1
|
Li J, Liang J, Wang M, Jiang Y, Li W, Huang M, Huang Y, Xie Y, Chen J, Chen T. Full-length transcriptome analysis of male and female gonads in Japanese Eel (Anguilla japonica). BMC Genomics 2025; 26:89. [PMID: 39885385 PMCID: PMC11783869 DOI: 10.1186/s12864-025-11279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The Japanese eel (Anguilla japonica) holds significant economic value in East Asia, but limitations in understanding its reproductive biology have hindered advancements in artificial breeding techniques. Previous research has primarily focused on conserved sex differentiation genes, offering limited insights into the broader molecular mechanisms driving gonadal development and sexual dimorphism. To address these limitations, this study aims to investigate key genes and pathways involved in gonadal development through a comprehensive transcriptomic analysis of male and female eel gonads. RESULTS PacBio Iso-Seq and Illumina RNA-Seq technologies were combined to conduct a full-length transcriptome analysis of male and female Japanese eel gonads at a post-differentiation, pre-maturation stage. A total of 24,661 unigenes were identified in ovaries and 15,023 in testes, along with genomic regulatory elements such as transcription factors, simple sequence repeats, and long non-coding RNAs. Additionally, 1,210 differentially expressed genes were detected. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed significant pathways involved in cell cycle regulation, metabolic processes, apoptosis, and hormone activity. Notably, several reproductive-related genes, including bambi, ccnb1, cdc20, gdf9, prlh, ccdc39, chrebp, tspo, syce3, and ngb, demonstrated significant dimorphic expression in eel gonads. CONCLUSIONS This study provides valuable insights into the molecular mechanisms of gonadal differentiation and sexual dimorphism in Japanese eels. The findings expand the genetic resources available for the eel breeding industry and could facilitate the development of improved artificial breeding techniques focused on reproductive development.
Collapse
Affiliation(s)
- Jiangling Li
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Jingjie Liang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Mengyang Wang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yuewen Jiang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Li
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Mingxi Huang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yan Huang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yangjie Xie
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Jianchun Chen
- Xiamen Institute of Marine and Fisheries, Xiamen, Fujian, 361013, China
| | - Tiansheng Chen
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
2
|
Zhang X, Wu Y, Zhang Y, Zhang J, Chu P, Chen K, Liu H, Luo Q, Fei S, Zhao J, Ou M. Histological observations and transcriptome analyses reveal the dynamic changes in the gonads of the blotched snakehead (Channa maculata) during sex differentiation and gametogenesis. Biol Sex Differ 2024; 15:70. [PMID: 39244546 PMCID: PMC11380785 DOI: 10.1186/s13293-024-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices. METHODS The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E2 and T were quantified to understand sex steroid synthesis. RESULTS Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E2 and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. CONCLUSIONS This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuxia Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jin Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China.
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
3
|
Huang X, Zhao R, Xu Z, Fu C, Xie L, Li S, Wang X, Zhang Y. gjSOX9 Cloning, Expression, and Comparison with gjSOXs Family Members in Gekko japonicus. Curr Issues Mol Biol 2023; 45:9328-9341. [PMID: 37998761 PMCID: PMC10670703 DOI: 10.3390/cimb45110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
SOX9 plays a crucial role in the male reproductive system, brain, and kidneys. In this study, we firstly analyzed the complete cDNA sequence and expression patterns for SOX9 from Gekko japonicus SOX9 (gjSOX9), carried out bioinformatic analyses of physiochemical properties, structure, and phylogenetic evolution, and compared these with other members of the gjSOX family. The results indicate that gjSOX9 cDNA comprises 1895 bp with a 1482 bp ORF encoding 494aa. gjSOX9 was not only expressed in various adult tissues but also exhibited a special spatiotemporal expression pattern in gonad tissues. gjSOX9 was predicted to be a hydrophilic nucleoprotein with a characteristic HMG-Box harboring a newly identified unique sequence, "YKYQPRRR", only present in SOXE members. Among the 20 SOX9 orthologs, gjSOX9 shares the closest genetic relationships with Eublepharis macularius SOX9, Sphacrodactylus townsendi SOX9, and Hemicordylus capensis SOX9. gjSOX9 and gjSOX10 possessed identical physicochemical properties and subcellular locations and were tightly clustered with gjSOX8 in the SOXE group. Sixteen gjSOX family members were divided into six groups: SOXB, C, D, E, F, and H with gjSOX8, 9, and 10 in SOXE among 150 SOX homologs. Collectively, the available data in this study not only facilitate a deep exploration of the functions and molecular regulation mechanisms of the gjSOX9 and gjSOX families in G. japonicus but also contribute to basic research regarding the origin and evolution of SOX9 homologs or even sex-determination mode in reptiles.
Collapse
Affiliation(s)
- Xingze Huang
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Ruonan Zhao
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Zhiwang Xu
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Chuyan Fu
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Lei Xie
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Shuran Li
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Xiaofeng Wang
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Yongpu Zhang
- Department of Biotechnology, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Department of Bioscience, Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory of Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| |
Collapse
|
4
|
Shen X, Yáñez JM, Bastos Gomes G, Poon ZWJ, Foster D, Alarcon JF, Domingos JA. Comparative gonad transcriptome analysis in cobia ( Rachycentron canadum). Front Genet 2023; 14:1128943. [PMID: 37091808 PMCID: PMC10117682 DOI: 10.3389/fgene.2023.1128943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Cobia (Rachycentron canadum) is a species of fish with high commercial potential particularly due to fast growth rates. The evidence of sexual size dimorphism favoring females indicate potential benefits in having a monosex culture. However, the involvement of genetic factors responsible for sexual development and gonadal maintenance that produces phenotypic sex in cobia is largely unknown. Methods: In the present study, we performed transcriptome sequencing of cobia to identify sex-biased significantly differentially expressed genes (DEGs) in testes and ovaries. The reliability of the gonad transcriptome data was validated by qPCR analysis of eight selected significantly differential expressed sex-related candidate genes. Results: This comparative gonad transcriptomic analysis revealed that 7,120 and 4,628 DEGs are up-regulated in testes or ovaries, respectively. Further functional annotation analyses identified 76 important candidate genes involved in sex determination cascades or sex differentiation, including 42 known testis-biased DEGs (dmrt1, amh and sox9 etc.), and 34 known ovary-biased DEGs (foxl2, sox3 and cyp19a etc.). Moreover, eleven significantly enriched pathways functionally related to sex determination and sex differentiation were identified, including Wnt signaling pathway, oocyte meiosis, the TGF-beta signaling pathway and MAPK signaling pathway. Conclusion: This work represents the first comparative gonad transcriptome study in cobia. The putative sex-associated DEGs and pathways provide an important molecular basis for further investigation of cobia's sex determination, gonadal development as well as potential control breeding of monosex female populations for a possible aquaculture setting.
Collapse
Affiliation(s)
- Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
- *Correspondence: Xueyan Shen, ; Jose A. Domingos,
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Giana Bastos Gomes
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | | | | | | | - Jose A. Domingos
- Tropical Futures Institute, James Cook University Singapore, Singapore, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
- *Correspondence: Xueyan Shen, ; Jose A. Domingos,
| |
Collapse
|
5
|
Potential Involvement of ewsr1-w Gene in Ovarian Development of Chinese Tongue Sole, Cynoglossus semilaevis. Animals (Basel) 2022; 12:ani12192503. [PMID: 36230245 PMCID: PMC9559465 DOI: 10.3390/ani12192503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Sexual dimorphism is a phenomenon commonly existing in animals. Chinese tongue sole Cynoglossus semilaevis is an economical marine fish with obvious female-biased size dimorphism. So, it is important to explore the molecular mechanism beyond gonadal development for sex control in aquaculture industry. RNA-binding protein Ewing Sarcoma protein-like (ewsr1) gene is important for mouse gonadal development and reproduction, however there are limited studies on this gene in teleost. In this study, two ewsr1 genes were cloned and characterized from C. semilaevis. The ewsr1-w gene, located in W chromosomes, showed female-biased expression during C. semilaevis gonadal development. In addition, knock-down effect and transcriptional regulation of Cs-ewsr1-w further suggested its essential role in ovarian development. This study broadened our understanding on ewsr1 function in teleost, and provided genetic resources for the further development of sex control breeding techniques in C. semilaevis aquaculture. Abstract Ewsr1 encodes a protein that acts as a multifunctional molecule in a variety of cellular processes. The full-length of Cs-ewsr1-w and Cs-ewsr1-z were cloned in Chinese tongue sole (Cynoglossus semilaevis). The open reading frame (ORF) of Cs-ewsr1-w was 1,767 bp that encoded 589 amino acids, while Cs-ewsr1-z was 1,794 bp that encoded 598 amino acids. Real-time PCR assays showed that Cs-ewsr1-w exhibited significant female-biased expression and could be hardly detected in male. It has the most abundant expression in ovaries among eight healthy tissues. Its expression in ovary increased gradually from 90 d to 3 y with C. semilaevis ovarian development and reached the peak at 3 y. After Cs-ewsr1-w knockdown with siRNA interference, several genes related to gonadal development including foxl2, sox9b and pou5f1 were down-regulated in ovarian cell line, suggesting the possible participation of Cs-ewsr1-w in C. semilaevis ovarian development. The dual-luciferase reporter assay revealed that the -733/-154 bp Cs-ewsr1-w promoter fragment exhibited strong transcription activity human embryonic kidney (HEK) 293T cell line. The mutation of a MAF BZIP Transcription Factor K (Mafk) binding site located in this fragment suggested that transcription factor Mafk might play an important role in Cs-ewsr1-w basal transcription. Our results will provide clues on the gene expression level, transcriptional regulation and knock-down effect of ewsr1 gene during ovarian development in teleost.
Collapse
|
6
|
Li B, Tian Y, Wen H, Qi X, Wang L, Zhang J, Li J, Dong X, Zhang K, Li Y. Systematic identification and expression analysis of the Sox gene family in spotted sea bass (Lateolabrax maculatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100817. [PMID: 33677158 DOI: 10.1016/j.cbd.2021.100817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
The Sox gene family encodes a set of transcription factors characterized by a conserved Sry-related high mobility group (HMG)-box domain, which performs a series of essential biological functions in diverse tissues and developmental processes. In this study, the Sox gene family was systematically characterized in spotted sea bass (Lateolabrax maculatus). A total of 26 Sox genes were identified and classified into eight subfamilies, namely, SoxB1, SoxB2, SoxC, SoxD, SoxE, SoxF, SoxH and SoxK. The phylogenetic relationship, exon-intron and domain structure analyses supported their annotation and classification. Comparison of gene copy numbers and chromosome locations among different species indicated that except tandem duplicated paralogs of Sox17/Sox32, duplicated Sox genes in spotted sea bass were generated from teleost-specific whole genome duplication during evolution. In addition, qRT-PCR was performed to detect the expression profiles of Sox genes during development and adulthood. The results showed that the expression of 16 out of 26 Sox genes was induced dramatically at different starting points after the multicellular stage, which is consistent with embryogenesis. At the early stage of sex differentiation, 9 Sox genes exhibited sexually dimorphic expression patterns, among which Sox3, Sox19 and Sox6b showed the most significant ovary-biased expression. Moreover, the distinct expression pattern of Sox genes was observed in different adult tissues. Our results provide a fundamental resource for further investigating the functions of Sox genes in embryonic processes, sex determination and differentiation as well as controlling the homeostasis of adult tissues in spotted sea bass.
Collapse
Affiliation(s)
- Bingyu Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Yuan Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Lingyu Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jingru Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jinku Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Ximeng Dong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China.
| |
Collapse
|
7
|
Wan H, Liao J, Zhang Z, Zeng X, Liang K, Wang Y. Molecular cloning, characterization, and expression analysis of a sex-biased transcriptional factor sox9 gene of mud crab Scylla paramamosain. Gene 2021; 774:145423. [PMID: 33434625 DOI: 10.1016/j.gene.2021.145423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/29/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023]
Abstract
Sox9 gene, a crucial member of the Sox gene family, is present in various organisms and involved in many physiological processes, especially in sex determination and gonad development. In this study, we reported a sox9 gene (designated as Spsox9) from Scylla paramamosain through analyzing published gonad transcriptome data. Meanwhile, the accuracy was validated by PCR technology, and the 3' sequences were cloned with 3' RACE technology. The full-length cDNA of Spsox9 is 2843 bp, consisting of a 243 bp 5' UTR, an 1124 bp 3' UTR, and a 1476 bp ORF encoding 491 amino acids. Furthermore, to better understand its conservation among crustacean species, the sox9 gene ortholog was identified in several other crustaceans species with their published transcriptome data, respectively. All of the Sox9 proteins identified in the current study had the common feature of Sox proteins (HMG domain) and were highly conserved among analyzed crustacean species. In all examined tissues, the Spsox9 was mainly expressed in the gonad (testis and ovary), eyestalk, and cerebral ganglion. During embryo development, Spsox9 was highly expressed in 5 pairs of appendages, 7 pairs of appendages, and eye-pigment formation stage. During ovary development, the expression level of Spsox9 remained stable in the first 4 stages (O1-O4) and decreased in the tertiary vitellogenesis (O5) stage. During testis development, the expression level of Spsox9 was highest in the spermatid stage (T2) and was significantly different from that in the spermatocyte stage (T1) and mature sperm stage (T3) (p < 0.05). In addition, Spsox9 exhibited a sex-biased expression pattern in T1 and O1. These present results indicated that the Spsox9 gene might play crucial roles in the gonad and embryo development of mud crab.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Jiaqian Liao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Keying Liang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China.
| |
Collapse
|
8
|
Lobo IKC, Nascimento ÁRD, Yamagishi MEB, Guiguen Y, Silva GFD, Severac D, Amaral ADC, Reis VR, Almeida FLD. Transcriptome of tambaqui Colossoma macropomum during gonad differentiation: Different molecular signals leading to sex identity. Genomics 2020; 112:2478-2488. [PMID: 32027957 DOI: 10.1016/j.ygeno.2020.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Tambaqui (Colossoma macropomum) is the major native species in Brazilian aquaculture, and we have shown that females exhibit a higher growth compared to males, opening up the possibility for the production of all-female population. To date, there is no information on the sex determination and differentiation molecular mechanisms of tambaqui. In the present study, transcriptome sequencing of juvenile trunks was performed to understand the molecular network involved in the gonadal sex differentiation. The results showed that before differentiation, components of the Wnt/β-catenin pathway, fox and fst genes imprint female sex development, whereas antagonistic pathways (gsk3b, wt1 and fgfr2), sox9 and genes for androgen synthesis indicate male differentiation. Hence, in undifferentiated tambaqui, the Wnt/β-catenin exerts a role on sex differentiation, either upregulated in female-like individuals, or antagonized in male-like individuals.
Collapse
Affiliation(s)
| | | | | | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France.
| | | | - Dany Severac
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Aldessandro da Costa Amaral
- Programa de Pós-graduação em Ciências Pesqueiras nos Trópicos, Universidade Federal do Amazonas, Manaus, Brazil
| | - Vanessa Ribeiro Reis
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Manaus, Brazil
| | | |
Collapse
|
9
|
Liu Y, Zhu H, Liu Y, Qu J, Han M, Jin C, Zhang Q, Liu J. Molecular characterization and expression profiles provide new insights into GATA5 functions in tongue sole (Cynoglossus semilaevis). Gene 2019; 708:21-29. [PMID: 31082502 DOI: 10.1016/j.gene.2019.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
GATA5 is a member of the GATA transcription factor family, which serves essential roles in varieties of cellular functions and biological processes. In this study, we have accomplished the molecular cloning, bioinformatic analysis and preliminary function study of C. semilaevis GATA5. The full-length cDNA nucleotide sequence is 1955 bp, with a coding sequence of 1167 bp, which encodes a polypeptide of 388 amino acids. Homology, phylogenetic, gene structure and synteny analysis showed that C. semilaevis GATA5 was highly conserved among vertebrates. Tissue distribution pattern exhibited that C. semilaevis GATA5 was significantly expressed in heart, intestine, liver, kidney and gonad, with a sexual dimorphic feature observed in testis and ovary. Embryonic development expression profiles showed that C. semilaevis GATA5 transcripts increased at the blastula stage, and peaked at the heat-beating period. Strong signals were detected at spermatids of male testis and stage III oocytes of female ovary by ISH. The expression of C. semilaevis GATA5 was regulated by 17α-MT and E2 after hormone stimulation to the ovary. Together, all the results pointed out that GATA5 might play a vital role during gonadal maturation and the reproductive cycle of C. semilaevis. This study lays the foundation for further researches on the sex control breeding in tongue sole.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China.
| |
Collapse
|
10
|
Roles of piwil1 gene in gonad development and gametogenesis in Japanese flounder, Paralichthys olivaceus. Gene 2019; 701:104-112. [PMID: 30905810 DOI: 10.1016/j.gene.2019.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 11/23/2022]
Abstract
PIWI family member piwil1, which associates with Piwi-interacting RNA (piRNA), is responsible in regulation of germ cell differentiation and maintenance of reproductive stem cells. In this study, we analyzed the piwil1 gene in Paralichthys olivaceus. Bioinformatics analysis and structure prediction showed that piwil1 had the conserved domains: PAZ domain and PIWI domain. Expression analysis during embryonic development implied that piwil1 gene was maternally inherited. The tissue distribution showed a sexually dimorphic gene expression pattern, with higher expression level in testis than ovary. In situ hybridization results demonstrated that piwil1 was predominantly distributed in oogonia, oocytes, sertoli cells and spermatocytes. A CpG island was predicted in the 5'-flanking region of piwil1 gene, and its methylation levels showed significant disparity between males and females, indicating that the sexually dimorphic expression of piwil1 gene might be regulated by methylation. Furthermore, we explored the distinct roles of human chorionic gonadotropin and 17α-methyltestosterone in regulating the expression of piwil1, and found that piwil1 was interacting with the HPG axis hormones. These results indicated that piwil1 might play a crucial role in gonadal development and gametogenesis in Paralichthys olivaceus.
Collapse
|
11
|
Yu H, Wang Y, Li X, Ni F, Sun M, Zhang Q, Yu H, Wang X. The evolution and possible role of two Sox8 genes during sex differentiation in Japanese flounder (Paralichthys olivaceus). Mol Reprod Dev 2019; 86:592-607. [PMID: 30811727 DOI: 10.1002/mrd.23136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023]
Abstract
Sox8 genes, as members of the Sox family, have been studied widely in mammals. However, regulation of sox8 genes in teleosts has rarely been studied, and functional analysis of these genes in teleosts has rarely been performed. Here, two duplicates of sox8 genes were identified in Japanese flounder, Posox8a and Posox8b. The analysis of expression showed that Posox8a and Posox8b were expressed in Sertoli cells of the testis, indicating that they play important roles in development and functional maintenance of the testis. Positive selection and phylogenetic analysis found that both Posox8a and Posox8b underwent the purification selection during evolutionary and that sox8 was most likely to be the ancestor sox8a. These results suggested that both Posox8a and Posox8b had important biological functions after generation from three rounds of whole-genome duplication in Japanese flounder. The functional differentiation of Posox8a and Posox8b was verified using cell transfection and dual-luciferase reporter assays; Posox8a overexpression-promoted 3β-hydroxysteroid dehydrogenase expression and Posox8b overexpression-promoted cytochrome P450 aromatase (cyp19a1; P450arom) expression. Finally, combined with Posox8a and Posox8b expression analysis from 30 to 100 days after hatch, we speculated that Posox8a and Posox8b might participate in the process of sex differentiation and gonadogenesis by regulating sex hormone biosynthesis in the Japanese flounder. Our study is the first to demonstrate the possible mechanism of Posox8a and Posox8b in Japanese flounder sex differentiation and gonadogenesis, laying a solid foundation for functional studies of sox8 genes in teleosts.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xiaojing Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Feifei Ni
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Minmin Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|