1
|
Angaïts A, Bierla K, Szpunar J, Lobinski R. Extraction recovery and speciation of selenium in Se-enriched yeast. Anal Bioanal Chem 2024; 416:5111-5120. [PMID: 39079983 DOI: 10.1007/s00216-024-05448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/06/2024]
Abstract
The complete characterization of selenium-enriched yeast in terms of selenium species has been the goal of extensive research for the last three decades. This contribution addresses the two outstanding questions: the mass balance of the identified and reported selenium species and the possible presence of inorganic selenium. For this purpose, four procedures have been designed combining, in diverse order, the principal steps of selenium speciation analysis in Se-rich yeast: extraction of the Se-metabolome, derivatization of cysteine and Se-cysteine (SeCys) residues, proteolysis, and definitive Se recovery using SDS extraction, followed by mineralization. The recovery of selenium in each step and its speciation were controlled by ICP MS and by reversed-phase HPLC-ICP MS, respectively. The study, carried out for the SELM-1 reference material, demonstrated the presence of about 10% of inorganic selenium and a serious risk of losses of SeCys during derivatization and proteolysis. As result of our work, we postulate the following values for SELM-1: Se-metabolome fraction (SeMF) 14.8 ± 0.7%; total selenomethionine (SeMet) 66.2 ± 2.7% (including ca. 1.5% SeMet present in the SeMF); total SeCys 12.5 ± 1.5% (including 2% of SeCys present in the Se-MF); total inorganic selenium 9.7 ± 1.7%, accounting for > 99.8% of the selenium.
Collapse
Affiliation(s)
- Ange Angaïts
- CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254, Hélioparc, Universite of Pau, 64053, Pau, France
| | - Katarzyna Bierla
- CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254, Hélioparc, Universite of Pau, 64053, Pau, France
| | - Joanna Szpunar
- CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254, Hélioparc, Universite of Pau, 64053, Pau, France
| | - Ryszard Lobinski
- CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR5254, Hélioparc, Universite of Pau, 64053, Pau, France.
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
2
|
Bierla K, Szpunar J, Lobinski R, Sunde RA. Effect of graded levels of selenium supplementation as selenite on expression of selenosugars, selenocysteine, and other selenometabolites in rat liver. Metallomics 2023; 15:mfad066. [PMID: 37898555 DOI: 10.1093/mtomcs/mfad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023]
Abstract
Using high pressure liquid chromatography (HPLC) coupled with selenium-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (Orbitrap MS/MS) detection, we previously found that far more selenium (Se) is present as selenosugar (seleno-N-acetyl galactosamine) in Se-adequate turkey liver than is present as selenocysteine (Sec) in true selenoproteins, and that selenosugars account for half of the Se in high-Se turkey liver. To expand these observations to mammals, we studied Se metabolism in rats fed graded levels of selenite from 0 to 5 μg Se/g for 4 wk. In Se-adequate (0.24 μg Se/g) rats, 43% of liver Se was present as Sec, 32% was present as selenosugars, and 22% as inorganic Se bound to protein. In liver of rats fed 5 μg Se/g as selenite, the quantity of Sec remained at the Se-adequate plateau (11% of total Se), 22% was present as low molecular weight (LMW) selenosugars with substantial additional selenosugars linked to protein, but 64% was present as inorganic Se bound to protein. No selenomethionine was found at any level of selenite supplementation. Below the Se requirement, Se is preferentially incorporated into Sec-selenoproteins. Above the dietary Se requirement, selenosugars become by far the major LMW water soluble Se species in liver, and levels of selenosugar-decorated proteins are far higher than Sec-selenoproteins, making these selenosugar-decorated proteins the major Se-containing protein species in liver with high Se supplementation. This accumulation of selenosugars linked to cysteines on proteins or the build-up of inorganic Se bound to protein may underlie Se toxicity at the molecular level.
Collapse
Affiliation(s)
- Katarzyna Bierla
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Helioparc, 64053 Pau, France
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Helioparc, 64053 Pau, France
| | - Ryszard Lobinski
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Helioparc, 64053 Pau, France
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Roger A Sunde
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
3
|
Valand RS, Sivaiah A. Recent progress in the development of small-molecule fluorescent probes for detection and imaging of selenocysteine and application in thyroid disease diagnosis. J Mater Chem B 2023; 11:2614-2630. [PMID: 36877143 DOI: 10.1039/d3tb00035d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Selenocysteine (SeCys) is the 21st genetically encoded amino acid present in proteins and is involved in various biological functions. Inappropriate levels of SeCys can be considered as a sign of various diseases. Therefore, small molecular fluorescent probes for the detection and imaging of SeCys in vivo in biological systems are considered to be of significant interest for understanding the physiological role of SeCys. Thus, this article mainly provides a critical evaluation of recent advances made in SeCys detection along with the biomedical applications based on small molecular fluorescent probes published in the literature during the past half a dozen years. Therefore, the article primarily deals with the rational design of fluorescent probes, wherein these were selective towards SeCys over other biologically abundant molecules, in particular the thiol-based ones. The detection has been monitored by different spectral techniques, such as fluorescence and absorption spectroscopy and in some cases even visual color changes. Further, the detection mechanism and the utility of fluorescent probes for in vitro and in vivo cell imaging applications are addressed. For clarity, the main features have been conveniently divided into four categories based on the chemical reactions of the probe, viz., in terms of the cleavage of the responsive group by the SeCys nucleophile: (i) 2,4-dinitrobene sulphonamide group, (ii) 2,4-dinitrobenesulfonate ester group, (iii) 2,4-dinitrobenzeneoxy group and (iv) miscellaneous types. Overall this article deals with the analysis of more than two dozen fluorescent probes demonstrated for selective detection of SeCys along with their applications towards disease diagnosis.
Collapse
Affiliation(s)
- Ravinkumar Sunilbhai Valand
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Surat-Dumas road, Surat-395007, Gujarat, India.
| | - Areti Sivaiah
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Surat-Dumas road, Surat-395007, Gujarat, India.
| |
Collapse
|
4
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Peláez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aggett P, Crous Bou M, Cubadda F, Ciccolallo L, de Sesmaisons Lecarré A, Fabiani L, Titz A, Naska A. Scientific opinion on the tolerable upper intake level for selenium. EFSA J 2023; 21:e07704. [PMID: 36698500 PMCID: PMC9854220 DOI: 10.2903/j.efsa.2023.7704] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for selenium. Systematic reviews of the literature were conducted to identify evidence regarding excess selenium intake and clinical effects and potential biomarkers of effect, risk of chronic diseases and impaired neuropsychological development in humans. Alopecia, as an early observable feature and a well-established adverse effect of excess selenium exposure, is selected as the critical endpoint on which to base a UL for selenium. A lowest-observed-adverse-effect-level (LOAEL) of 330 μg/day is identified from a large randomised controlled trial in humans (the Selenium and Vitamin E Cancer Prevention Trial (SELECT)), to which an uncertainty factor of 1.3 is applied. A UL of 255 μg/day is established for adult men and women (including pregnant and lactating women). ULs for children are derived from the UL for adults using allometric scaling (body weight0.75). Based on available intake data, adult consumers are unlikely to exceed the UL, except for regular users of food supplements containing high daily doses of selenium or regular consumers of Brazil nuts. No risk has been reported with the current levels of selenium intake in European countries from food (excluding food supplements) in toddlers and children, and selenium intake arising from the natural content of foods does not raise reasons for concern. Selenium-containing supplements in toddlers and children should be used with caution, based on individual needs.
Collapse
|
5
|
Peng JJ, Liu Y, Yu FT, Fan HL, Yue SY, Fang YH, Liu XL, Wang CH. A reliable method of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry for determining selenoamino acids in selenoproteins from Lactococcus lactis. J Chromatogr A 2022; 1685:463590. [DOI: 10.1016/j.chroma.2022.463590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
6
|
Zhang J, Zhou Y, Zuo D, Yang L, Yan X, Liu P, Wang Q. Quantification of active selenols in cells: a selenol-specific recognition europium-switched signal-amplification ICP-MS approach. Anal Bioanal Chem 2021; 414:257-263. [PMID: 34897566 DOI: 10.1007/s00216-021-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
Selenium (Se) is a mysterious thus tempting element playing a dual bio-chemical function, mainly through selenol, during life processes. Quantification of the selenols is thus of great significance for understanding the biological roles of Se, but remains a big challenge. Herein we report a selenol-specific recognition-mediated and europium (Eu) signal-switched amplification inductively coupled plasma mass spectrometry (ICP-MS) approach for quantifying the free active selenols (act-SeH) in cells. A bifunctional molecule, 2,4-dinitrobenzenesulfonyl-piperidin-4-yl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic europium (DNBS-DOTA-Eu), was designed and synthesized for the specific recognition and highly sensitive quantification of act-SeH via switching Se to more sensitive Eu ICP-MS signals. The limit of detection (LOD, 3σ) of 3.41 pg/mL (22.43 pmol/L), corresponding to the absolute mass LOD of 6.82 ag act-SeH per cell, is almost 25 times lower than 83.76 pg/mL (1.06 nmol/L), 167.52 ag, when monitoring 80Se. The results indicate that act-SeH in the selenite-precultured cancerous HepG2 and paracancerous HL7702 cells are 0.090 ± 0.002 pg/cell (n = 7) and 0.021 ± 0.006 pg/cell (n = 7), more than 4.28 times higher in HepG2 than in HL7702. Preliminary application of this approach to the cells from real hepatic tissue samples suggested that act-SeH has a positive relationship with the degree of hepatic disease. act-SeH in cells appears to be a very promising relevant index for understanding the biochemical functions of Se, besides the total Se in cells and blood serum and/or plasma.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang Zhou
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dongliang Zuo
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory for Chronic Liver Disease and Hepatocellular Carcinoma, Zhong Shan Hospital Xiamen University, Xiamen, 361004, China
| | - Limin Yang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Xiaowen Yan
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory for Chronic Liver Disease and Hepatocellular Carcinoma, Zhong Shan Hospital Xiamen University, Xiamen, 361004, China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
7
|
Cao J, Cheng Y, Xu B, Wang Y, Wang F. Determination of Different Selenium Species in Selenium-Enriched Polysaccharide by HPLC-ICP-MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Katarzyna B, Taylor RM, Szpunar J, Lobinski R, Sunde RA. Identification and determination of selenocysteine, selenosugar, and other selenometabolites in turkey liver. Metallomics 2021; 12:758-766. [PMID: 32211715 DOI: 10.1039/d0mt00040j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Liver and other tissues accumulate selenium (Se) when animals are supplemented with high dietary Se as inorganic Se. To further study selenometabolites in Se-deficient, Se-adequate, and high-Se liver, turkey poults were fed 0, 0.4, and 5 μg Se g-1 diet as Na2SeO3 (Se(iv)) in a Se-deficient (0.005 μg Se g-1) diet for 28 days, and the effects of Se status determined using HPLC-ICP-MS and HPLC-ESI-MS/MS. No selenomethionine (SeMet) was detected in liver in turkeys fed either this true Se-deficient diet or supplemented with inorganic Se, showing that turkeys cannot synthesize SeMet de novo from inorganic Se. Selenocysteine (Sec) was also below the level of detection in Se-deficient liver, as expected in animals with negligible selenoprotein levels. Sec content in high Se liver only doubled as compared to Se-adequate liver, indicating that the 6-fold increase in liver Se was not due to increases in selenoproteins. What increased dramatically in high Se liver were low molecular weight (MW) selenometabolites: glutathione-, cysteine- and methyl-conjugates of the selenosugar, seleno-N-acetyl galactosamine (SeGalNac). Substantial Se in Se-adequate liver was present as selenosugars decorating general proteins via mixed-disulfide bonds. In high-Se liver, these "selenosugar-decorated" proteins comprised ∼50% of the Se in the water-soluble fraction, in addition to low MW selenometabolites. In summary, more Se is present as the selenosugar moiety in Se-adequate liver, mostly decorating general proteins, than is present as Sec in selenoproteins. With high Se supplementation, increased selenosugar formation occurs, further increasing selenosugar-decorated proteins, but also increasing selenosugar linked to low MW thiols.
Collapse
Affiliation(s)
- Bierla Katarzyna
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France
| | | | | | | | | |
Collapse
|
9
|
LeBlanc KL, Mester Z. Compilation of selenium metabolite data in selenized yeasts. Metallomics 2021; 13:6307519. [PMID: 34156080 DOI: 10.1093/mtomcs/mfab031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/30/2021] [Indexed: 11/12/2022]
Abstract
Selenium-enriched yeast has long been recognized as an important nutritional source of selenium and studies have suggested that supplementation with this material provides chemo-preventative benefits beyond those observed for selenomethionine supplementation, despite the fact that selenomethionine accounts for 60-84% of the total selenium in selenized yeasts. There is much ongoing research into the characterization of the species comprising the remaining 16-40% of the selenium, with nearly 100 unique selenium-containing metabolites identified in aqueous extracts of selenized yeasts (Saccharomyces cerevisiae). Herein, we discuss the analytical approaches involved in the identification and quantification of these metabolites, and present a recently created online database (DOI: 10.4224/40001921) of reported selenium species along with chemical structures and unique mass spectral features.
Collapse
Affiliation(s)
- Kelly L LeBlanc
- National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada
| | - Zoltán Mester
- National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Optimization of elemental selenium (Se(0)) determination in yeasts by anion-exchange HPLC-ICP-MS. Anal Bioanal Chem 2021; 413:1809-1816. [PMID: 33527180 DOI: 10.1007/s00216-020-03129-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
An analytical method was developed for the speciation of elemental selenium (Se(0)) in selenized yeasts by anion-exchange HPLC-ICP-MS after its chemical transformation into SeSO32- by reaction with sodium sulfite. The presence of Se(0) in the yeasts was further confirmed by single-particle ICP-MS. Indeed, Se nanoparticles, if present, are expected to be, at least partly, Se(0). X-ray photoelectron spectroscopy, a well-recognized technique for chemical element speciation in the solid state, was also used with this objective. Both methods were able to confirm the presence of Se(0) in the selenized yeasts but failed to provide reliable quantitative results. Analytical performances of the HPLC-ICP-MS method were then evaluated for Se(0) determination. Quantification limits of 1 mg/kg were reached. The recovery levels from an added quantity comprised between 93 and 101%. Within-run and between-run precisions were both below 8%. The procedure developed was finally applied to quantify Se(0) content in a series of seven yeast batches from different suppliers. Se(0) was found to be present in all the studied yeasts and represented on average 10-15% of the total Se.
Collapse
|
11
|
Speciation Analysis of Selenium in Candida utilis Yeast Cells Using HPLC-ICP-MS and UHPLC-ESI-Orbitrap MS Techniques. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Selenium plays a key role in the proper metabolism of living organisms. The search for new selenium compounds opens up new possibilities for understanding selenometabolome in yeast cells. This study was aimed at the identification of compounds containing selenium in the feed yeasts Candida utilis ATCC 9950. Yeast biomass was kept in aqueous solutions enriched with inorganic selenium (20 mg·L−1) for 24 h. Speciation analysis of the element was performed using the HPLC-ICP-MS and UHPLC-ESI-Orbitrap MS techniques. The obtained selenium value in the yeast was 629 μg·g−1, while the selenomethionine value was 31.57 μg·g−1. The UHPLC-ESI-Orbitrap MS analysis conducted allowed for the identification of six selenium compounds: dehydro-selenomethionine-oxide, selenomethionine, selenomethionine-NH3, a Se-S conjugate of selenoglutathione-cysteine, methylthioselenoglutathione, and 2,3-DHP-selenocysteine-cysteine. In order to explain the structure of selenium compounds, the selected ions were subjected to fragmentation. The selenium compounds obtained with a low mass play a significant role in the metabolism of the compound. However, the bioavailability of such components and their properties have not been fully understood. The number of signals indicating the presence of selenium compounds obtained using the UHPLC-ESI-Orbitrap MS method was characterized by higher sensitivity than when using the HPLC-ICP-MS method. The obtained results will expand upon knowledge about the biotransformation of selenium in eukaryotic yeast cells. Future research should focus on understanding the entire selenium metabolism in cells and on the search for new transformation pathways for this element. This opens up new possibilities for obtaining functional food, rich in easily absorbable selenium sources, and constituting an alternative to dietary supplements based on this compound found primarily in inorganic form.
Collapse
|