1
|
Gutierrez Reyes CD, Alejo-Jacuinde G, Perez Sanchez B, Chavez Reyes J, Onigbinde S, Mogut D, Hernández-Jasso I, Calderón-Vallejo D, Quintanar JL, Mechref Y. Multi Omics Applications in Biological Systems. Curr Issues Mol Biol 2024; 46:5777-5793. [PMID: 38921016 PMCID: PMC11202207 DOI: 10.3390/cimb46060345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Traditional methodologies often fall short in addressing the complexity of biological systems. In this regard, system biology omics have brought invaluable tools for conducting comprehensive analysis. Current sequencing capabilities have revolutionized genetics and genomics studies, as well as the characterization of transcriptional profiling and dynamics of several species and sample types. Biological systems experience complex biochemical processes involving thousands of molecules. These processes occur at different levels that can be studied using mass spectrometry-based (MS-based) analysis, enabling high-throughput proteomics, glycoproteomics, glycomics, metabolomics, and lipidomics analysis. Here, we present the most up-to-date techniques utilized in the completion of omics analysis. Additionally, we include some interesting examples of the applicability of multi omics to a variety of biological systems.
Collapse
Affiliation(s)
| | - Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA; (G.A.-J.); (B.P.S.)
| | - Benjamin Perez Sanchez
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX 79409, USA; (G.A.-J.); (B.P.S.)
| | - Jesus Chavez Reyes
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Damir Mogut
- Department of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Irma Hernández-Jasso
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Denisse Calderón-Vallejo
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - J. Luis Quintanar
- Center of Basic Sciences, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes 20392, Mexico; (J.C.R.); (I.H.-J.); (D.C.-V.); (J.L.Q.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
2
|
Muchowicz A, Bartoszewicz A, Zaslona Z. The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments. Biomolecules 2024; 14:513. [PMID: 38785919 PMCID: PMC11117584 DOI: 10.3390/biom14050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.
Collapse
Affiliation(s)
| | | | - Zbigniew Zaslona
- Molecure S.A., Zwirki i Wigury 101, 02-089 Warszawa, Poland; (A.M.); (A.B.)
| |
Collapse
|
3
|
Abdelbary M, Nolz JC. N-linked glycans: an underappreciated key determinant of T cell development, activation, and function. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00035. [PMID: 38027254 PMCID: PMC10662610 DOI: 10.1097/in9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
N-linked glycosylation is a post-translational modification that results in the decoration of newly synthesized proteins with diverse types of oligosaccharides that originate from the amide group of the amino acid asparagine. The sequential and collective action of multiple glycosidases and glycosyltransferases are responsible for determining the overall size, composition, and location of N-linked glycans that become covalently linked to an asparagine during and after protein translation. A growing body of evidence supports the critical role of N-linked glycan synthesis in regulating many features of T cell biology, including thymocyte development and tolerance, as well as T cell activation and differentiation. Here, we provide an overview of how specific glycosidases and glycosyltransferases contribute to the generation of different types of N-linked glycans and how these post-translational modifications ultimately regulate multiple facets of T cell biology.
Collapse
Affiliation(s)
- Mahmoud Abdelbary
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Ramos-Martínez I, Ramos-Martínez E, Cerbón M, Pérez-Torres A, Pérez-Campos Mayoral L, Hernández-Huerta MT, Martínez-Cruz M, Pérez-Santiago AD, Sánchez-Medina MA, García-Montalvo IA, Zenteno E, Matias-Cervantes CA, Ojeda-Meixueiro V, Pérez-Campos E. The Role of B Cell and T Cell Glycosylation in Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:ijms24010863. [PMID: 36614306 PMCID: PMC9820943 DOI: 10.3390/ijms24010863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Glycosylation is a post-translational modification that affects the stability, structure, antigenicity and charge of proteins. In the immune system, glycosylation is involved in the regulation of ligand-receptor interactions, such as in B-cell and T-cell activating receptors. Alterations in glycosylation have been described in several autoimmune diseases, such as systemic lupus erythematosus (SLE), in which alterations have been found mainly in the glycosylation of B lymphocytes, T lymphocytes and immunoglobulins. In immunoglobulin G of lupus patients, a decrease in galactosylation, sialylation, and nucleotide fucose, as well as an increase in the N-acetylglucosamine bisector, are observed. These changes in glycoisolation affect the interactions of immunoglobulins with Fc receptors and are associated with pericarditis, proteinuria, nephritis, and the presence of antinuclear antibodies. In T cells, alterations have been described in the glycosylation of receptors involved in activation, such as the T cell receptor; these changes affect the affinity with their ligands and modulate the binding to endogenous lectins such as galectins. In T cells from lupus patients, a decrease in galectin 1 binding is observed, which could favor activation and reduce apoptosis. Furthermore, these alterations in glycosylation correlate with disease activity and clinical manifestations, and thus have potential use as biomarkers. In this review, we summarize findings on glycosylation alterations in SLE and how they relate to immune system defects and their clinical manifestations.
Collapse
Affiliation(s)
- Ivan Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”—Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - María Teresa Hernández-Huerta
- CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | | | | | | | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | | | | |
Collapse
|
5
|
Wang X, Li Z, Li W, Li C, Liu J, Lu Y, Fan J, Ren H, Huang L, Wang Z. Gestational diabetes mellitus affects the fucosylation and sialylation levels of N/O-glycans in human milk glycoproteins. Carbohydr Polym 2022; 301:120312. [DOI: 10.1016/j.carbpol.2022.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
6
|
Leite-Gomes E, Dias AM, Azevedo CM, Santos-Pereira B, Magalhães M, Garrido M, Amorim R, Lago P, Marcos-Pinto R, Pinho SS. Bringing to Light the Risk of Colorectal Cancer in Inflammatory Bowel Disease: Mucosal Glycosylation as a Key Player. Inflamm Bowel Dis 2022; 28:947-962. [PMID: 34849933 DOI: 10.1093/ibd/izab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Eduarda Leite-Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mariana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Mónica Garrido
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Rita Amorim
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Pediatrics Department, Centro Hospitalar e Universitário São João, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Lago
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Centre for Research in Health Technologies and Information Systems, University of Porto, Portugal
| | - Salomé S Pinho
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Ronan R, Kshirsagar A, Rebelo AL, Sunny A, Kilcoyne M, Flaherty RO, Rudd PM, Schlosser G, Saldova R, Pandit A, McMahon SS. Distinct Glycosylation Responses to Spinal Cord Injury in Regenerative and Nonregenerative Models. J Proteome Res 2022; 21:1449-1466. [PMID: 35506863 PMCID: PMC9171824 DOI: 10.1021/acs.jproteome.2c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Traumatic spinal cord injury (SCI) results in disruption of tissue integrity and loss of function. We hypothesize that glycosylation has a role in determining the occurrence of regeneration and that biomaterial treatment can influence this glycosylation response. We investigated the glycosylation response to spinal cord transection in Xenopus laevis and rat. Transected rats received an aligned collagen hydrogel. The response compared regenerative success, regenerative failure, and treatment in an established nonregenerative mammalian system. In a healthy rat spinal cord, ultraperformance liquid chromatography (UPLC) N-glycoprofiling identified complex, hybrid, and oligomannose N-glycans. Following rat SCI, complex and outer-arm fucosylated glycans decreased while oligomannose and hybrid structures increased. Sialic acid was associated with microglia/macrophages following SCI. Treatment with aligned collagen hydrogel had a minimal effect on the glycosylation response. In Xenopus, lectin histochemistry revealed increased levels of N-acetyl-glucosamine (GlcNAc) in premetamorphic animals. The addition of GlcNAc is required for processing complex-type glycans and is a necessary foundation for additional branching. A large increase in sialic acid was observed in nonregenerative animals. This work suggests that glycosylation may influence regenerative success. In particular, loss of complex glycans in rat spinal cord may contribute to regeneration failure. Targeting the glycosylation response may be a promising strategy for future therapies.
Collapse
Affiliation(s)
- Rachel Ronan
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
- Discipline
of Anatomy, National University of Ireland, Galway H91 W5P7, Ireland
| | - Aniket Kshirsagar
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Ana Lúcia Rebelo
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Abbah Sunny
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Michelle Kilcoyne
- Discipline
of Microbiology, National University of
Ireland, Galway, Galway H91 W2TY, Ireland
| | - Roisin O’ Flaherty
- Department
of Chemistry, Maynooth University, Maynooth, Co., Kildare W23 F2H6, Ireland
- The
National Institute for Bioprocessing, Research,
and Training (NIBRT), Dublin A94 X099, Ireland
| | - Pauline M. Rudd
- The
National Institute for Bioprocessing, Research,
and Training (NIBRT), Dublin A94 X099, Ireland
- Conway
Institute, University College Dublin, Belfield, Dublin 4 D04
PR94, Ireland
| | - Gerhard Schlosser
- School of
Natural Science, National University of
Ireland, Galway, Galway H91 W2TY, Ireland
| | - Radka Saldova
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
- The
National Institute for Bioprocessing, Research,
and Training (NIBRT), Dublin A94 X099, Ireland
- UCD
School of Medicine, College of Health and Agricultural Science (CHAS), University College Dublin (UCD), Dublin D04 PR94, Ireland
| | - Abhay Pandit
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Siobhan S. McMahon
- SFI
Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Galway H91 W2TY, Ireland
- Discipline
of Anatomy, National University of Ireland, Galway H91 W5P7, Ireland
| |
Collapse
|
8
|
Huang P, Tang L, Zhang L, Ren Y, Peng H, Xiao Y, Xu J, Mao D, Liu L, Liu L. Identification of Biomarkers Associated With CD4+ T-Cell Infiltration With Gene Coexpression Network in Dermatomyositis. Front Immunol 2022; 13:854848. [PMID: 35711463 PMCID: PMC9196312 DOI: 10.3389/fimmu.2022.854848] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background Dermatomyositis is an autoimmune disease characterized by damage to the skin and muscles. CD4+ T cells are of crucial importance in the occurrence and development of dermatomyositis (DM). However, there are few bioinformatics studies on potential pathogenic genes and immune cell infiltration of DM. Therefore, this study intended to explore CD4+ T-cell infiltration–associated key genes in DM and construct a new model to predict the level of CD4+ T-cell infiltration in DM. Methods GSE46239, GSE142807, GSE1551, and GSE193276 datasets were downloaded. The WGCNA and CIBERSORT algorithms were performed to identify the most correlated gene module with CD4+ T cells. Matascape was used for GO enrichment and KEGG pathway analysis of the key gene module. LASSO regression analysis was used to identify the key genes and construct the prediction model. The correlation between the key genes and CD4+ T-cell infiltration was investigated. GSEA was performed to research the underlying signaling pathways of the key genes. The key gene-correlated transcription factors were identified through the RcisTarget and Gene-motif rankings databases. The miRcode and DIANA-LncBase databases were used to build the lncRNA-miRNA-mRNA network. Results In the brown module, 5 key genes (chromosome 1 open reading frame 106 (C1orf106), component of oligomeric Golgi complex 8 (COG8), envoplakin (EVPL), GTPases of immunity-associated protein family member 6 (GIMAP6), and interferon-alpha inducible protein 6 (IFI6)) highly associated with CD4+ T-cell infiltration were identified. The prediction model was constructed and showed better predictive performance in the training set, and this satisfactory model performance was validated in another skin biopsy dataset and a muscle biopsy dataset. The expression levels of the key genes promoted the CD4+ T-cell infiltration. GSEA results revealed that the key genes were remarkably enriched in many immunity-associated pathways, such as JAK/STAT signaling pathway. The cisbp_M2205, transcription factor-binding site, was enriched in C1orf106, EVPL, and IF16. Finally, 3,835 lncRNAs and 52 miRNAs significantly correlated with key genes were used to build a ceRNA network. Conclusion The C1orf106, COG8, EVPL, GIMAP6, and IFI6 genes are associated with CD4+ T-cell infiltration. The prediction model constructed based on the 5 key genes may better predict the level of CD4+ T-cell infiltration in damaged muscle and lesional skin of DM. These key genes could be recognized as potential biomarkers and immunotherapeutic targets of DM.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| |
Collapse
|
9
|
Lee ZY, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Targeting cancer via Golgi α-mannosidase II inhibition: How far have we come in developing effective inhibitors? Carbohydr Res 2021; 508:108395. [PMID: 34280804 DOI: 10.1016/j.carres.2021.108395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Dysregulation of glycosylation pathways has been well documented in several types of cancer, where it often participates in cancer development and progression, especially cancer metastasis. Hence, inhibition of glycosidases such as mannosidases can disrupt the biosynthesis of glycans on cell surface glycoproteins and modify their role in carcinogenesis and metastasis. Several reviews have delineated the role of N-glycosylation in cancer, but the data regarding effective inhibitors remains sparse. Golgi α-mannosidase has been an attractive therapeutic target for preventing the formation of ß1,6-branched complex type N-glycans. However, due to its high structural similarity to the broadly specific lysosomal α-mannosidase, undesired co-inhibition occurs and this leads to serious side effects that complicates its potential role as a therapeutic agent. Even though extensive efforts have been geared towards the discovery of effective inhibitors, no breakthrough has been achieved thus far which could allow for their use in clinical settings. Improving the specificity of current inhibitors towards Golgi α-mannosidase is requisite in progressing this class of compounds in cancer chemotherapy. In this review, we highlight a few potent and selective inhibitors discovered up to the present to guide researchers for rational design of further effective inhibitors to overcome the issue of specificity.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
10
|
Zhang L, Zhang J, Han B, Chen C, Liu J, Sun Z, Liu M, Zhou P. Gestational Diabetes Mellitus-Induced Changes in Proteomes and Glycated/Glycosylated Proteomes of Human Colostrum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10749-10759. [PMID: 34474557 DOI: 10.1021/acs.jafc.1c03791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gestational diabetes mellitus (GDM) not only has a bad effect on the development of infants but also causes variations in breastmilk composition. This study aims to investigate the changes in the protein profile of colostrum between mothers with GDM and healthy mothers (H) by sequential windowed acquisition of all theoretical fragment ion proteomics techniques. A total of 1295 proteins were detected, with 192 proteins being significantly different between GDM and H. These significantly different proteins were enriched with the carbohydrate and lipid metabolism pathway as well as immunity. Some proteins had an AOC value of 1, such as apolipoprotein E and lipoprotein lipase. In addition, we identified 42 glycated and 93 glycosylated peptides in colostrum without any enrichment, with glycated peptides being upregulated and glycosylated peptides being downregulated in colostrum with GDM. These results help us to better understand the GDM-induced changes in proteomes and glycated and glycosylated level and provide guidance on infant formula adjustment for infants from mothers with GDM.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Jinyue Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Binsong Han
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | | | - Jun Liu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, China
| | - Zhaona Sun
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, China
| | - Min Liu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
11
|
Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci U S A 2021; 118:2020322118. [PMID: 34253606 PMCID: PMC8307711 DOI: 10.1073/pnas.2020322118] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Other than exposure to gluten and genetic compatibility, the gut microbiome has been suggested to be involved in celiac disease (CD) pathogenesis by mediating interactions between gluten/environmental factors and the host immune system. However, to establish disease progression markers, it is essential to assess alterations in the gut microbiota before disease onset. Here, a prospective metagenomic analysis of the gut microbiota of infants at risk of CD was done to track shifts in the microbiota before CD development. We performed cross-sectional and longitudinal analyses of gut microbiota, functional pathways, and metabolites, starting from 18 mo before CD onset, in 10 infants who developed CD and 10 matched nonaffected infants. Cross-sectional analysis at CD onset identified altered abundance of six microbial strains and several metabolites between cases and controls but no change in microbial species or pathway abundance. Conversely, results of longitudinal analysis revealed several microbial species/strains/pathways/metabolites occurring in increased abundance and detected before CD onset. These had previously been linked to autoimmune and inflammatory conditions (e.g., Dialister invisus, Parabacteroides sp., Lachnospiraceae, tryptophan metabolism, and metabolites serine and threonine). Others occurred in decreased abundance before CD onset and are known to have anti-inflammatory effects (e.g., Streptococcus thermophilus, Faecalibacterium prausnitzii, and Clostridium clostridioforme). Additionally, we uncovered previously unreported microbes/pathways/metabolites (e.g., Porphyromonas sp., high mannose-type N-glycan biosynthesis, and serine) that point to CD-specific biomarkers. Our study establishes a road map for prospective longitudinal study designs to better understand the role of gut microbiota in disease pathogenesis and therapeutic targets to reestablish tolerance and/or prevent autoimmunity.
Collapse
|
12
|
Ząbczyńska M, Link-Lenczowski P, Pocheć E. Glycosylation in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:205-218. [PMID: 34495537 DOI: 10.1007/978-3-030-70115-4_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autoimmune diseases are accompanied by changes in protein glycosylation, in both the immune system and target tissues. The best-studied alteration in autoimmunity is agalactosylation of immunoglobulin G (IgG), characterized primarily in rheumatoid arthritis (RA), and then detected also in systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), and multiple sclerosis (MS). The rebuilding of IgG N-glycans in RA correlates with the relapses and remissions of the disease, is associated with physiological states such as pregnancy but also depends on applied anti-inflammatory therapy. In turn, a decreased core fucosylation of the whole pool of IgG N-glycans is a serum glycomarker in autoimmune thyroid diseases (AITD) encompassing Hashimoto's thyroiditis (HT) and Grave's disease (GD). However, fucosylation of anti-thyroglobulin IgG (an immunological marker of HT) was elevated in HT serum. Core fucosylation of IgG oligosaccharides was also lowered in MS and SLE. In AITD and IBD, chronic inflammation T lymphocytes showed the reduced expression of MGAT5 gene encoding β1,6-N-acetylglucosaminyltransferase V (GnT-V) responsible for β1,6-branching of N-glycans, which is important for T cell receptor activation. Structural changes of glycans have a profound effect on the pro-inflammatory activity of immune cells and serum immune proteins, including IgG in autoimmunity.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
13
|
Yu M, Qin H, Wang H, Liu J, Liu S, Yan Q. N-glycosylation of uterine endometrium determines its receptivity. J Cell Physiol 2019; 235:1076-1089. [PMID: 31276203 DOI: 10.1002/jcp.29022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
Glycosylation alters the molecular and functional features of glycoproteins, which is closely related with many physiological processes and diseases. During "window of implantation", uterine endometrium transforms into a receptive status to accept the embryo, thereby establishing successful embryo implantation. In this article, we aimed at investigating the role of N-glycosylation, a major modification type of glycoproteins, in the process of endometrial receptivity establishment. Results found that human uterine endometrial tissues at mid-secretory phase exhibited Lectin PHA-E+L (recognizes the branched N-glycans) positive N-glycans as measured by the Lectin fluorescent staining analysis. By utilizing in vitro implantation model, we found that de-N-glycosylation of human endometrial Ishikawa and RL95-2 cells by tunicamycin (inhibitor of N-glycosylation) and peptide-N-glycosidase F (PNGase F) impaired their receptive ability to human trophoblastic JAR cells. Meanwhile, N-glycosylation of integrin αvβ3 and leukemia inhibitory factor receptor (LIFR) are found to play key roles in regulating the ECM-dependent FAK/Paxillin and LIF-induced STAT3 signaling pathways, respectively, thus affecting the receptive potentials of endometrial cells. Furthermore, in vivo experiments and primary mouse endometrial cells-embryos coculture model further verified that N-glycosylation of mouse endometrial cells contributed to the successful implantation. Our results provide new evidence to show that N-glycosylation of uterine endometrium is essential for maintaining the receptive functions, which gives a better understanding of the glycobiology of implantation.
Collapse
Affiliation(s)
- Ming Yu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| |
Collapse
|
14
|
Mantuano NR, Oliveira-Nunes MC, Alisson-Silva F, Dias WB, Todeschini AR. Emerging role of glycosylation in the polarization of tumor-associated macrophages. Pharmacol Res 2019; 146:104285. [PMID: 31132403 DOI: 10.1016/j.phrs.2019.104285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Tumors are formed by several cell types interacting in a complex environment of soluble and matrix molecules. The crosstalk between the cells and extracellular components control tumor fate. Macrophages are highly plastic and diverse immune cells that are known to be key regulators of this complex network, which is mostly because they can adjust their metabolism and reprogram their phenotype and effector function. Here, we review the studies that disclose the central role of metabolism and tumor microenvironment in shaping the phenotype and function of macrophages, highlighting the importance of the hexosamine biosynthetic pathway. We further discuss growing evidence of nutrient-sensitive protein modifications such as O-GlcNAcylation and extracellular glycosylation in the function and polarization of tumor-associated macrophages.
Collapse
Affiliation(s)
- Natalia Rodrigues Mantuano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Maria Cecilia Oliveira-Nunes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Frederico Alisson-Silva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Bloco D sala 03 CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
15
|
Li W, Qu G, Choi SC, Cornaby C, Titov A, Kanda N, Teng X, Wang H, Morel L. Targeting T Cell Activation and Lupus Autoimmune Phenotypes by Inhibiting Glucose Transporters. Front Immunol 2019; 10:833. [PMID: 31057554 PMCID: PMC6478810 DOI: 10.3389/fimmu.2019.00833] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
CD4+ T cells have numerous features of over-activated cellular metabolism in lupus patients and mouse models of the disease. This includes a higher glycolysis than in healthy controls. Glucose transporters play an essential role in glucose metabolism by controlling glucose import into the cell from the extracellular environment. We have previously shown that treatment of lupus-prone mice with 2-deoxy-D-glucose, which inhibits the first step of glycolysis was sufficient to prevent autoimmune activation. However, direct targeting of glucose transporters has never been tested in a mouse model of lupus. Here, we show that CG-5, a novel glucose transporter inhibitor, ameliorated autoimmune phenotypes in a spontaneous lupus-prone mouse model, B6.NZM2410.Sle1.Sle2.Sle3 (Triple-congenic, TC), and in a chronic graft- vs. host-disease (cGVHD) model of induced lupus. In vitro, CG-5 blocked glycolysis in CD4+ T cells, and limited the expansion of CD4+ T cells induced by alloreactive stimulation. CG-5 also modulated CD4+ T cell polarization by inhibiting Th1 and Th17 differentiation and promoting regulatory T (Treg) induction. Moreover, CG-5 treatment reduced lupus phenotypes including the expansion of germinal center B (GC B) cells, as well as the production of autoantibodies in both TC mice and cGVHD models. Finally, CG-5 blocked glycolysis in human T cells. Overall, our data suggest that blocking glucose uptake with a small molecule inhibitor ameliorates autoimmune activation, at least partially due to its inhibition of glycolysis in CD4+ T cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Ganlin Qu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Seung-Chul Choi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Caleb Cornaby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Anton Titov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Natalie Kanda
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Haiting Wang
- Department of Rheumatology, RenJi Hospital South, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Woodward AM, Lehoux S, Mantelli F, Di Zazzo A, Brockhausen I, Bonini S, Argüeso P. Inflammatory Stress Causes N-Glycan Processing Deficiency in Ocular Autoimmune Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:283-294. [PMID: 30448401 DOI: 10.1016/j.ajpath.2018.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
High levels of proinflammatory cytokines have been associated with a loss of tissue function in ocular autoimmune diseases, but the basis for this relationship remains poorly understood. Here we investigate a new role for tumor necrosis factor α in promoting N-glycan-processing deficiency at the surface of the eye through inhibition of N-acetylglucosaminyltransferase expression in the Golgi. Using mass spectrometry, complex-type biantennary oligosaccharides were identified as major N-glycan structures in differentiated human corneal epithelial cells. Remarkably, significant differences were detected between the efficacies of cytokines in regulating the expression of glycogenes involved in the biosynthesis of N-glycans. Tumor necrosis factor α but not IL-1β had a profound effect in suppressing the expression of enzymes involved in the Golgi branching pathway, including N-acetylglucosaminyltransferases 1 and 2, which are required for the formation of biantennary structures. This decrease in gene expression was correlated with a reduction in enzymatic activity and impaired N-glycan branching. Moreover, patients with ocular mucous membrane pemphigoid were characterized by marginal N-acetylglucosaminyltransferase expression and decreased N-glycan branching in the conjunctiva. Together, these data indicate that proinflammatory cytokines differentially influence the expression of N-glycan-processing enzymes in the Golgi and set the stage for future studies to explore the pathophysiology of ocular autoimmune diseases.
Collapse
Affiliation(s)
- Ashley M Woodward
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sylvain Lehoux
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Antonio Di Zazzo
- Ophthalmology Complex Unit, Campus Bio-Medico University of Rome, Rome, Italy
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stefano Bonini
- Ophthalmology Complex Unit, Campus Bio-Medico University of Rome, Rome, Italy
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|