1
|
Shi J, Pabon K, Ding R, Scotto KW. ABCG2 and SLC1A5 functionally interact to rewire metabolism and confer a survival advantage to cancer cells under oxidative stress. J Biol Chem 2024; 300:107299. [PMID: 38641063 PMCID: PMC11131071 DOI: 10.1016/j.jbc.2024.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
ABCG2, a member of the ABC transporter superfamily, is overexpressed in many human tumors and has long been studied for its ability to export a variety of chemotherapeutic agents, thereby conferring a multidrug resistance (MDR) phenotype. However, several studies have shown that ABCG2 can also confer an MDR-independent survival advantage to tumor cells exposed to stress. While investigating the mechanism by which ABCG2 enhances survival in stressful milieus, we have identified a physical and functional interaction between ABCG2 and SLC1A5, a member of the solute transporter superfamily and the primary transporter of glutamine in cancer cells. This interaction was accompanied by increased glutamine uptake, increased glutaminolysis, and rewired cellular metabolism, as evidenced by an increase in key metabolic enzymes and alteration of glutamine-dependent metabolic pathways. Specifically, we observed an increase in glutamine metabolites shuttled to the TCA cycle, and an increase in the synthesis of glutathione, accompanied by a decrease in basal levels of reactive oxygen species and a marked increase in cell survival in the face of oxidative stress. Notably, the knockdown of SLC1A5 or depletion of exogenous glutamine diminished ABCG2-enhanced autophagy flux, further implicating this solute transporter in ABCG2-mediated cell survival. This is, to our knowledge, the first report of a functionally significant physical interaction between members of the two major transporter superfamilies. Moreover, these observations may underlie the protective role of ABCG2 in cancer cells under duress and suggest a novel role for ABCG2 in the regulation of metabolism in normal and diseased states.
Collapse
Affiliation(s)
- Jia Shi
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kirk Pabon
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Rui Ding
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Clinical Pharmacology, Translational Medicine, Servier Pharmaceuticals LLC, Boston, Massachusetts, USA
| | - Kathleen W Scotto
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
2
|
Zhang D, Hua Z, Li Z. The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neurosci Ther 2024; 30:e14617. [PMID: 38358002 PMCID: PMC10867874 DOI: 10.1111/cns.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Austin S, Mekis R, Mohammed SEM, Scalise M, Wang W, Galluccio M, Pfeiffer C, Borovec T, Parapatics K, Vitko D, Dinhopl N, Demaurex N, Bennett KL, Indiveri C, Nowikovsky K. TMBIM5 is the Ca 2+ /H + antiporter of mammalian mitochondria. EMBO Rep 2022; 23:e54978. [PMID: 36321428 PMCID: PMC9724676 DOI: 10.15252/embr.202254978] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/07/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial Ca2+ ions are crucial regulators of bioenergetics and cell death pathways. Mitochondrial Ca2+ content and cytosolic Ca2+ homeostasis strictly depend on Ca2+ transporters. In recent decades, the major players responsible for mitochondrial Ca2+ uptake and release have been identified, except the mitochondrial Ca2+ /H+ exchanger (CHE). Originally identified as the mitochondrial K+ /H+ exchanger, LETM1 was also considered as a candidate for the mitochondrial CHE. Defining the mitochondrial interactome of LETM1, we identify TMBIM5/MICS1, the only mitochondrial member of the TMBIM family, and validate the physical interaction of TMBIM5 and LETM1. Cell-based and cell-free biochemical assays demonstrate the absence or greatly reduced Na+ -independent mitochondrial Ca2+ release in TMBIM5 knockout or pH-sensing site mutants, respectively, and pH-dependent Ca2+ transport by recombinant TMBIM5. Taken together, we demonstrate that TMBIM5, but not LETM1, is the long-sought mitochondrial CHE, involved in setting and regulating the mitochondrial proton gradient. This finding provides the final piece of the puzzle of mitochondrial Ca2+ transporters and opens the door to exploring its importance in health and disease, and to developing drugs modulating Ca2+ exchange.
Collapse
Affiliation(s)
- Shane Austin
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Present address:
Department of Biological & Chemical SciencesThe University of the West Indies, Cave Hill CampusCave HillBarbados
| | - Ronald Mekis
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Sami E M Mohammed
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular BiotechnologyUniversity of CalabriaArcavacata di RendeItaly
| | - Wen‐An Wang
- Department of Cell Physiology & MetabolismUniversity of GenevaGenevaSwitzerland
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular BiotechnologyUniversity of CalabriaArcavacata di RendeItaly
| | - Christina Pfeiffer
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Tamara Borovec
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Dijana Vitko
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Nora Dinhopl
- Department of Pathobiology, Institute of PathologyUniversity of Veterinary MedicineViennaAustria
| | - Nicolas Demaurex
- Department of Cell Physiology & MetabolismUniversity of GenevaGenevaSwitzerland
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular BiotechnologyUniversity of CalabriaArcavacata di RendeItaly
- CNR Institute of BiomembranesBioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Karin Nowikovsky
- Department of Internal Medicine I and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and BiophysicsUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
4
|
Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081206. [PMID: 36013385 PMCID: PMC9410066 DOI: 10.3390/life12081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.
Collapse
|
5
|
Lee DS, Kim JE. P2X7 Receptor Augments LPS-Induced Nitrosative Stress by Regulating Nrf2 and GSH Levels in the Mouse Hippocampus. Antioxidants (Basel) 2022; 11:antiox11040778. [PMID: 35453462 PMCID: PMC9025791 DOI: 10.3390/antiox11040778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
P2X7 receptor (P2X7R) regulates inducible nitric oxide synthase (iNOS) expression/activity in response to various harmful insults. Since P2X7R deletion paradoxically decreases the basal glutathione (GSH) level in the mouse hippocampus, it is likely that P2X7R may increase the demand for GSH for the maintenance of the intracellular redox state or affect other antioxidant defense systems. Therefore, the present study was designed to elucidate whether P2X7R affects nuclear factor-erythroid 2-related factor 2 (Nrf2) activity/expression and GSH synthesis under nitrosative stress in response to lipopolysaccharide (LPS)-induced neuroinflammation. In the present study, P2X7R deletion attenuated iNOS upregulation and Nrf2 degradation induced by LPS. Compatible with iNOS induction, P2X7R deletion decreased S-nitrosylated (SNO)-cysteine production under physiological and post-LPS treated conditions. P2X7R deletion also ameliorated the decreases in GSH, glutathione synthetase, GS and ASCT2 levels concomitant with the reduced S-nitrosylations of GS and ASCT2 following LPS treatment. Furthermore, LPS upregulated cystine:glutamate transporter (xCT) and glutaminase in P2X7R+/+ mice, which were abrogated by P2X7R deletion. LPS did not affect GCLC level in both P2X7R+/+ and P2X7R−/− mice. Therefore, our findings indicate that P2X7R may augment LPS-induced neuroinflammation by leading to Nrf2 degradation, aberrant glutamate-glutamine cycle and impaired cystine/cysteine uptake, which would inhibit GSH biosynthesis. Therefore, we suggest that the targeting of P2X7R, which would exert nitrosative stress with iNOS in a positive feedback manner, may be one of the important therapeutic strategies of nitrosative stress under pathophysiological conditions.
Collapse
|
6
|
Cysteine 467 of the ASCT2 Amino Acid Transporter Is a Molecular Determinant of the Antiport Mechanism. Int J Mol Sci 2022; 23:ijms23031127. [PMID: 35163050 PMCID: PMC8835248 DOI: 10.3390/ijms23031127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
The plasma membrane transporter ASCT2 is a well-known Na+-dependent obligatory antiporter of neutral amino acids. The crucial role of the residue C467 in the recognition and binding of the ASCT2 substrate glutamine, has been highlighted by structure/function relationship studies. The reconstitution in proteoliposomes of the human ASCT2 produced in P. pastoris is here employed to unveil another role of the C467 residue in the transport reaction. Indeed, the site-directed mutant C467A displayed a novel property of the transporter, i.e., the ability of mediating a low but measurable unidirectional transport of [3H]-glutamine. This reaction conforms to the main features of the ASCT2-mediated transport, namely the Na+-dependence, the pH dependence, the stimulation by cholesterol included in the proteoliposome membrane, and the specific inhibition by other common substrates of the reconstituted human ASCT2. Interestingly, the WT protein cannot catalyze the unidirectional transport of [3H]-glutamine, demonstrating an unspecific phenomenon. This difference is in favor of a structural conformational change between a WT and C467A mutant that triggers the appearance of the unidirectional flux; this feature has been investigated by comparing the available 3D structures in two different conformations, and two homology models built on the basis of hEAAT1 and GLTPh.
Collapse
|
7
|
Dokladny K, Crane JK, Kassicieh AJ, Kaper JB, Kovbasnjuk O. Cross-Talk between Probiotic Nissle 1917 and Human Colonic Epithelium Affects the Metabolite Composition and Demonstrates Host Antibacterial Effect. Metabolites 2021; 11:841. [PMID: 34940599 PMCID: PMC8706777 DOI: 10.3390/metabo11120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/04/2022] Open
Abstract
Colonic epithelium-commensal interactions play a very important role in human health and disease development. Colonic mucus serves as an ecologic niche for a myriad of commensals and provides a physical barrier between the epithelium and luminal content, suggesting that communication between the host and microbes occurs mainly by soluble factors. However, the composition of epithelia-derived metabolites and how the commensal flora influences them is less characterized. Here, we used mucus-producing human adult stem cell-derived colonoid monolayers exposed apically to probiotic E. coli strain Nissle 1917 to characterize the host-microbial communication via small molecules. We measured the metabolites in the media from host and bacterial monocultures and from bacteria-colonoid co-cultures. We found that colonoids secrete amino acids, organic acids, nucleosides, and polyamines, apically and basolaterally. The metabolites from host-bacteria co-cultures markedly differ from those of host cells grown alone or bacteria grown alone. Nissle 1917 affects the composition of apical and basolateral metabolites. Importantly, spermine, secreted apically by colonoids, shows antibacterial properties, and inhibits the growth of several bacterial strains. Our data demonstrate the existence of a cross-talk between luminal bacteria and human intestinal epithelium via metabolites, which might affect the numbers of physiologic processes including the composition of commensal flora via bactericidal effects.
Collapse
Affiliation(s)
- Karol Dokladny
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA;
| | - John K. Crane
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY 14206, USA;
| | - Alex J. Kassicieh
- University of New Mexico School of Medicine, Albuquerque, NM 87106, USA;
| | - James B. Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Olga Kovbasnjuk
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Murphy WA, Beaudoin JJ, Laitinen T, Sjöstedt N, Malinen MM, Ho H, Swaan PW, Honkakoski P, Brouwer KLR. Identification of Key Amino Acids that Impact Organic Solute Transporter α/ β (OSTα/β). Mol Pharmacol 2021; 100:599-608. [PMID: 34599072 PMCID: PMC9132218 DOI: 10.1124/molpharm.121.000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Organic solute transporter α/β (OSTα/β) is a bidirectional bile acid transporter localized on the basolateral membrane of hepatic, intestinal, and renal epithelial cells. OSTα/β plays a critical role in intestinal bile acid reabsorption and is upregulated in hepatic diseases characterized by elevated bile acids, whereas genetic variants in SLC51A/B have been associated with clinical cholestasis. OSTα/β also transports and is inhibited by commonly used medications. However, there is currently no high-resolution structure of OSTα/β, and structure-function data for OSTα, the proposed substrate-binding subunit, are lacking. The present study addressed this knowledge gap and identified amino acids in OSTα that are important for bile acid transport. This was accomplished using computational modeling and site-directed mutagenesis of the OSTα subunit to generate OSTα/β mutant cell lines. Out of the 10 OSTα/β mutants investigated, four (S228K, T229S, Q269E, Q269K) exhibited decreased [3H]-taurocholate (TCA) uptake (ratio of geometric means relative to OSTα/β wild type (WT) of 0.76, 0.75, 0.79, and 0.13, respectively). Three OSTα/β mutants (S228K, Q269K, E305A) had reduced [3H]-TCA efflux % (ratio of geometric means relative to OSTα/β WT of 0.86, 0.65, and 0.79, respectively). Additionally, several OSTα/β mutants demonstrated altered expression and cellular localization when compared with OSTα/β WT. In summary, we identified OSTα residues (Ser228, Thr229, Gln269, Glu305) in predicted transmembrane domains that affect expression of OSTα/β and may influence OSTα/β-mediated bile acid transport. These data advance our understanding of OSTα/β structure/function and can inform future studies designed to gain further insight into OSTα/β structure or to identify additional OSTα/β substrates and inhibitors. SIGNIFICANCE STATEMENT: OSTα/β is a clinically important transporter involved in enterohepatic bile acid recycling with currently no high-resolution protein structure and limited structure-function data. This study identified four OSTα amino acids (Ser228, Thr229, Gln269, Glu305) that affect expression of OSTα/β and may influence OSTα/β-mediated bile acid transport. These data can be utilized to inform future investigation of OSTα/β structure and refine molecular modeling approaches to facilitate the identification of substrates and/or inhibitors of OSTα/β.
Collapse
Affiliation(s)
- William A Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Tuomo Laitinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Henry Ho
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Peter W Swaan
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (W.A.M., J.J.B., N.S., M.M.M., H.H., P.H., K.L.R.B.); School of Pharmacy, University of Eastern Finland, Kuopio, Finland (T.L., M.M.M., P.H.); and Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (P.W.S.)
| |
Collapse
|
9
|
Characterization and Cys-directed mutagenesis of urate oxidase from Bacillus subtilis BS04. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00941-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Mazza T, Scalise M, Pappacoda G, Pochini L, Indiveri C. The involvement of sodium in the function of the human amino acid transporter ASCT2. FEBS Lett 2021; 595:3030-3041. [PMID: 34741534 DOI: 10.1002/1873-3468.14224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 01/19/2023]
Abstract
Alanine, serine, cysteine transporter 2 (ASCT2) is a membrane amino acid transporter with relevance to human physiology and pathology, such as cancer. Notwithstanding, the study on the ASCT2 transport cycle still has unknown aspects, such as the role of Na+ in this process. We investigate this issue using recombinant hASCT2 reconstituted in proteoliposomes. Changes in the composition of purification buffers show the crucial role of Na+ in ASCT2 functionality. The transport activity is abolished when Na+ is absent or substituted by Li+ or K+ in purification buffers. By employing a Na+ fluorometric probe, we measured an inwardly directed flux of Na+ and, by combining fluorometric and radiometric assays, determined a 2Na+ : 1Gln stoichiometry. Kinetics of Na+ transport suggest that pH-sensitive residues are involved in Na+ binding/transport. Our results clarify the role of Na+ on human ASCT2 transporter activity.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Gilda Pappacoda
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| |
Collapse
|
11
|
Scalise M, Console L, Cosco J, Pochini L, Galluccio M, Indiveri C. ASCT1 and ASCT2: Brother and Sister? SLAS DISCOVERY 2021; 26:1148-1163. [PMID: 34269129 DOI: 10.1177/24725552211030288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SLC1 family includes seven members divided into two groups, namely, EAATs and ASCTs, that share similar 3D architecture; the first one includes high-affinity glutamate transporters, and the second one includes SLC1A4 and SLC1A5, known as ASCT1 and ASCT2, respectively, responsible for the traffic of neutral amino acids across the cell plasma membrane. The physiological role of ASCT1 and ASCT2 has been investigated over the years, revealing different properties in terms of substrate specificities, affinities, and regulation by physiological effectors and posttranslational modifications. Furthermore, ASCT1 and ASCT2 are involved in pathological conditions, such as neurodegenerative disorders and cancer. This has driven research in the pharmaceutical field aimed to find drugs able to target the two proteins.This review focuses on structural, functional, and regulatory aspects of ASCT1 and ASCT2, highlighting similarities and differences.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Jessica Cosco
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| |
Collapse
|
12
|
Lopes C, Pereira C, Medeiros R. ASCT2 and LAT1 Contribution to the Hallmarks of Cancer: From a Molecular Perspective to Clinical Translation. Cancers (Basel) 2021; 13:E203. [PMID: 33429909 PMCID: PMC7828050 DOI: 10.3390/cancers13020203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The role of the amino acid transporters ASCT2 and LAT1 in cancer has been explored throughout the years. In this review, we report their impact on the hallmarks of cancer, as well as their clinical significance. Overall, both proteins have been associated with cell death resistance through dysregulation of caspases and sustainment of proliferative signaling through mTOR activation. Furthermore, ASCT2 appears to play an important role in cellular energetics regulation, whereas LAT1 expression is associated with angiogenesis and invasion and metastasis activation. The molecular impact of these proteins on the hallmarks of cancer translates into various clinical applications and both transporters have been identified as prognostic factors in many types of cancer. Concerning their role as therapeutic targets, efforts have been undertaken to synthesize competitive or irreversible ASCT2 and LAT1 inhibitors. However, JHP203, a selective inhibitor of the latter, is, to the best of our knowledge, the only compound included in a Phase 1 clinical trial. In conclusion, considering the usefulness of ASCT2 and LAT1 in a variety of cancer-related pathways and cancer therapy/diagnosis, the development and testing of novel inhibitors for these transporters that could be evaluated in clinical trials represents a promising approach to cancer prognosis improvement.
Collapse
Affiliation(s)
- Catarina Lopes
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
| | - Carina Pereira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- CINTESIS—Center for Health Technology and Services Research, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- Research Department of the Portuguese League Against Cancer—North (LPCC-NRNorte), Estrada da Circunvalação, 4200-177 Porto, Portugal
| |
Collapse
|
13
|
Target the human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and Future for Novel Cancer Therapy. Pharmacol Res 2020; 158:104844. [DOI: 10.1016/j.phrs.2020.104844] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
|
14
|
Scalise M, Mazza T, Pappacoda G, Pochini L, Cosco J, Rovella F, Indiveri C. The Human SLC1A5 Neutral Amino Acid Transporter Catalyzes a pH-Dependent Glutamate/Glutamine Antiport, as Well. Front Cell Dev Biol 2020; 8:603. [PMID: 32733894 PMCID: PMC7360689 DOI: 10.3389/fcell.2020.00603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
ASCT2 is a neutral amino acid transporter, which catalyzes a sodium-dependent obligatory antiport among glutamine and other neutral amino acids. The human ASCT2 over-expressed in Pichia pastoris and reconstituted in proteoliposomes has been employed for identifying alternative substrates of the transporter. The experimental data highlighted that hASCT2 also catalyzes a sodium-dependent antiport of glutamate with glutamine. This unconventional antiport shows a preferred sidedness: glutamate is inwardly transported in exchange for glutamine transported in the counter direction. The orientation of the transport protein in proteoliposomes is the same as in the cell membrane; then, the observed sidedness corresponds to the transport of glutamate from the extracellular to the intracellular compartment. The competitive inhibition exerted by glutamate on the glutamine transport together with the docking analysis indicates that the glutamate binding site is the same as that of glutamine. The affinity for glutamate is lower than that for neutral amino acids, while the transport rate is comparable to that measured for the asparagine/glutamine antiport. Differently from the neutral amino acid antiport that is insensitive to pH, the glutamate/glutamine antiport is pH-dependent with optimal activity at acidic pH on the external (extracellular) side. The stimulation of glutamate transport by a pH gradient suggests the occurrence of a proton flux coupled to the glutamate transport. The proton transport has been detected by a spectrofluorometric method. The rate of proton transport correlates well with the rate of glutamate transport indicating a 1:1 stoichiometry H+: glutamate. The glutamate/glutamine antiport is also active in intact HeLa cells. On a physiological point of view, the described antiport could have relevance in some districts in which a glutamate/glutamine cycling is necessary, such as in placenta.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata, Italy
| | - Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata, Italy
| | - Gilda Pappacoda
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata, Italy
| | - Jessica Cosco
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata, Italy
| | - Filomena Rovella
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| |
Collapse
|
15
|
Scalise M, Pochini L, Cosco J, Aloe E, Mazza T, Console L, Esposito A, Indiveri C. Interaction of Cholesterol With the Human SLC1A5 (ASCT2): Insights Into Structure/Function Relationships. Front Mol Biosci 2019; 6:110. [PMID: 31709262 PMCID: PMC6819821 DOI: 10.3389/fmolb.2019.00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023] Open
Abstract
The human SLC1A5 commonly known as ASCT2 is a sodium-dependent neutral amino acid antiporter involved in transmembrane traffic of glutamine that is exchanged through the cell membrane with smaller amino acids such as serine or threonine. Due to the strong overexpression in human cancers, ASCT2 is widely studied for its relevance to human health. Of special interest are the aspects related to the regulation of its function. The role of cholesterol as a modulator of the transport activity has been studied using a combined strategy of computational and experimental approaches. The effect of cholesterol on theNa ex + -[3H]glutamineex/glutaminein antiport in proteoliposomes has been evaluated by adding cholesteryl hemisuccinate. A strong stimulation of transport activity was observed in the presence of 75 μg cholesteryl hemisuccinate per mg total lipids. The presence of cholesterol did not influence the proteoliposome volume, in a wide range of tested concentration, excluding that the stimulation could be due to effects on the vesicles. cholesteryl hemisuccinate, indeed, improved the incorporation of the protein into the phospholipid bilayer to some extent and increased about three times the Vmax of transport without affecting the Km for glutamine. Docking of cholesterol into the hASCT2 trimer was performed. Six poses were obtained some of which overlapped the hypothetical cholesterol molecules observed in the available 3D structures. Additional poses were docked close to CARC/CRAC motifs (Cholesterol Recognition/interaction Amino acid Consensus sequence). To test the direct binding of cholesterol to the protein, a strategy based on the specific targeting of tryptophan and cysteine residues located in the neighborhood of cholesterol poses was employed. On the one hand, cholesterol binding was impaired by modification of tryptophan residues by the Koshland's reagent. On the other hand, the presence of cholesterol impaired the interaction of thiol reagents with the protein. Altogether, these results confirmed that cholesterol molecules interacted with the protein in correspondence of the poses predicted by the docking analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Cosenza, Italy
| |
Collapse
|
16
|
Yu X, Plotnikova O, Bonin PD, Subashi TA, McLellan TJ, Dumlao D, Che Y, Dong YY, Carpenter EP, West GM, Qiu X, Culp JS, Han S. Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation. eLife 2019; 8:e48120. [PMID: 31580259 PMCID: PMC6800002 DOI: 10.7554/elife.48120] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Alanine-serine-cysteine transporter 2 (ASCT2, SLC1A5) is the primary transporter of glutamine in cancer cells and regulates the mTORC1 signaling pathway. The SLC1A5 function involves finely tuned orchestration of two domain movements that include the substrate-binding transport domain and the scaffold domain. Here, we present cryo-EM structures of human SLC1A5 and its complex with the substrate, L-glutamine in an outward-facing conformation. These structures reveal insights into the conformation of the critical ECL2a loop which connects the two domains, thus allowing rigid body movement of the transport domain throughout the transport cycle. Furthermore, the structures provide new insights into substrate recognition, which involves conformational changes in the HP2 loop. A putative cholesterol binding site was observed near the domain interface in the outward-facing state. Comparison with the previously determined inward-facing structure of SCL1A5 provides a basis for a more integrated understanding of substrate recognition and transport mechanism in the SLC1 family.
Collapse
Affiliation(s)
- Xiaodi Yu
- Medicine DesignPfizer IncGrotonUnited States
| | | | | | | | | | | | - Ye Che
- Medicine DesignPfizer IncGrotonUnited States
| | - Yin Yao Dong
- Structural Genomics ConsortiumUniversity of OxfordOxfordUnited Kingdom
| | | | | | - Xiayang Qiu
- Medicine DesignPfizer IncGrotonUnited States
| | | | - Seungil Han
- Medicine DesignPfizer IncGrotonUnited States
| |
Collapse
|
17
|
Garaeva AA, Guskov A, Slotboom DJ, Paulino C. A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nat Commun 2019; 10:3427. [PMID: 31366933 PMCID: PMC6668440 DOI: 10.1038/s41467-019-11363-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/06/2019] [Indexed: 11/30/2022] Open
Abstract
The human Alanine Serine Cysteine Transporter 2 (ASCT2) is a neutral amino acid exchanger that belongs to the solute carrier family 1 (SLC1A). SLC1A structures have revealed an elevator-type mechanism, in which the substrate is translocated across the cell membrane by a large displacement of the transport domain, whereas a small movement of hairpin 2 (HP2) gates the extracellular access to the substrate-binding site. However, it has remained unclear how substrate binding and release is gated on the cytoplasmic side. Here, we present an inward-open structure of the human ASCT2, revealing a hitherto elusive SLC1A conformation. Strikingly, the same structural element (HP2) serves as a gate in the inward-facing as in the outward-facing state. The structures reveal that SLC1A transporters work as one-gate elevators. Unassigned densities near the gate and surrounding the scaffold domain, may represent potential allosteric binding sites, which could guide the design of lipidic-inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Alisa A Garaeva
- Membrane Enzymology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Albert Guskov
- Structural Biology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Dirk J Slotboom
- Membrane Enzymology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands.
- University of Groningen, Zernike Institute for Advanced Materials, Groningen, The Netherlands.
| | - Cristina Paulino
- Membrane Enzymology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands.
- Structural Biology, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands.
| |
Collapse
|
18
|
Scalise M, Console L, Galluccio M, Pochini L, Tonazzi A, Giangregorio N, Indiveri C. Exploiting Cysteine Residues of SLC Membrane Transporters as Targets for Drugs. SLAS DISCOVERY 2019; 24:867-881. [PMID: 31251685 DOI: 10.1177/2472555219856601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The observation that cysteine is the top gainer amino acid during evolution attracted the attention of scientists dealing with protein chemistry. The thiol group of cysteine, indeed, is a potential site for several types of reactions with variable specificity and strength. This feature proved to be promising also in the field of membrane transporters that represent boundary proteins fundamental for cell homeostasis. These proteins are classified, according to the driving force for transport, in primary or secondary active transporters. Another frequently used classification is nowadays based on phylogenesis. Two major groups are identified that take into account both criteria: the ABC and the SLC transporters, the second being much more numerous. The cellular localization of the transporters makes them very attractive for drug design. Moreover, the presence of at least one cysteine residue in all the annotated SLC transporters, so far, highlights the possibility of using the thiol (SH) residue for covalent drug targeting. Even if a delay exists in this research field due to the scarce knowledge of structure/function relationships, the setup of novel experimental tools for studying SLC proteins of plasma and organelle membranes opens an important perspective in pharmacology.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
19
|
Scalise M, Pochini L, Console L, Losso MA, Indiveri C. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol 2018; 6:96. [PMID: 30234109 PMCID: PMC6131531 DOI: 10.3389/fcell.2018.00096] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022] Open
Abstract
SLC1A5, known as ASCT2, is a neutral amino acid transporter belonging to the SLC1 family and localized in the plasma membrane of several body districts. ASCT2 is an acronym standing for Alanine, Serine, Cysteine Transporter 2 even if the preferred substrate is the conditionally essential amino acid glutamine, with cysteine being a modulator and not a substrate. The studies around amino acid transport in cells and tissues began in the '60s by using radiolabeled compounds and competition assays. After identification of murine and human genes, the function of the coded protein has been studied in cell system and in proteoliposomes revealing that this transporter is a Na+ dependent antiporter of neutral amino acids, some of which are only inwardly transported and others are bi-directionally exchanged. The functional asymmetry merged with the kinetic asymmetry in line with the physiological role of amino acid pool harmonization. An intriguing function has been described for ASCT2 that is exploited as a receptor by a group of retroviruses to infect human cells. Interactions with scaffold proteins and post-translational modifications regulate ASCT2 stability, trafficking and transport activity. Two asparagine residues, namely N163 and N212, are the sites of glycosylation that is responsible for the definitive localization into the plasma membrane. ASCT2 expression increases in highly proliferative cells such as inflammatory and stem cells to fulfill the augmented glutamine demand. Interestingly, for the same reason, the expression of ASCT2 is greatly enhanced in many human cancers. This finding has generated interest in its candidacy as a pharmacological target for new anticancer drugs. The recently solved 3D structure of ASCT2 will aid in the rational design of such therapeutic compounds.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Maria A Losso
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Cosenza, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|