer development and progression which has great potential as a biomarker for early diagnosis, tumor molecular subtyping, prognosis, monitoring, and therapy. Aberrant DNA methylation has been detected in different liquid biopsies, which may represent a potential alternative to solid biopsies. The detection of methylated genes in saliva may have clinical application for noninvasive oral cancer screening and early diagnosis. Here, we review the current evidence on gene promoter hypermethylation in saliva.
Collapse
|
15
|
Natural products in the reprogramming of cancer epigenetics. Toxicol Appl Pharmacol 2021; 417:115467. [PMID: 33631231 DOI: 10.1016/j.taap.2021.115467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Owing to the technological advancements, including next generation sequencing, the significance of deregulated epigenetic mechanisms in cancer initiation, progression and treatment has become evident. The accumulating knowledge relating to the epigenetic markers viz. DNA methylation, Histone modifications and non-coding RNAs make them one of the most interesting candidates for developing anti-cancer therapies. The reversibility of deregulated epigenetic mechanisms through environmental and dietary factors opens numerous avenues in the field of chemoprevention and drug development. Recent studies have proven that plant-derived natural products encompass a great potential in targeting epigenetic signatures in cancer and numerous natural products are being explored for their possibility to be considered as "epi-drug". This review intends to highlight the major aberrant epigenetic mechanisms and summarizes the essential functions of natural products like Resveratrol, Quercetin, Genistein, EGCG, Curcumin, Sulforaphane, Apigenin, Parthenolide and Berberine in modulating these aberrations. This knowledge along with the challenges and limitations in this field has potential and wider implications in developing novel and successful therapeutic strategies. The increased focus in the area will possibly provide a better understanding for the development of dietary supplements and/or drugs either alone or in combination. The interaction of epigenetics with different hallmarks of cancer and how natural products can be utilized to target them will also be interesting in the future therapeutic approaches.
Collapse
|
16
|
Gupta V, Agarwal P, Deshpande P. Impact of RASSF1A gene methylation on clinico-pathological features of tumor and non-tumor tissue of breast cancer. Ann Diagn Pathol 2021; 52:151722. [PMID: 33621744 DOI: 10.1016/j.anndiagpath.2021.151722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Breast cancer is the most common malignancy in women caused by genetic and epigenetic changes. Promoter DNA methylation in tumor suppressor gene plays a major role in breast cancer. The study determined the association of promoter DNA methylation of RASSF1A gene with clinicopathological features in tumor and non-tumor tissue. MATERIALS AND METHODS A cross sectional study was conducted in the Department of Pathology, Government Institute of Medical Sciences, Greater Noida and Molecular Pathology Laboratory, Department of Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences. Two sections, one from tumor and the other from non-tumor tissue, were obtained and processed for DNA extraction and bisulphite conversion. Methylation specific PCR was done and results of RASSF1A promoter methylation were statistically correlated with clinicopathological features. RESULTS Of the 27 breast cancer tissue, 22 showed invasive ductal carcinoma, one showed invasive lobular carcinoma, another showed ductal carcinoma in situ and three cases showed malignant phyllodes tumor of breast. DNA promoter methylation was found in all the cases. 93% of tumor tissue samples and 67% of the non-tumor tissue samples were found to be aberrantly methylated. Tumor size and histological grade were found to be significantly (p-val <0.05) associated with the RASSF1A gene promoter methylation. CONCLUSION A significant association of higher tumor size and tumor histological grade with promoter methylation of RASSF1A gene exists suggestive of its being an important determinant of prognostic staging. This critical event in tumorigenesis may be of clinical utility in assessing breast cancer progression. MICRO ABSTRACT The study focuses on the RASSF1A gene promoter methylation and its impact on the clinicopathological features in Indian breast cancer patients highlighting the differences from other genetically different population. We found that RASFF1A gene methylation has significant impact on tumor size and tumor grade. The work carries high significance because it addresses the DNA methylation of tumor suppressor gene in relevance of breast cancer. It may also be the first such report on Indian patients with breast cancer.
Collapse
Affiliation(s)
- Vivek Gupta
- Department of Pathology & In-charge, Molecular Diagnostics and Research Laboratory, Government Institute of Medical Sciences, India.
| | - Prerna Agarwal
- Department of Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, India
| | | |
Collapse
|
17
|
Ortega MA, Fraile-Martínez O, García-Honduvilla N, Coca S, Álvarez-Mon M, Buján J, Teus MA. Update on uveal melanoma: Translational research from biology to clinical practice (Review). Int J Oncol 2020; 57:1262-1279. [PMID: 33173970 PMCID: PMC7646582 DOI: 10.3892/ijo.2020.5140] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma is the most common type of intraocular cancer with a low mean annual incidence of 5‑10 cases per million. Tumours are located in the choroid (90%), ciliary body (6%) or iris (4%) and of 85% are primary tumours. As in cutaneous melanoma, tumours arise in melanocytes; however, the characteristics of uveal melanoma differ, accounting for 3‑5% of melanocytic cancers. Among the numerous risk factors are age, sex, genetic and phenotypic predisposition, the work environment and dermatological conditions. Management is usually multidisciplinary, including several specialists such as ophthalmologists, oncologists and maxillofacial surgeons, who participate in the diagnosis, treatment and complex follow‑up of these patients, without excluding the management of the immense emotional burden. Clinically, uveal melanoma generates symptoms that depend as much on the affected ocular globe site as on the tumour size. The anatomopathological study of uveal melanoma has recently benefited from developments in molecular biology. In effect, disease classification or staging according to molecular profile is proving useful for the assessment of this type of tumour. Further, the improved knowledge of tumour biology is giving rise to a more targeted approach to diagnosis, prognosis and treatment development; for example, epigenetics driven by microRNAs as a target for disease control. In the present study, the main epidemiological, clinical, physiopathological and molecular features of this disease are reviewed, and the associations among all these factors are discussed.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
- Internal and Oncology Service (CIBER-EHD), University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Miguel A. Teus
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ophthalmology Service, University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
18
|
Xu G, Zhou X, Xing J, Xiao Y, Jin B, Sun L, Yang H, Du S, Xu H, Mao Y. Identification of RASSF1A promoter hypermethylation as a biomarker for hepatocellular carcinoma. Cancer Cell Int 2020; 20:547. [PMID: 33292241 PMCID: PMC7653745 DOI: 10.1186/s12935-020-01638-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background RAS association domain family protein 1A (RASSF1A) promoter hypermethylation is suggested to be linked to hepatocellular carcinoma (HCC), but the results remained controversial. Methods We evaluated how RASSF1A promoter hypermethylation affects HCC risk and its clinicopathological characteristics through meta-analysis. Data on DNA methylation in HCC and relevant clinical data were also collected based on The Cancer Genome Atlas (TCGA) database to investigate the prognostic role of RASSF1A promoter hypermethylation in HCC. Results Forty-four articles involving 4777 individuals were enrolled in the pooled analyses. The RASSF1A promoter methylation rate was notably higher in the HCC cases than the non-tumor cases and healthy individuals, and was significantly related to hepatitis B virus (HBV) infection-positivity and large tumor size. Kaplan–Meier survival analysis revealed that HCC cases with RASSF1A promoter hypermethylation had worse outcomes. Receiver operating characteristic curves confirmed that RASSF1A promoter methylation may be a marker of HCC-related prognoses. Conclusions RASSF1A promoter hypermethylation is a promising biomarker for the diagnosis of HCC from tissue and peripheral blood, and is an emerging therapeutic target against HCC.
Collapse
Affiliation(s)
- Gang Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoxiang Zhou
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiali Xing
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yao Xiao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
19
|
Lima APB, Almeida TC, Barros TMB, Rocha LCM, Garcia CCM, da Silva GN. Toxicogenetic and antiproliferative effects of chrysin in urinary bladder cancer cells. Mutagenesis 2020; 35:geaa021. [PMID: 32789469 DOI: 10.1093/mutage/geaa021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
The antitumour activity of chrysin have been studied in several types of cancer cells. In urinary bladder cancer, its cytotoxic effects have already demonstrated; however, its mechanism of action is not completely understood and the role of tumour protein p53 (TP53) gene in these effects is unclear. In this study, we investigated the role of chrysin (10, 20, 40, 60 80 and 100 µM) in progression of bladder tumour cells with different status of the TP53 gene and different degrees of tumour (RT4, grade 1, TP53 wild type; 5637, grade 2, TP53 mutated and T24, grade 3, TP53 mutated). Results demonstrated that chrysin inhibited cell proliferation by increasing reactive oxygen species and DNA damage and inhibited cell migration in all cell lines. In TP53 wild-type cells, a sub-G1 apoptotic population was present. In mutated TP53 cells, chrysin caused arrest at the G2/M phase and morphological changes accompanied by downregulation of PLK1, SRC and HOXB3 genes. In addition, in Grade 2 cells, chrysin induced global DNA hypermethylation and, in the highest-grade cells, downregulated c-MYC, FGFR3 and mTOR gene expression. In conclusion, chrysin has antiproliferative and toxicogenetic activity in bladder tumour cells independently of TP53 status; however, the mechanisms of action are dependent on TP53 status.
Collapse
Affiliation(s)
- Ana Paula Braga Lima
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Tamires Cunha Almeida
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Tatiane Martins Barcelos Barros
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Lorrana Cachuite Mendes Rocha
- Programa de Pós-graduação em Ciência Biológicas (CBIOL), Universidade Federal de Ouro Preto, Morro do Cruzeiro, Bauxita, Ouro Preto, Minas Gerais, Brazil
| | - Camila Carriao Machado Garcia
- Programa de Pós-graduação em Ciência Biológicas (CBIOL), Universidade Federal de Ouro Preto, Morro do Cruzeiro, Bauxita, Ouro Preto, Minas Gerais, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Bauxita, Ouro Preto, Minas Gerais, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
- Programa de Pós-graduação em Ciência Biológicas (CBIOL), Universidade Federal de Ouro Preto, Morro do Cruzeiro, Bauxita, Ouro Preto, Minas Gerais, Brazil
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Bauxita, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
20
|
Effects of Propolis and Phenolic Acids on Triple-Negative Breast Cancer Cell Lines: Potential Involvement of Epigenetic Mechanisms. Molecules 2020; 25:molecules25061289. [PMID: 32178333 PMCID: PMC7143942 DOI: 10.3390/molecules25061289] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/23/2022] Open
Abstract
Triple-negative breast cancer is an aggressive disease frequently associated with resistance to chemotherapy. Evidence supports that small molecules showing DNA methyltransferase inhibitory activity (DNMTi) are important to sensitize cancer cells to cytotoxic agents, in part, by reverting the acquired epigenetic changes associated with the resistance to therapy. The present study aimed to evaluate if chemical compounds derived from propolis could act as epigenetic drugs (epi-drugs). We selected three phenolic acids (caffeic, dihydrocinnamic, and p-coumaric) commonly detected in propolis and the (−)-epigallocatechin-3-gallate (EGCG) from green tea, which is a well-known DNA demethylating agent, for further analysis. The treatment with p-coumaric acid and EGCG significantly reduced the cell viability of four triple-negative breast cancer cell lines (BT-20, BT-549, MDA-MB-231, and MDA-MB-436). Computational predictions by molecular docking indicated that both chemicals could interact with the MTAse domain of the human DNMT1 and directly compete with its intrinsic inhibitor S-Adenosyl-l-homocysteine (SAH). Although the ethanolic extract of propolis (EEP) did not change the global DNA methylation content, by using MS-PCR (Methylation-Specific Polymerase Chain Reaction) we demonstrated that EEP and EGCG were able to partly demethylate the promoter region of RASSF1A in BT-549 cells. Also, in vitro treatment with EEP altered the RASSF1 protein expression levels. Our data indicated that some chemical compound present in the EEP has DNMTi activity and can revert the epigenetic silencing of the tumor suppressor RASSF1A. These findings suggest that propolis are a promising source for epi-drugs discovery.
Collapse
|
21
|
Wang M, Ye Q, Mao D, Li H. Research Progress in Liver-Regenerating Microenvironment and DNA Methylation in Hepatocellular Carcinoma: The Role of Traditional Chinese Medicine. Med Sci Monit 2020; 26:e920310. [PMID: 32144233 PMCID: PMC7077739 DOI: 10.12659/msm.920310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The development, progression, recurrence, and metastasis of hepatocellular carcinoma (HCC) are closely associated with an abnormal liver-regenerating microenvironment (LRM). Therefore, preventing and reversing an abnormal LRM is a potential therapeutic strategy against HCC. Studies are increasingly focusing on the impact of regeneration, fibrosis, angiogenesis, inflammation, immunomodulation, and hepatic stem cells on HCC development and progression. As a key epigenetic mechanism, DNA methylation is extensively involved in regulating physiological and pathological pathways. In this review, we summarize recent findings on the role of DNA methylation in the fibrotic, angiogenic, inflammatory/immune, and stem cell microenvironments of HCC, and discuss new advances in Traditional Chinese Medicine (TCM) on influencing the abnormal LRM, so as to gain new insights into alleviating the abnormal LRM via regulating DNA methylation by TCM.
Collapse
Affiliation(s)
- Minggang Wang
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China (mainland)
| | - Qianling Ye
- Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China (mainland)
| | - Dewen Mao
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China (mainland)
| | - Hanmin Li
- Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China (mainland)
| |
Collapse
|
22
|
García-Gutiérrez L, McKenna S, Kolch W, Matallanas D. RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers (Basel) 2020; 12:cancers12010229. [PMID: 31963420 PMCID: PMC7017281 DOI: 10.3390/cancers12010229] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The RASSF1A tumour suppressor is a scaffold protein that is involved in cell signalling. Increasing evidence shows that this protein sits at the crossroad of a complex signalling network, which includes key regulators of cellular homeostasis, such as Ras, MST2/Hippo, p53, and death receptor pathways. The loss of expression of RASSF1A is one of the most common events in solid tumours and is usually caused by gene silencing through DNA methylation. Thus, re-expression of RASSF1A or therapeutic targeting of effector modules of its complex signalling network, is a promising avenue for treating several tumour types. Here, we review the main modules of the RASSF1A signalling network and the evidence for the effects of network deregulation in different cancer types. In particular, we summarise the epigenetic mechanism that mediates RASSF1A promoter methylation and the Hippo and RAF1 signalling modules. Finally, we discuss different strategies that are described for re-establishing RASSF1A function and how a multitargeting pathway approach selecting druggable nodes in this network could lead to new cancer treatments.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
23
|
RASSF10 Is a TGFβ-Target That Regulates ASPP2 and E-Cadherin Expression and Acts as Tumor Suppressor That Is Epigenetically Downregulated in Advanced Cancer. Cancers (Basel) 2019; 11:cancers11121976. [PMID: 31817988 PMCID: PMC6966473 DOI: 10.3390/cancers11121976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
The Ras Association Domain Family (RASSF) encodes members of tumor suppressor genes which are frequently inactivated in human cancers. Here, the function and the regulation of RASSF10, that contains a RA (Ras-association) and two coiled domains, was investigated. We utilized mass spectrometry and immuno-precipitation to identify interaction partners of RASSF10. Additionally, we analyzed the up- and downstream pathways of RASSF10 that are involved in its tumor suppressive function. We report that RASSF10 binds ASPP1 (Apoptosis-stimulating protein of p53) and ASPP2 through its coiled-coils. Induction of RASSF10 leads to increased protein levels of ASPP2 and acts negatively on cell cycle progression. Interestingly, we found that RASSF10 is a target of the EMT (epithelial mesenchymal transition) driver TGFβ (Transforming growth factor beta) and that negatively associated genes of RASSF10 are significantly over-represented in an EMT gene set collection. We observed a positive correlation of RASSF10 expression and E-cadherin that prevents EMT. Depletion of RASSF10 by CRISPR/Cas9 technology induces the ability of lung cancer cells to proliferate and to invade an extracellular matrix after TGFβ treatment. Additionally, knockdown of RASSF10 or ASPP2 induced constitutive phosphorylation of SMAD2 (Smad family member 2). Moreover, we found that epigenetic reduction of RASSF10 levels correlates with tumor progression and poor survival in human cancers. Our study indicates that RASSF10 acts a TGFβ target gene and negatively regulates cell growth and invasion through ASPP2. This data suggests that epigenetic loss of RASSF10 contributes to tumorigenesis by promoting EMT induced by TGFβ.
Collapse
|
24
|
Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line. Sci Rep 2019; 9:17267. [PMID: 31754130 PMCID: PMC6872918 DOI: 10.1038/s41598-019-53509-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
The secreted frizzled-related protein 5 gene (SFRP5) that antagonize the Wnt/β-catenin signaling is frequently inactivated by promoter methylation and oncogenic activation of the Wnt signaling pathway is common in many cancers. The curcumin-rich Curcuma longa has been reported to potent anti-cancer property involved in epigenetic regulation to inhibit tumor suppressor gene methylation and re-expression. In a compounds screening, we found that curcumin can inhibit Wnt/β-catenin signaling. Therefore, the aim of this study was to investigate the effects of curcumin on SFRP5 DNA methylation modification in an ovarian cancer cell line (SKOV3). SKOV3 cells were treated with DMSO, 10 μM 5-aza-2′-deoxycytidine (DAC), 5 μM DAC, 20 μM curcumin, and 20 μM curcumin combined with 5 μM DAC for 96 hours, following which RNA and proteins were extracted for further analysis. The results showed that curcumin combined with 5 μM DAC may inhibit cancer cell colony formation, migration through EMT (epithelial–mesenchymal transition) process regulation, total DNMT activity, especially in DNMT3a protein expression, and may also regulate tumor suppressor gene SFRP5 expression involved in the Wnt/β-catenin signaling pathway. The combined treatment attenuated ovarian cancer development.
Collapse
|
25
|
Hou T, Ma J, Hu C, Zou F, Jiang S, Wang Y, Han C, Zhang Y. Decitabine reverses gefitinib resistance in PC9 lung adenocarcinoma cells by demethylation of RASSF1A and GADD45β promoter. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4002-4010. [PMID: 31933796 PMCID: PMC6949799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/23/2018] [Indexed: 06/10/2023]
Abstract
The acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is the major reason for the failure of target therapy in advanced non small cell lung cancer (NSCLC) patients, the mechanism of which has not been fully elucidated yet. The present study aimed to investigate the different DNA methylation profile before and after acquired EGFR-TKI resistance, and explore the influence of the DNA demethylater, decitabine, on EGFR-TKI resistance. The DNA methylation chip was used to screen the genes whose DNA methylation status were changed in the EGFR-TKI sensitive human NSCLC cell line PC9, and the induced EGFR-TKI resistant NSCLC cell line PC9/GR (harboring T790M mutation). According to the results and literature reports, the tumor suppressor genes, RASSF1A and GADD45β were selected for further research. Methylation specific PCR (MSP) and western blot further confirmed that the promoters of these two genes were methylated, and the protein expressions were significantly inhibited in PC9/GR cells. Additionally, decitabine, the DNA methyl transferase inhibitor, could reverse the methylation status of RASSF1A and GADD45β promoters, elevate protein expression, and partially restore the sensitivity of PC9/GR cells to EGFR-TKI. To conclude, our results suggested that the DNA methylation of RASSF1 and GADD45β may play a role in EGFR-TKI resistance, and epigenetic intervention might be an effective strategy to reverse EGFR-TKI resistance, suggesting further study.
Collapse
Affiliation(s)
- Tao Hou
- Department of Oncology, Second Xiangya Hospital, Central South University Changsha, Hunan, P. R. China
| | - Jin'an Ma
- Department of Oncology, Second Xiangya Hospital, Central South University Changsha, Hunan, P. R. China
| | - Chunhong Hu
- Department of Oncology, Second Xiangya Hospital, Central South University Changsha, Hunan, P. R. China
| | - Fangwen Zou
- Department of Oncology, Second Xiangya Hospital, Central South University Changsha, Hunan, P. R. China
| | - Shun Jiang
- Department of Oncology, Second Xiangya Hospital, Central South University Changsha, Hunan, P. R. China
| | - Yapeng Wang
- Department of Oncology, Second Xiangya Hospital, Central South University Changsha, Hunan, P. R. China
| | - Chen Han
- Department of Oncology, Second Xiangya Hospital, Central South University Changsha, Hunan, P. R. China
| | - Ying Zhang
- Department of Oncology, Second Xiangya Hospital, Central South University Changsha, Hunan, P. R. China
| |
Collapse
|
26
|
Waheed S, Cheng RY, Casablanca Y, Maxwell GL, Wink DA, Syed V. Nitric Oxide Donor DETA/NO Inhibits the Growth of Endometrial Cancer Cells by Upregulating the Expression of RASSF1 and CDKN1A. Molecules 2019; 24:molecules24203722. [PMID: 31623109 PMCID: PMC6832369 DOI: 10.3390/molecules24203722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is implicated in several biological processes, including cancer progression. At low concentrations, it promotes cell survival and tumor progression, and at high concentrations it causes apoptosis and cell death. Until now, the impact of NO donors has not been investigated on human endometrial tumors. Four cancer cell lines were exposed to different concentrations of DETA/NO for 24 to 120 h. The effects of DETA/NO on cell proliferation and invasion were determined utilizing MTS and Boyden chamber assays, respectively. The DETA/NO induced a dose and time-dependent reduction in cell viability by the activation of caspase-3 and cell cycle arrest at the G0/G1 phase that was associated with the attenuated expression of cyclin-D1 and D3. Furthermore, the reduction in the amount of CD133-expressing cancer stem-like cell subpopulation was observed following DETA/NO treatment of cells, which was associated with a decreased expression of stem cell markers and attenuation of cell invasiveness. To understand the mechanisms by which DETA/NO elicits anti-cancer effects, RNA sequencing (RNA-seq) was used to ascertain alterations in the transcriptomes of human endometrial cancer cells. RNA-seq analysis revealed that 14 of the top 21 differentially expressed genes were upregulated and seven were downregulated in endometrial cancer cells with DETA/NO. The genes that were upregulated in all four cell lines with DETA/NO were the tumor suppressors Ras association domain family 1 isoform A (RASSF1) and Cyclin-dependent kinase inhibitor 1A (CDKN1A). The expression patterns of these genes were confirmed by Western blotting. Taken together, the results provide the first evidence in support of the anti-cancer effects of DETA/NO in endometrial cancer.
Collapse
Affiliation(s)
- Sana Waheed
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Robert Ys Cheng
- Molecular Mechanism Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Yovanni Casablanca
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- Department of Obstetrics & Gynecology, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA 22042, USA.
| | - David A Wink
- Molecular Mechanism Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Viqar Syed
- Department of Obstetrics & Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
- John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
- Department of Molecular and Cell Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
27
|
MUC1-C represses the RASSF1A tumor suppressor in human carcinoma cells. Oncogene 2019; 38:7266-7277. [PMID: 31435022 PMCID: PMC6872931 DOI: 10.1038/s41388-019-0940-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Abstract
RASSF1A encodes a tumor suppressor that inhibits the RAS→RAF→MEK→ERK pathway and is one of the most frequently inactivated genes in human cancers. MUC1-C is an oncogenic effector of the cancer cell epigenome that is overexpressed in diverse carcinomas. We show here that MUC1-C represses RASSF1A expression in KRAS wild-type and mutant cancer cells. Mechanistically, MUC1-C occupies the RASSF1A promoter in a complex with the ZEB1 transcriptional repressor. In turn, MUC1-C/ZEB1 complexes recruit DNA methyltransferase 3b (DNMT3b) to the CpG island in the RASSF1A promoter. Targeting MUC1-C, ZEB1 and DNMT3b thereby decreases methylation of the CpG island and derepresses RASSF1A transcription. We also show that targeting MUC1-C regulates KRAS signaling, as evidenced by RNA-seq analysis, and decreases MEK/ERK activation, which is of importance for RAS-mediated tumorigenicity. These findings define a previously unrecognized role for MUC1-C in suppression of RASSF1A and support targeting MUC1-C as an approach for inhibiting MEK→ERK signaling.
Collapse
|
28
|
Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med 2019; 8:1958-1975. [PMID: 30945475 PMCID: PMC6536969 DOI: 10.1002/cam4.2108] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced for thousands of years and at the present time is widely accepted as an alternative treatment for cancer. In this review, we sought to summarize the molecular and cellular mechanisms underlying the chemopreventive and therapeutic activity of TCM, especially that of the Chinese herbal medicine-derived phytochemicals curcumin, resveratrol, and berberine. Numerous genes have been reported to be involved when using TCM treatments and so we have selectively highlighted the role of a number of oncogene and tumor suppressor genes in TCM therapy. In addition, the impact of TCM treatment on DNA methylation, histone modification, and the regulation of noncoding RNAs is discussed. Furthermore, we have highlighted studies of TCM therapy that modulate the tumor microenvironment and eliminate cancer stem cells. The information compiled in this review will serve as a solid foundation to formulate hypotheses for future studies on TCM-based cancer therapy.
Collapse
Affiliation(s)
- Yuening Xiang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zimu Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pengfei Zhu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jia Chen
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
29
|
Gui Z, Zhang H, Tan Q, Ling X, Liu Z, Peng J, Shao J, Wu M, Yuan Q, Li J, Pan Z, Zhong B, Liu L. Poly(ADP-ribose) polymerase-1 promotes expression of miR-155 by the up-regulation of methyl-CpG binding domain protein 2 in TK6 cells exposed to hydroquinone. Toxicol In Vitro 2019; 55:51-57. [DOI: 10.1016/j.tiv.2018.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/27/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
|
30
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
31
|
Dubois F, Jean-Jacques B, Roberge H, Bénard M, Galas L, Schapman D, Elie N, Goux D, Keller M, Maille E, Bergot E, Zalcman G, Levallet G. A role for RASSF1A in tunneling nanotube formation between cells through GEFH1/Rab11 pathway control. Cell Commun Signal 2018; 16:66. [PMID: 30305100 PMCID: PMC6180646 DOI: 10.1186/s12964-018-0276-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND By allowing intercellular communication between cells, tunneling nanotubes (TNTs) could play critical role in cancer progression. If TNT formation is known to require cytoskeleton remodeling, key mechanism controlling their formation remains poorly understood. METHODS The cells of human bronchial (HBEC-3, A549) or mesothelial (H2452, H28) lines are transfected with different siRNAs (inactive, anti-RASSF1A, anti-GEFH1 and / or anti-Rab11). At 48 h post-transfection, i) the number and length of the nanotubes per cell are quantified, ii) the organelles, previously labeled with specific tracers, exchanged via these structures are monitored in real time between cells cultured in 2D or 3D and in normoxia, hypoxia or in serum deprivation condition. RESULTS We report that RASSF1A, a key-regulator of cytoskeleton encoded by a tumor-suppressor gene on 3p chromosome, is involved in TNTs formation in bronchial and pleural cells since controlling proper activity of RhoB guanine nucleotide exchange factor, GEF-H1. Indeed, the GEF-H1 inactivation induced by RASSF1A silencing, leads to Rab11 accumulation and subsequent exosome releasing, which in turn contribute to TNTs formation. Finally, we provide evidence involving TNT formation in bronchial carcinogenesis, by reporting that hypoxia or nutriment privation, two almost universal conditions in human cancers, fail to prevent TNTs induced by the oncogenic RASSF1A loss of expression. CONCLUSIONS This finding suggests for the first time that loss of RASSF1A expression could be a potential biomarker for TNTs formation, such TNTs facilitating intercellular communication favoring multistep progression of bronchial epithelial cells toward overt malignancy.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France
| | - Bastien Jean-Jacques
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France
| | - Hélène Roberge
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France
| | - Magalie Bénard
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Ludovic Galas
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Damien Schapman
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Nicolas Elie
- Normandie Université, UNICAEN, SFR ICORE, Plateau CMABio3, F-14032, Caen, France
| | - Didier Goux
- Normandie Université, UNICAEN, SFR ICORE, Plateau CMABio3, F-14032, Caen, France
| | - Maureen Keller
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Normandie Université, UNICAEN, UPRES-EA-2608, F-14032, Caen, France
| | - Elodie Maille
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Normandie Université, UNICAEN, UMR 1086 INSERM, F-14032, Caen, France
| | - Emmanuel Bergot
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service de Pneumologie, CHU de Caen, F-14033, Caen, France
| | - Gérard Zalcman
- U830 INSERM, "Génétique et Biologie des cancers" Centre de Recherche, Institut Curie, Paris, France.,Service d'oncologie thoracique, Hôpital Bichat-Claude Bernard, AP-HP, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France. .,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France. .,Service D'Anatomie et Cytologie Pathologique, Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, CHU de Caen, Avenue de la côte de Nacre, 14032, Caen, France.
| |
Collapse
|
32
|
Abstract
Epigenetic modifications include DNA methylation, histone modification, microRNA and lncRNA regulations, and take part in many physiological and pathological processes. Recently, it has been found that natural compounds are essential in regulation of epigenetics. By influencing the expression and activities of genes related with epigenetics and altering the expression and functions of miRNAs, many natural compounds exhibit the biological and pharmaceutical activities in the prevention, diagnosis and treatment of many kinds of human diseases, such as cancer, diabetes and cardiovascular diseases. Here in this review, the effects of several natural compounds on epigenetics and the underlying mechanisms were summarized, providing a new insight into the role of natural compounds.
Collapse
Affiliation(s)
- Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou 510080, PR China
| | - Zuohua Chi
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou 510080, PR China
| | - Ruiping Gao
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou 510080, PR China
| | - Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and WesternMedicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
33
|
Pan G, Jiang L, Tang J, Guo F. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties. Int J Mol Sci 2018; 19:ijms19020511. [PMID: 29419752 PMCID: PMC5855733 DOI: 10.3390/ijms19020511] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an important biochemical process, and it has a close connection with many types of cancer. Research about DNA methylation can help us to understand the regulation mechanism and epigenetic reprogramming. Therefore, it becomes very important to recognize the methylation sites in the DNA sequence. In the past several decades, many computational methods—especially machine learning methods—have been developed since the high-throughout sequencing technology became widely used in research and industry. In order to accurately identify whether or not a nucleotide residue is methylated under the specific DNA sequence context, we propose a novel method that overcomes the shortcomings of previous methods for predicting methylation sites. We use k-gram, multivariate mutual information, discrete wavelet transform, and pseudo amino acid composition to extract features, and train a sparse Bayesian learning model to do DNA methylation prediction. Five criteria—area under the receiver operating characteristic curve (AUC), Matthew’s correlation coefficient (MCC), accuracy (ACC), sensitivity (SN), and specificity—are used to evaluate the prediction results of our method. On the benchmark dataset, we could reach 0.8632 on AUC, 0.8017 on ACC, 0.5558 on MCC, and 0.7268 on SN. Additionally, the best results on two scBS-seq profiled mouse embryonic stem cells datasets were 0.8896 and 0.9511 by AUC, respectively. When compared with other outstanding methods, our method surpassed them on the accuracy of prediction. The improvement of AUC by our method compared to other methods was at least 0.0399. For the convenience of other researchers, our code has been uploaded to a file hosting service, and can be downloaded from: https://figshare.com/s/0697b692d802861282d3.
Collapse
Affiliation(s)
- Gaofeng Pan
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
- Tianjin University Institute of Computational Biology, Tianjin University, Tianjin 300350, China.
| | - Limin Jiang
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
- Tianjin University Institute of Computational Biology, Tianjin University, Tianjin 300350, China.
| | - Jijun Tang
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
- Tianjin University Institute of Computational Biology, Tianjin University, Tianjin 300350, China.
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | - Fei Guo
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
- Tianjin University Institute of Computational Biology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|