1
|
Valverde-Salazar V, Ruiz-Gabarre D, García-Escudero V. Alzheimer's Disease and Green Tea: Epigallocatechin-3-Gallate as a Modulator of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:1460. [PMID: 37507998 PMCID: PMC10376369 DOI: 10.3390/antiox12071460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterised by a marked decline of both memory and cognition, along with pathophysiological hallmarks including amyloid beta peptide (Aβ) accumulation, tau protein hyperphosphorylation, neuronal loss and inflammation in the brain. Additionally, oxidative stress caused by an imbalance between free radicals and antioxidants is considered one of the main risk factors for AD, since it can result in protein, lipid and nucleic acid damage and exacerbate Aβ and tau pathology. To date, there is a lack of successful pharmacological approaches to cure or even ameliorate the terrible impact of this disease. Due to this, dietary compounds with antioxidative and anti-inflammatory properties acquire special relevance as potential therapeutic agents. In this context, green tea, and its main bioactive compound, epigallocatechin-3-gallate (EGCG), have been targeted as a plausible option for the modulation of AD. Specifically, EGCG acts as an antioxidant by regulating inflammatory processes involved in neurodegeneration such as ferroptosis and microglia-induced cytotoxicity and by inducing signalling pathways related to neuronal survival. Furthermore, it reduces tau hyperphosphorylation and aggregation and promotes the non-amyloidogenic route of APP processing, thus preventing the formation of Aβ and its subsequent accumulation. Taken together, these results suggest that EGCG may be a suitable candidate in the search for potential therapeutic compounds for neurodegenerative disorders involving inflammation and oxidative stress, including Alzheimer's disease.
Collapse
Affiliation(s)
- Víctor Valverde-Salazar
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Daniel Ruiz-Gabarre
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Vega García-Escudero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, 28031 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
3
|
Fakae LB, Harun MS, Ting DSJ, Dua HS, Cave GW, Zhu XQ, Stevenson CW, Elsheikha HM. Camellia sinensis solvent extract, epigallocatechin gallate and caffeine confer trophocidal and cysticidal effects against Acanthamoeba castellanii. Acta Trop 2023; 237:106729. [DOI: 10.1016/j.actatropica.2022.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
|
4
|
Afzal O, Dalhat MH, Altamimi ASA, Rasool R, Alzarea SI, Almalki WH, Murtaza BN, Iftikhar S, Nadeem S, Nadeem MS, Kazmi I. Green Tea Catechins Attenuate Neurodegenerative Diseases and Cognitive Deficits. Molecules 2022; 27:7604. [PMID: 36364431 PMCID: PMC9655201 DOI: 10.3390/molecules27217604] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/12/2023] Open
Abstract
Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the globe. They are mainly characterized by modified protein accumulation that might trigger various biological responses, including oxidative stress, inflammation, regulation of signaling pathways, and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea is one of the world's most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial effect of consumption of tea on neurodegenerative disorders has been reported in several human interventional and observational studies. The polyphenolic compounds found in green tea, known as catechins, have been demonstrated to have many therapeutic effects. They can help in preventing and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as antioxidant effects via blocking cytokines' excessive production and inflammatory pathways, as well as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation, amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative disorders. This review will examine catechins' neuroprotective effects by highlighting their biological, pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in various neurodegenerative and cognitive diseases, including Alzheimer's, Parkinson's, multiple sclerosis, and cognitive deficit.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shamaila Nadeem
- Department of Zoology, Kinnaird College for Women, 93-Jail Road Lahore, Lahore 54000, Pakistan
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Li B, Ning B, Yang F, Guo C. Nerve Growth Factor Promotes Retinal Neurovascular Unit Repair: A Review. Curr Eye Res 2022; 47:1095-1105. [PMID: 35499266 DOI: 10.1080/02713683.2022.2055084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: The purpose of this paper is to investigate how the imbalance of neurogenic factor (NGF) and its precursor (pro-NGF) mediates structural and functional impairment of retinal neurovascular unit (RNVU) that plays a role in retinal degenerative diseases.Methods: A literature search of electronic databases was performed.Results: The pro-apoptotic effect of pro-NGF and the pro-growth effect of NGF are essential for the pathological and physiological activities of RNVU. Studies show that NGF-based treatment of retinal degenerative diseases, including glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, has achieved remarkable efficacy.Conclusions: RNVU plays a complex and multifaceted role in retinal degenerative diseases. The exploration of the differential signaling expression of proNGF-NGF homeostasis under physiological and pathological conditions, and the corresponding pathological processes induced by its regulation, has prompted us to focus on earlier retinal neuroprotective therapeutic strategies to prevent retinal degenerative diseases.
Collapse
Affiliation(s)
- Baohua Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Bobiao Ning
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Fan Yang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Chengwei Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
6
|
何 建, 唐 健, 苏 虹, 沈 翠, 罗 胜, 王 海, 钱 源, 吕 梦. [Whole-transcriptome sequencing analysis of placental differential miRNA expression profile in Down syndrome]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:418-424. [PMID: 35426807 PMCID: PMC9010987 DOI: 10.12122/j.issn.1673-4254.2022.03.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To identify new biomarkers and molecular pathogenesis of Down syndrome (DS) by analyzing differentially expressed miRNAs in the placentas and their biological pathways. METHODS Whole transcriptome sequencing was used to identify the differentially expressed miRNAs in DS (n=3) and normal placental samples (n=3) diagnosed by prenatal diagnosis. The target genes were predicted using miRWalk, Targetscan and miRDB, and GO and KEGG pathway analyses were performed for gene enrichment studies. RESULTS We identified a total of 82 differentially expressed miRNAs in the placental tissues of DS, including 29 up-regulated miRNAs (fold change ≥2, P < 0.05) and 15 down-regulated miRNAs (fold change ≥2, P < 0.05), among which 10 miRNAs with relatively high expression abundance were selected for further analysis, including 4 up-regulated and 6 down-regulated miRNAs. These selected miRNAs shared the common target genes BTBD3 and AUTS2, both of which were associated with neurodevelopment. GO analysis showed that the target genes of the selected miRNAs were mainly enriched in protein binding, hydrolytic enzymes, metal ion binding protein combining, transferase activity, nucleotide, cytoplasmic constituents, nucleus composition, transcriptional regulation, RNA metabolism regulation, DNA-dependent RNA polymerase Ⅱ promoter transcriptional regulation, eye development, and sensory organ development. KEGG enrichment analysis showed that the target genes of these differentially expressed miRNAs were involved in the signaling pathways including tumor-related signaling pathway, PI3K-Akt signaling pathway, Ras signaling pathway, Rap1 signaling pathway, cytoskeletal regulatory signaling pathway, purine metabolization-related signaling pathway and P53 signaling pathway. CONCLUSION The differentially expressed miRNAs may play important roles in placental damage and pregnancy pathology in DS and provide clues for the prevention and treatment of mental retardation-related diseases.
Collapse
Affiliation(s)
- 建萍 何
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 健 唐
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 虹 苏
- 昆明市妇幼保健院遗传咨询门诊,云南 昆明 650031Genetic Counseling Clinic, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 翠花 沈
- 昆明市妇幼保健院产科,云南 昆明 650031Department of Obstetrics, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 胜军 罗
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 海涛 王
- 昆明市妇幼保健院病理科,云南 昆明 650031Department of Pathology, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 源 钱
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 梦欣 吕
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| |
Collapse
|
7
|
Errachid A, Nohawica M, Wyganowska-Swiatkowska M. A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomed Rep 2021; 15:95. [PMID: 34631050 PMCID: PMC8493546 DOI: 10.3892/br.2021.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to reduced secretory functions and oral and ocular dryness. The salivary glands are composed of acinar cells that are responsible for the secretion and production of secretory granules, which contain salivary components, such as amylase, mucins and immunoglobulins. This secretion process involves secretory vesicle trafficking, docking, priming and membrane fusion. A failure during any of the steps in exocytosis in the salivary glands results in the altered secretion of saliva. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors, actin, tight junctions and aquaporin 5 all serve an important role in the trafficking regulation of secretory vesicles in the secretion of saliva via exocytosis. Alterations in the expression and distribution of these selected proteins leads to salivary gland dysfunction, including SS. Several studies have demonstrated that green tea polyphenols, most notably Epigallocatechin gallate (EGCG), possess both anti-inflammatory and anti-apoptotic properties in normal human cells. Molecular, cellular and animal studies have indicated that EGCG can provide protective effects against autoimmune and inflammatory reactions in salivary glands in diseases such as SS. The aim of the present article is to provide a comprehensive and up-to-date review on the possible therapeutic interactions between EGCG and the selected molecular mechanisms associated with SS.
Collapse
Affiliation(s)
- Abdelmounaim Errachid
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland.,Earth and Life Institute, University Catholique of Louvain, B-1348 Louvain-la-Neuve, Ottignies-Louvain-la-Neuve, Belgium
| | - Michal Nohawica
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| | - Marzena Wyganowska-Swiatkowska
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| |
Collapse
|
8
|
Therapeutic Effects of Catechins in Less Common Neurological and Neurodegenerative Disorders. Nutrients 2021; 13:nu13072232. [PMID: 34209677 PMCID: PMC8308206 DOI: 10.3390/nu13072232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, neurological and neurodegenerative disorders research has focused on altered molecular mechanisms in search of potential pharmacological targets, e.g., imbalances in mechanisms of response to oxidative stress, inflammation, apoptosis, autophagy, proliferation, differentiation, migration, and neuronal plasticity, which occur in less common neurological and neurodegenerative pathologies (Huntington disease, multiple sclerosis, fetal alcohol spectrum disorders, and Down syndrome). Here, we assess the effects of different catechins (particularly of epigalocatechin-3-gallate, EGCG) on these disorders, as well as their use in attenuating age-related cognitive decline in healthy individuals. Antioxidant and free radical scavenging properties of EGCG -due to their phenolic hydroxyl groups-, as well as its immunomodulatory, neuritogenic, and autophagic characteristics, makes this catechin a promising tool against neuroinflammation and microglia activation, common in these pathologies. Although EGCG promotes the inhibition of protein aggregation in experimental Huntington disease studies and improves the clinical severity in multiple sclerosis in animal models, its efficacy in humans remains controversial. EGCG may normalize DYRK1A (involved in neural plasticity) overproduction in Down syndrome, improving behavioral and neural phenotypes. In neurological pathologies caused by environmental agents, such as FASD, EGCG enhances antioxidant defense and regulates placental angiogenesis and neurodevelopmental processes. As demonstrated in animal models, catechins attenuate age-related cognitive decline, which results in improvements in long-term outcomes and working memory, reduction of hippocampal neuroinflammation, and enhancement of neuronal plasticity; however, further studies are needed. Catechins are valuable compounds for treating and preventing certain neurodegenerative and neurological diseases of genetic and environmental origin. However, the use of different doses of green tea extracts and EGCG makes it difficult to reach consistent conclusions for different populations.
Collapse
|
9
|
Starbuck JM, Llambrich S, Gonzàlez R, Albaigès J, Sarlé A, Wouters J, González A, Sevillano X, Sharpe J, De La Torre R, Dierssen M, Vande Velde G, Martínez-Abadías N. Green tea extracts containing epigallocatechin-3-gallate modulate facial development in Down syndrome. Sci Rep 2021; 11:4715. [PMID: 33633179 PMCID: PMC7907288 DOI: 10.1038/s41598-021-83757-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Trisomy of human chromosome 21 (Down syndrome, DS) alters development of multiple organ systems, including the face and underlying skeleton. Besides causing stigmata, these facial dysmorphologies can impair vital functions such as hearing, breathing, mastication, and health. To investigate the therapeutic potential of green tea extracts containing epigallocatechin-3-gallate (GTE-EGCG) for alleviating facial dysmorphologies associated with DS, we performed an experimental study with continued pre- and postnatal treatment with two doses of GTE-EGCG supplementation in a mouse model of DS, and an observational study of children with DS whose parents administered EGCG as a green tea supplement. We evaluated the effect of high (100 mg/kg/day) or low doses (30 mg/kg/day) of GTE-EGCG, administered from embryonic day 9 to post-natal day 29, on the facial skeletal development in the Ts65Dn mouse model. In a cross-sectional observational study, we assessed the facial shape in DS and evaluated the effects of self-medication with green tea extracts in children from 0 to 18 years old. The main outcomes are 3D quantitative morphometric measures of the face, acquired either with micro-computed tomography (animal study) or photogrammetry (human study). The lowest experimentally tested GTE-EGCG dose improved the facial skeleton morphology in a mouse model of DS. In humans, GTE-EGCG supplementation was associated with reduced facial dysmorphology in children with DS when treatment was administered during the first 3 years of life. However, higher GTE-EGCG dosing disrupted normal development and increased facial dysmorphology in both trisomic and euploid mice. We conclude that GTE-EGCG modulates facial development with dose-dependent effects. Considering the potentially detrimental effects observed in mice, the therapeutic relevance of controlled GTE-EGCG administration towards reducing facial dysmorphology in young children with Down syndrome has yet to be confirmed by clinical studies.
Collapse
Affiliation(s)
- John M Starbuck
- Department of Anthropology, University of Central Florida, Orlando, FL, USA
- Indiana University Robert H. McKinney School of Law, Indianapolis, IN, USA
| | - Sergi Llambrich
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Flanders, Belgium
| | - Rubèn Gonzàlez
- GREAB-Research Group in Biological Anthropology, Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Julia Albaigès
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Rare Diseases-CIBERER, Barcelona, Spain
| | - Anna Sarlé
- GREAB-Research Group in Biological Anthropology, Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jens Wouters
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Flanders, Belgium
| | - Alejandro González
- GTM-Grup de Recerca en Tecnologies Mèdia, Universitat Ramon Llull, La Salle, Barcelona, Spain
| | - Xavier Sevillano
- GTM-Grup de Recerca en Tecnologies Mèdia, Universitat Ramon Llull, La Salle, Barcelona, Spain
| | - James Sharpe
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | - Rafael De La Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition-CIBERobn, Madrid, Spain
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Rare Diseases-CIBERER, Barcelona, Spain
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Flanders, Belgium
| | - Neus Martínez-Abadías
- GREAB-Research Group in Biological Anthropology, Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), Universitat de Barcelona (UB), Barcelona, Spain.
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain.
| |
Collapse
|
10
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
11
|
Martínez Cué C, Dierssen M. Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome. PROGRESS IN BRAIN RESEARCH 2020; 251:269-302. [DOI: 10.1016/bs.pbr.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Han W, Dang R, Xu P, Li G, Zhou X, Chen L, Guo Y, Yang M, Chen D, Jiang P. Altered fibrinolytic system in rat models of depression and patients with first-episode depression. Neurobiol Stress 2019; 11:100188. [PMID: 31417944 PMCID: PMC6692056 DOI: 10.1016/j.ynstr.2019.100188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease involved in cleavage of neurotrophic factors. In addition, tPA and neuroserpin can also directly bind to low density lipoprotein receptor-related protein 1 (LRP1), promoting neurogenesis and neurite outgrowth. Given both the cleavage and non-cleavage actions of the fibrinolytic system are crucial in neurological functions, the present study, for the first time, systematically detected the changes of fibrinolytic system factors in rats exposed to chronic unpredictable mild stress (CUMS) or lipopolysaccharide (LPS) and patients with depression. In general, our data demonstrated that both CUMS and LPS reduced tPA but elevated plasminogen activator inhibitor-1 (PAI-1; SERPINE1) mRNA expression. Intriguingly, decreased expression of neuroserpin and LRP1 was also observed in rats exposed to CUMS or LPS. The down-regulated neuroserpin and LRP1 signaling were confirmed by western blotting and immunoflurence data. Likewise, elevated PAI-1 but a significant reduction of neuroserpin and LRP1 mRNA expression were observed in the peripheral blood mononuclear cells (PBMCs) of patients with first-episode depression, and the mRNA levels of PAI-1, neuroserpin and LRP1 were correlated with the Beck Depression inventory (BDI) scores, further strengthening the clinical significance and involvement of the fibrinolytic system in depression. Collectively, the present study demonstrated the alterations of fibrinolytic system in stressed and inflamed brain and in patients with first-episode depression, firstly showing that not only the cleavage actions, but also the non-cleavage actions of the system may play an essential role in the development of depression.
Collapse
Affiliation(s)
- Wenxiu Han
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Ruili Dang
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Pengfei Xu
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Gongying Li
- Department of Mental Health, Jining Medical University, Jining, 272000, China
| | - Xueyuan Zhou
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Lei Chen
- Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yujin Guo
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Mengqi Yang
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Dan Chen
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| |
Collapse
|
13
|
Huang ST, Hung YA, Yang MJ, Chen IZ, Yuann JMP, Liang JY. Effects of Epigallocatechin Gallate on the Stability of Epicatechin in a Photolytic Process. Molecules 2019; 24:molecules24040787. [PMID: 30813243 PMCID: PMC6413119 DOI: 10.3390/molecules24040787] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
Catechins belonging to polyhydroxylated polyphenols are the primary compounds found in green tea. They are associated with many physiological properties. Epicatechin (EC) is a non-gallate-type catechin with four phenolic hydroxyl groups attached. The changes in EC treated with color light illumination in an alkaline condition were investigated by chromatographic and mass analyses in this study. In particular, the superoxide anion radical (O₂•-) was investigated during the EC photolytic process. EC is unstable under blue light illumination in an alkaline solution. When EC was treated with blue light illumination in an alkaline solution, O₂•- was found to occur via a photosensitive redox reaction. In addition, the generation of monomeric, dimeric, and trimeric compounds is investigated. On the other hand, epigallocatechin gallate (EGCG), which is a gallate-type catechin, is stable under blue light illumination in an alkaline solution. Adding EGCG, during the blue light illumination treatment of EC decreased photolytic formation, suggesting that gallate-type catechins can suppress the photosensitive oxidation of EC. Gallate-type catechins are formed via the esterification of non-gallate-type catechins and gallic acid (GA). The carbonyl group on the gallate moiety of gallate-type catechins appears to exhibit its effect on the stability against the photosensitive oxidation caused by blue light illumination.
Collapse
Affiliation(s)
- Shiuh-Tsuen Huang
- Department of Science Education and Application, National Taichung University of Education, Taichung 40306, Taiwan.
| | - Yi-An Hung
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan.
| | - Meei-Ju Yang
- Tea Research and Extension Station, Taoyuan 32654, Taiwan.
| | - Iou-Zen Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan.
| | - Jeu-Ming P Yuann
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan.
| | - Ji-Yuan Liang
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan.
| |
Collapse
|
14
|
Nakano S, Megro SI, Hase T, Suzuki T, Isemura M, Nakamura Y, Ito S. Computational Molecular Docking and X-ray Crystallographic Studies of Catechins in New Drug Design Strategies. Molecules 2018; 23:E2020. [PMID: 30104534 PMCID: PMC6222539 DOI: 10.3390/molecules23082020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 12/16/2022] Open
Abstract
Epidemiological and laboratory studies have shown that green tea and green tea catechins exert beneficial effects on a variety of diseases, including cancer, metabolic syndrome, infectious diseases, and neurodegenerative diseases. In most cases, (-)-epigallocatechin gallate (EGCG) has been shown to play a central role in these effects by green tea. Catechins from other plant sources have also shown health benefits. Many studies have revealed that the binding of EGCG and other catechins to proteins is involved in its action mechanism. Computational docking analysis (CMDA) and X-ray crystallographic analysis (XCA) have provided detailed information on catechin-protein interactions. Several of these studies have revealed that the galloyl moiety anchors it to the cleft of proteins through interactions with its hydroxyl groups, explaining the higher activity of galloylated catechins such as EGCG and epicatechin gallate than non-galloylated catechins. In this paper, we review the results of CMDA and XCA of EGCG and other plant catechins to understand catechin-protein interactions with the expectation of developing new drugs with health-promoting properties.
Collapse
Affiliation(s)
- Shogo Nakano
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| | - Shin-Ichi Megro
- Biological Science Research, Kao Corporation, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Tadashi Hase
- Research and Development, Core Technology, Kao Corporation, Sumida, Tokyo 131-8501, Japan.
| | - Takuji Suzuki
- Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan.
| | - Mamoru Isemura
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| | - Yoriyuki Nakamura
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| | - Sohei Ito
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| |
Collapse
|