1
|
Peng W, Feng H, Pang L, Zhang J, Hao Y, Wei X, Xia Q, Wei Z, Song W, Wang S, Liu J, Chen K, Wang T. Downregulation of CAMK2N1 due to DNA Hypermethylation Mediated by DNMT1 that Promotes the Progression of Prostate Cancer. JOURNAL OF ONCOLOGY 2023; 2023:4539045. [PMID: 36755811 PMCID: PMC9902116 DOI: 10.1155/2023/4539045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 02/01/2023]
Abstract
Calcium/calmodulin-dependentprotein kinase II inhibitor I (CAMK2N1) as one of the tumor suppressor genes is significantly downregulated in prostate cancer (PCa). Reduced expression of CAMK2N1 is positively correlated with PCa progression. However, the mechanisms of CAMK2N1 downregulation in PCa are still unclear. The promoter region of CAMK2N1 contains a large number of CG loci, providing the possibility for DNA methylation. Consequently, we hypothesized that DNA methylation can result in the reduced expression of CAMK2N1 in PCa. In the presented study, the DNA methylation level of CAMK2N1 in prostate cells and clinical specimens was determined by bisulfite sequencing (BS), pyrosequencing, and in silico analysis. Results showed that CAMK2N1 was highly methylated in PCa cells and tissues compared to normal prostate epithelial cells and nonmalignant prostate tissues, which was associated with the clinicopathological characteristics in PCa patients. Afterwards, we explored the expression of CAMK2N1 and its DNA methylation level by qRT-PCR, western blot, BS, and methylation-specific PCR in PCa cells after 5-Aza-CdR treatment or DNMT1 genetic modification, which demonstrated that the reduced expression of CAMK2N1 can be restored by 5-Aza-CdR treatment via demethylation. Moreover, DNMT1 formed a positive feedback loop with CAMK2N1 in PCa cells. The expression of CAMK2N1 was downregulated by DNMT1-mediated DNA methylation, which reversely induced DNMT1 expression through activating AKT or ERK signaling pathway. Finally, functional assays including wound healing, invasion, and migration assay, as well as the xenograft model in nude mice indicated that CAMK2N1 inhibited the invasion, migration, and proliferation of PCa cells and these effects were reversed by DNMT1 overexpression. In conclusion, DNMT1-mediated hypermethylation of CAMK2N1 not only downregulates the gene expression but also promotes the progression of PCa.
Collapse
Affiliation(s)
- Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linhao Pang
- Department of Urology, Suining Central Hospital, Chongqing Medical University, Suining, China
| | - Junfeng Zhang
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewen Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Novel Nickel(II), Palladium(II), and Platinum(II) Complexes with O, S Bidendate Cinnamic Acid Ester Derivatives: An In Vitro Cytotoxic Comparison to Ruthenium(II) and Osmium(II) Analogues. Int J Mol Sci 2022; 23:ijms23126669. [PMID: 35743112 PMCID: PMC9224311 DOI: 10.3390/ijms23126669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Since the discovery of cisplatin’s cytotoxic properties, platinum(II) compounds have attracted much interest in the field of anticancer drug development. Over the last few years, classical structure−activity relationships (SAR) have been broken by some promising new compounds based on platinum or other metals. We focus on the synthesis and characterization of 17 different complexes with β-hydroxydithiocinnamic acid esters as O,S bidendate ligands for nickel(II), palladium(II), and platinum(II) complexes. (2) Methods: The bidendate compounds were synthesized and characterized using classical methods including NMR spectroscopy, MS spectrometry, elemental analysis, and X-ray crystallography, and their cytotoxic potential was assessed using in vitro cell culture assays. Data were compared with other recently reported platinum(II), ruthenium(II), and osmium(II) complexes based on the same main ligand system. (3) Results: SAR analyses regarding the metal ion (M), and the alkyl-chain position (P) and length (L), revealed the following order of the effect strength for in vitro activity: M > P > L. The highest activities have Pd complexes and ortho-substituted compounds. Specific palladium(II) complexes show lower IC50 values compared to cisplatin, are able to elude cisplatin resistance mechanisms, and show a higher cancer cell specificity. (4) Conclusion: A promising new palladium(II) candidate (Pd3) should be evaluated in further studies using in vivo model systems, and the identified SARs may help to target platinum-resistant tumors.
Collapse
|
3
|
Hildebrandt J, Häfner N, Kritsch D, Görls H, Dürst M, Runnebaum IB, Weigand W. Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms. Int J Mol Sci 2022; 23:ijms23094976. [PMID: 35563367 PMCID: PMC9102668 DOI: 10.3390/ijms23094976] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Daniel Kritsch
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Ingo B. Runnebaum
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| |
Collapse
|
4
|
RUNX3 Transcript Variants Have Distinct Roles in Ovarian Carcinoma and Differently Influence Platinum Sensitivity and Angiogenesis. Cancers (Basel) 2021; 13:cancers13030476. [PMID: 33530588 PMCID: PMC7866085 DOI: 10.3390/cancers13030476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epithelial ovarian cancer treatment is limited by missing predictive markers, frequent chemotherapy resistance and an incomplete understanding of the biology of tumors. Earlier work proved that hypermethylation of the gene RUNX3 coding for a transcription factor has prognostic value, and RUNX3 transcript variant overexpression, regulated by this epigenetic mechanism, influences cisplatin sensitivity and malignant properties of cells contrary. The present data validate RUNX3 transcript variant-specific effects for high-grade serous ovarian cancer and identify RUNX3-regulated genes and processes. Specifically, DNA damage repair and angiogenesis are influenced by RUNX3, and transcript variant 1 mediates stronger carcinogenic properties. Abstract The prognosis of late-stage epithelial ovarian cancer (EOC) patients is affected by chemotherapy response and the malignant potential of the tumor cells. In earlier work, we identified hypermethylation of the runt-related transcription factor 3 gene (RUNX3) as a prognostic biomarker and contrary functions of transcript variants (TV1 and TV2) in A2780 and SKOV3 cells. The aim of the study was to further validate these results and to increase the knowledge about RUNX3 function in EOC. New RUNX3 overexpression models of high-grade serous ovarian cancer (HGSOC) were established and analyzed for phenotypic (IC50 determination, migration, proliferation and angiogenesis assay, DNA damage analysis) and transcriptomic consequences (NGS) of RUNX3 TV1 and TV2 overexpression. Platinum sensitivity was affected by a specific transcript variant depending on BRCA background. RUNX3 TV2 induced an increased sensitivity in BRCA1wt cells (OVCAR3), whereas TV1 increased the sensitivity and induced a G2/M arrest under treatment in BRCA1mut cells (A13-2-12). These different phenotypes relate to differences in DNA repair: homologous recombination deficient A13-2-12 cells show less γH2AX foci despite higher levels of Pt-DNA adducts. RNA-Seq analyses prove transcript variant and cell-line-specific RUNX3 effects. Pathway analyses revealed another clinically important function of RUNX3—regulation of angiogenesis. This was confirmed by thrombospondin1 analyses, HUVEC spheroid sprouting assays and proteomic profiling. Importantly, conditioned media (CM) from RUNX3 TV1 overexpressing A13-2-12 cells induced an increased HUVEC sprouting. Altogether, the presented data support the hypothesis of different functions of RUNX3 transcript variants related to the clinically relevant processes—platinum resistance and angiogenesis.
Collapse
|
5
|
Heinze K, Rengsberger M, Gajda M, Jansen L, Osmers L, Oliveira-Ferrer L, Schmalfeldt B, Dürst M, Häfner N, Runnebaum IB. CAMK2N1/RUNX3 methylation is an independent prognostic biomarker for progression-free and overall survival of platinum-sensitive epithelial ovarian cancer patients. Clin Epigenetics 2021; 13:15. [PMID: 33482905 PMCID: PMC7824928 DOI: 10.1186/s13148-021-01006-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To date, no predictive or prognostic molecular biomarkers except BRCA mutations are clinically established for epithelial ovarian cancer (EOC) despite being the deadliest gynecological malignancy. Aim of this biomarker study was the analysis of DNA methylation biomarkers for their prognostic value independent from clinical variables in a heterogeneous cohort of 203 EOC patients from two university medical centers. RESULTS The marker combination CAMK2N1/RUNX3 exhibited a significant prognostic value for progression-free (PFS) and overall survival (OS) of sporadic platinum-sensitive EOC (n = 188) both in univariate Kaplan-Meier (LogRank p < 0.05) and multivariate Cox regression analysis (p < 0.05; hazard ratio HR = 1.587). KRT86 methylation showed a prognostic value only in univariate analysis because of an association with FIGO staging (Fisher's exact test p < 0.01). Thus, it may represent a marker for EOC staging. Dichotomous prognostic values were observed for KATNAL2 methylation depending on BRCA aberrations. KATNAL2 methylation exhibited a negative prognostic value for PFS in sporadic EOC patients without BRCA1 methylation (HR 1.591, p = 0.012) but positive prognostic value in sporadic EOC with BRCA1 methylation (HR 0.332, p = 0.04) or BRCA-mutated EOC (HR 0.620, n.s.). CONCLUSION The retrospective analysis of 188 sporadic platinum-sensitive EOC proved an independent prognostic value of the methylation marker combination CAMK2N1/RUNX3 for PFS and OS. If validated prospectively this combination may identify EOC patients with worse prognosis after standard therapy potentially benefiting from intensive follow-up, maintenance therapies or inclusion in therapeutic studies. The dichotomous prognostic value of KATNAL2 should be validated in larger sample sets of EOC.
Collapse
Affiliation(s)
- Karolin Heinze
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Matthias Rengsberger
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Mieczyslaw Gajda
- Department of Forensic Medicine, Section of Pathology, Jena University Hospital - Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Lars Jansen
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Linea Osmers
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Matthias Dürst
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Norman Häfner
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany.
| | - Ingo B Runnebaum
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany.
| |
Collapse
|
6
|
Peng JM, Tseng RH, Shih TC, Hsieh SY. CAMK2N1 suppresses hepatoma growth through inhibiting E2F1-mediated cell-cycle signaling. Cancer Lett 2020; 497:66-76. [PMID: 33068700 DOI: 10.1016/j.canlet.2020.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 01/24/2023]
Abstract
Human kinome/phosphatome screen identified CAMK2N1 genes suppressing the development of human hepatocellular carcinoma (HCC). CAMK2N1 downregulation was found in 47% HCCs and associated with poor prognosis. The downregulation was mainly attributed to its genome deletion (28.4%) and DNA hypermethylation of its promoter (12.5%). Silencing and ectopic expression of CAMK2N1 respectively enhanced and suppressed cell proliferation, colony formation, and xenograft tumor growth in nude mice. Comparative proteomics revealed that CAMK2N1 silencing transcriptionally deregulated the genes regulated by E2F1 (89 out of the 114 E2F-signaling targets, P = 8.8E-240). The promoter assays revealed that CAMK2N1 suppressed E2F1-mediated transcriptional activities. CAMK2N1 silencing induced cyclins D/E expression, whereas its ectopic expression induced P27/KIP1 expression and suppressed the cell cycle. CAMK2N1 was translocated from the nuclei to the cytoplasm when cell proliferation reached the stationary phase, where its functions as an endogenous inhibitor of CAMK2. In conclusion, CAMK2NA is a novel 1p36 tumor suppressor gene that inhibits E2F1 transcriptional activities and induces P27/KIP1 expression. CAMK2N1-CAMK2 signaling forms a mechanism that restricts the cell cycle progression. Its deregulation could lead to tumorigenesis and might serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ruo-Han Tseng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Tsung-Chieh Shih
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Chang Gung University, Institute of Biomedical Sciences, College of Medicine, Taoyuan, 333, Taiwan.
| |
Collapse
|
7
|
Hildebrandt J, Trautwein R, Kritsch D, Häfner N, Görls H, Dürst M, Runnebaum IB, Weigand W. Synthesis, characterization and biological investigation of platinum(ii) complexes with asparagusic acid derivatives as ligands. Dalton Trans 2019; 48:936-944. [PMID: 30565617 DOI: 10.1039/c8dt02553c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After more than 50 years of platinum-based anticancer research only three compounds are in clinical use worldwide. The use of the well-known lead compound of this class of anticancer agents, cisplatin, is limited by its side effects and varying resistance mechanisms. Therefore, we report on platinum(ii) compounds with asparagusic acid derivatives as ligands which show interesting anticancer results on cisplatin resistant cell lines.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldstraße 8, 07743 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Brzozowski JS, Skelding KA. The Multi-Functional Calcium/Calmodulin Stimulated Protein Kinase (CaMK) Family: Emerging Targets for Anti-Cancer Therapeutic Intervention. Pharmaceuticals (Basel) 2019; 12:ph12010008. [PMID: 30621060 PMCID: PMC6469190 DOI: 10.3390/ph12010008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/25/2023] Open
Abstract
The importance of Ca2+ signalling in key events of cancer cell function and tumour progression, such as proliferation, migration, invasion and survival, has recently begun to be appreciated. Many cellular Ca2+-stimulated signalling cascades utilise the intermediate, calmodulin (CaM). The Ca2+/CaM complex binds and activates a variety of enzymes, including members of the multifunctional Ca2+/calmodulin-stimulated protein kinase (CaMK) family. These enzymes control a broad range of cancer-related functions in a multitude of tumour types. Herein, we explore the cancer-related functions of these kinases and discuss their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joshua S Brzozowski
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kathryn A Skelding
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|