1
|
Sipos TC, Attila K, Kocsis L, Bălașa A, Chinezu R, Baróti BÁ, Pap Z. Clinicopathological Parameters and Immunohistochemical Profiles in Correlation with MRI Characteristics in Glioblastomas. Int J Mol Sci 2024; 25:13043. [PMID: 39684754 DOI: 10.3390/ijms252313043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma is considered the most aggressive tumor of the central nervous system. The tumor microenvironment includes several components, such as endothelial cells, immune cells, and extracellular matrix components like matrix metalloproteinase-9 (MMP-9), which facilitates the proliferation of endothelial cells with pro-angiogenic roles. The MRI characteristics of glioblastomas can contribute to determining the prognosis. The aim of this study was to analyze the relationship between tumor angiogenesis in glioblastomas in association with MMP-9 immunoexpression. The results were correlated with the Ki-67 proliferation index, p53 immunoexpression, and the mutational status of IDH1 and ATRX, as well as MRI imaging data. This retrospective study included forty-four patients diagnosed with glioblastoma at the Department of Pathology, Târgu Mureș County Emergency Clinical Hospital. MMP-9 immunoexpression was observed in approximately half of the cases, more frequently in patients over 65 years old. Comparing the imaging data with the immunohistochemical results, we observed that the median tumor volume was higher in glioblastomas with IDH1 and p53 mutations, ATRX wild-type status, negative MMP-9 expression, and high Ki-67 proliferation indexes. The median values of MVD-CD34 and MVD-CD105 were higher in cases with extensive peritumoral edema in the contralateral hemisphere. Additionally, ATRX mutations were frequently associated with a more pronounced deviation of the median structures. To statistically validate the associations between MRI and the histopathological features of glioblastomas, further studies with larger cohorts are required.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Kövecsi Attila
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
- Pathology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Lóránd Kocsis
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Adrian Bălașa
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Rareș Chinezu
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Beáta Ágota Baróti
- Radiology Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Radiology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Zsuzsánna Pap
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| |
Collapse
|
2
|
Yu X, Li W, Sun S, Li J. DDIT3 is associated with breast cancer prognosis and immune microenvironment: an integrative bioinformatic and immunohistochemical analysis. J Cancer 2024; 15:3873-3889. [PMID: 38911383 PMCID: PMC11190778 DOI: 10.7150/jca.96491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/12/2024] [Indexed: 06/25/2024] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3) is a transcription factor central to apoptosis, differentiation, and stress response. DDIT3 has been extensively studied in cancer biology. However, its precise implications in breast cancer progression and its interaction with the immune microenvironment are unclear. In this study, we utilized a novel multi-omics integration strategy, combining bulk RNA sequencing, single-cell sequencing, spatial transcriptomics and immunohistochemistry, to explore the role of DDIT3 in breast cancer and establish the correlation between DDIT3 and poor prognosis in breast cancer patients. We identified a robust prognostic signature, including six genes (unc-93 homolog B1, TLR signaling regulator, anti-Mullerian hormone, DCTP pyrophosphatase 1, mitochondrial ribosomal protein L36, nuclear factor erythroid 2, and Rho GTPase activating protein 39), associated with DDIT3. This signature stratified the high-risk patient groups, characterized by increased infiltration of the regulatory T cells and M2-like macrophages and fibroblast growth factor (FGF)/FGF receptor signaling activation. Notably, the high-risk patient group demonstrated enhanced sensitivity to immunotherapy, presenting novel therapeutic opportunities. Integrating multi-omics data helped determine the spatial expression pattern of DDIT3 in the tumor microenvironment and its correlation with immune cell infiltration. This multi-dimensional analysis provided a comprehensive understanding of the intricate interplay between DDIT3 and the immune microenvironment in breast cancer. Overall, our study not only facilitates understanding the role of DDIT3 in breast cancer but also offers innovative insights for developing prognostic models and therapeutic strategies. Identifying the DDIT3-related prognostic signature and its association with the immune microenvironment provided a promising avenue for personalized breast cancer treatment.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Oncology, Shanghai GoBroad Cancer Hospital, Shanghai, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of general surgery, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, P. R. China
| |
Collapse
|
3
|
Xiao HX, Yu L, Xia Y, Chen K, Li WM, Ge GR, Zhang W, Zhang Q, Zhang HT, Geng DC. Sinomenine increases osteogenesis in mice with ovariectomy-induced bone loss by modulating autophagy. World J Stem Cells 2024; 16:486-498. [PMID: 38817333 PMCID: PMC11135257 DOI: 10.4252/wjsc.v16.i5.486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND A decreased autophagic capacity of bone marrow mesenchymal stromal cells (BMSCs) has been suggested to be an important cause of decreased osteogenic differentiation. A pharmacological increase in autophagy of BMSCs is a potential therapeutic option to increase osteoblast viability and ameliorate osteoporosis. AIM To explore the effects of sinomenine (SIN) on the osteogenic differentiation of BMSCs and the underlying mechanisms. METHODS For in vitro experiments, BMSCs were extracted from sham-treated mice and ovariectomized mice, and the levels of autophagy markers and osteogenic differentiation were examined after treatment with the appropriate concentrations of SIN and the autophagy inhibitor 3-methyladenine. In vivo, the therapeutic effect of SIN was verified by establishing an ovariectomy-induced mouse model and by morphological and histological assays of the mouse femur. RESULTS SIN reduced the levels of AKT and mammalian target of the rapamycin (mTOR) phosphorylation in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway, inhibited mTOR activity, and increased autophagy ability of BMSCs, thereby promoting the osteogenic differentiation of BMSCs and effectively alleviating bone loss in ovariectomized mice in vivo. CONCLUSION The Chinese medicine SIN has potential for the treatment of various types of osteoporosis, bone homeostasis disorders, and autophagy-related diseases.
Collapse
Affiliation(s)
- Hai-Xiang Xiao
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Centre of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Orthopedics, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Kai Chen
- Department of Orthopedics, Hai'an People's Hospital, Hai'an 226600, Jiangsu Province, China
| | - Wen-Ming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Gao-Ran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Qing Zhang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Xuzhou 223002, Jiangsu Province, China
| | - Hong-Tao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - De-Chun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
4
|
Jiang S, Li S, Pang S, Liu M, Sun H, Zhang N, Liu J. A systematic review: Sinomenine. Heliyon 2024; 10:e29976. [PMID: 38765107 PMCID: PMC11098800 DOI: 10.1016/j.heliyon.2024.e29976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Sinomenine (SIN), an alkaloid derived from the traditional Chinese medicine, Caulis Sinomenii, has been used as an anti-inflammatory drug in China for over 30 years. With the continuous increase in research on the pharmacological mechanism of SIN, it has been found that, in addition to the typical rheumatoid arthritis (RA) treatment, SIN can be used as a potentially effective therapeutic drug for anti-tumour, anti-renal, and anti-nervous system diseases. By reviewing a large amount of literature and conducting a summary analysis of the literature pertaining to the pharmacological mechanism of SIN, we completed a review that focused on SIN, found that the current research is insufficient, and offered an outlook for future SIN development. We hope that this review will increase the public understanding of the pharmacological mechanisms of SIN, discover SIN research trial shortcomings, and promote the effective treatment of immune diseases, inflammation, and other related diseases.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin City, Heilongjiang Province, 150040, PR China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, 418000, PR China
| | - Shuang Li
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, 418000, PR China
- College Pharmacy, Jiamusi University, Jiamusi City, Heilongjiang Province, 154000, PR China
| | - Siyuan Pang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, 418000, PR China
| | - Mei Liu
- School of Pharmaceutical Sciences, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Huifeng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin City, Heilongjiang Province, 150040, PR China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin City, Heilongjiang Province, 150040, PR China
| | - Jianxin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, 418000, PR China
- School of Pharmaceutical Sciences, University of South China, Hengyang City, Hunan Province, 421001, PR China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha City, Hunan Province, 410208, PR China
| |
Collapse
|
5
|
Horváth L, Biri-Kovács B, Baranyai Z, Stipsicz B, Méhes E, Jezsó B, Krátký M, Vinšová J, Bősze S. New Salicylanilide Derivatives and Their Peptide Conjugates as Anticancer Compounds: Synthesis, Characterization, and In Vitro Effect on Glioblastoma. ACS OMEGA 2024; 9:16927-16948. [PMID: 38645331 PMCID: PMC11024950 DOI: 10.1021/acsomega.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.
Collapse
Affiliation(s)
- Lilla Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Beáta Biri-Kovács
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Zsuzsa Baranyai
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Bence Stipsicz
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
- Institute
of Biology, Doctoral School of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Előd Méhes
- Institute
of Physics, Department of Biological Physics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Bálint Jezsó
- Research
Centre for Natural Sciences, Institute of
Enzymology, Budapest 1053, Hungary
- ELTE-MTA
“Momentum” Motor Enzymology Research Group, Department
of Biochemistry, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Martin Krátký
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| |
Collapse
|
6
|
García-López D, Zaragoza-Ojeda M, Eguía-Aguilar P, Arenas-Huertero F. Endoplasmic Reticulum Stress in Gliomas: Exploiting a Dual-Effect Dysfunction through Chemical Pharmaceutical Compounds and Natural Derivatives for Therapeutical Uses. Int J Mol Sci 2024; 25:4078. [PMID: 38612890 PMCID: PMC11012637 DOI: 10.3390/ijms25074078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/14/2024] Open
Abstract
The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), which aims to restore proteostasis and avoid cell death. However, endoplasmic response-associated degradation (ERAD) is sometimes triggered to degrade the misfolded and unassembled proteins instead. If stress persists, cells activate three sensors: PERK, IRE-1, and ATF6. Glioma cells can use these sensors to remain unresponsive to chemotherapeutic treatments. In such cases, the activation of ATF4 via PERK and some proteins via IRE-1 can promote several types of cell death. The search for new antitumor compounds that can successfully and directly induce an endoplasmic reticulum stress response ranges from ligands to oxygen-dependent metabolic pathways in the cell capable of activating cell death pathways. Herein, we discuss the importance of the ER stress mechanism in glioma and likely therapeutic targets within the UPR pathway, as well as chemicals, pharmaceutical compounds, and natural derivatives of potential use against gliomas.
Collapse
Affiliation(s)
- Daniel García-López
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
- Facultad de Ciencia y Tecnología, Universidad Simón Bolívar, Mexico City 03920, Mexico
| | - Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
| | - Pilar Eguía-Aguilar
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
- Centro de Investigación en Biomedicina y Bioseguridad, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
7
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
8
|
Hou W, Huang L, Huang H, Liu S, Dai W, Tang J, Chen X, Lu X, Zheng Q, Zhou Z, Zhang Z, Lan J. Bioactivities and Mechanisms of Action of Sinomenine and Its Derivatives: A Comprehensive Review. Molecules 2024; 29:540. [PMID: 38276618 PMCID: PMC10818773 DOI: 10.3390/molecules29020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Sinomenine, an isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, has been extensively studied for its derivatives as bioactive agents. This review concentrates on the research advancements in the biological activities and action mechanisms of sinomenine-related compounds until November 2023. The findings indicate a broad spectrum of pharmacological effects, including antitumor, anti-inflammation, neuroprotection, and immunosuppressive properties. These compounds are notably effective against breast, lung, liver, and prostate cancers, exhibiting IC50 values of approximately 121.4 nM against PC-3 and DU-145 cells, primarily through the PI3K/Akt/mTOR, NF-κB, MAPK, and JAK/STAT signaling pathways. Additionally, they manifest anti-inflammatory and analgesic effects predominantly via the NF-κB, MAPK, and Nrf2 signaling pathways. Utilized in treating rheumatic arthritis, these alkaloids also play a significant role in cardiovascular and cerebrovascular protection, as well as organ protection through the NF-κB, Nrf2, MAPK, and PI3K/Akt/mTOR signaling pathways. This review concludes with perspectives and insights on this topic, highlighting the potential of sinomenine-related compounds in clinical applications and the development of medications derived from natural products.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Lejun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Xiangzhao Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Xiaolu Lu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Qisheng Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Zhinuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Ziyun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
9
|
Kakali B. Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy. Anticancer Agents Med Chem 2024; 24:1167-1181. [PMID: 38988167 DOI: 10.2174/0118715206303964240708095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.
Collapse
Affiliation(s)
- Bhadra Kakali
- Department of Zoology, University of Kalyani, Kalyani, 741235, India
| |
Collapse
|
10
|
Zhang JX, Yuan WC, Li CG, Zhang HY, Han SY, Li XH. A review on the mechanisms underlying the antitumor effects of natural products by targeting the endoplasmic reticulum stress apoptosis pathway. Front Pharmacol 2023; 14:1293130. [PMID: 38044941 PMCID: PMC10691277 DOI: 10.3389/fphar.2023.1293130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer poses a substantial risk to human life and wellbeing as a result of its elevated incidence and fatality rates. Endoplasmic reticulum stress (ERS) is an important pathway that regulates cellular homeostasis. When ERS is under- or overexpressed, it activates the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-, inositol-requiring enzyme 1 (IRE1)- and activating transcription Factor 6 (ATF6)-related apoptotic pathways to induce apoptosis. Tumor cells and microenvironment are susceptible to ERS, making the modulation of ERS a potential therapeutic approach for treating tumors. The use of natural products to treat tumors has substantially progressed, with various extracts demonstrating antitumor effects. Nevertheless, there are few reports on the effectiveness of natural products in inducing apoptosis by specifically targeting and regulating the ERS pathway. Further investigation and elaboration of its mechanism of action are still needed. This paper examines the antitumor mechanism of action by which natural products exert antitumor effects from the perspective of ERS regulation to provide a theoretical basis and new research directions for tumor therapy.
Collapse
Affiliation(s)
- Jie-Xiang Zhang
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei-Chen Yuan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- The College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Gang Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Yan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiao-Hong Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Keita A, Duval R, Porée FH. Chemistry and biology of ent-morphinan alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2023; 90:1-96. [PMID: 37716795 DOI: 10.1016/bs.alkal.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
Morphinan alkaloids have attracted constant attention since the isolation of morphine by Sertürner in 1805. However, a group of 45 compounds possessing a complete ent-morphinan backbone can also be found in the literature. These compounds are related to the morphinandienone subgroup and display a substitution pattern which is different from the morphinans. In particular, these alkaloids could be substituted at position C-2 and C-8 either by a hydroxy function or a methoxy moiety. Four groups of ent-morphinan alkaloids can be proposed, the salutaridine, pallidine, cephasugine and erromangine series. Interestingly, the botanical distribution of the ent-morphinans is more widespread than for the morphinans and includes the Annonaceae, Berberidaceae, Euphorbiaceae, Fumariaceae, Hernandiaceae, Lauraceae, Menispermaceae, Monimiaceae, Papaveraceae, and Ranunculaceae families. To date, their exact mode of production remains elusive and their interplay with the biosynthetic pathway of other classes of benzyltetrahydroisoquinoline alkaloids, in particular aporphines, should be confirmed. Exploration of the biological and therapeutic potential of these compounds is limited to some areas, namely central nervous system (CNS), inflammation, cancer, malaria and viruses. Further studies should be conducted to identify the cellular/molecular targets in view of promoting these compounds as new scaffolds in medicinal chemistry.
Collapse
Affiliation(s)
| | - Romain Duval
- Université Paris Cité, IRD, MERIT, Paris, France.
| | | |
Collapse
|
12
|
Manfioletti G, Fedele M. Epithelial-Mesenchymal Transition (EMT). Int J Mol Sci 2023; 24:11386. [PMID: 37511145 PMCID: PMC10379270 DOI: 10.3390/ijms241411386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process involved in many physiological and pathological conditions [...].
Collapse
Affiliation(s)
| | - Monica Fedele
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology (IEOS), 80145 Naples, Italy
| |
Collapse
|
13
|
Nan Y, Su H, Zhou B, Liu S. The function of natural compounds in important anticancer mechanisms. Front Oncol 2023; 12:1049888. [PMID: 36686745 PMCID: PMC9846506 DOI: 10.3389/fonc.2022.1049888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
The existence of malignant tumors has been a threat to human life, health, and safety. Although the rapid development of radiotherapy, drug therapy, surgery, and local therapy has improved the quality of life of tumor patients, there are still some risks. Natural compounds are widely used in cancer because they are easy to obtain, have a good curative effects and have no obvious side effects, and play a vital role in the prevention and treatment of various cancers. Phenolic, flavonoids, terpenoids, alkaloids, and other natural components of traditional Chinese medicine have certain anti-tumor activities, which can promote apoptosis, anti-proliferation, anti-metastasis, inhibit angiogenesis, change the morphology of cancer cells and regulate immune function, etc., and have positive effects on breast cancer, liver cancer, lung cancer, gastric cancer, rectal cancer and so on. To better understand the effects of natural compounds on cancer, this paper screened out four important pathways closely related to cancer, including cell death and immunogenic cell death, immune cells in the tumor microenvironment, inflammation and related pathways and tumor metastasis, and systematically elaborated the effects of natural compounds on cancer.
Collapse
Affiliation(s)
- Yang Nan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Hongchan Su
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Bo Zhou
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Shumin Liu
- Chinese Medicine Research Institute, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China,*Correspondence: Shumin Liu,
| |
Collapse
|
14
|
Wang H, Mi K. Emerging roles of endoplasmic reticulum stress in the cellular plasticity of cancer cells. Front Oncol 2023; 13:1110881. [PMID: 36890838 PMCID: PMC9986440 DOI: 10.3389/fonc.2023.1110881] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Cellular plasticity is a well-known dynamic feature of tumor cells that endows tumors with heterogeneity and therapeutic resistance and alters their invasion-metastasis progression, stemness, and drug sensitivity, thereby posing a major challenge to cancer therapy. It is becoming increasingly clear that endoplasmic reticulum (ER) stress is a hallmark of cancer. The dysregulated expression of ER stress sensors and the activation of downstream signaling pathways play a role in the regulation of tumor progression and cellular response to various challenges. Moreover, mounting evidence implicates ER stress in the regulation of cancer cell plasticity, including epithelial-mesenchymal plasticity, drug resistance phenotype, cancer stem cell phenotype, and vasculogenic mimicry phenotype plasticity. ER stress influences several malignant characteristics of tumor cells, including epithelial-to-mesenchymal transition (EMT), stem cell maintenance, angiogenic function, and tumor cell sensitivity to targeted therapy. The emerging links between ER stress and cancer cell plasticity that are implicated in tumor progression and chemoresistance are discussed in this review, which may aid in formulating strategies to target ER stress and cancer cell plasticity in anticancer treatments.
Collapse
Affiliation(s)
- Hao Wang
- Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Mi
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Xia F, Sun S, Xia L, Xu X, Hu G, Wang H, Chen X. Traditional Chinese medicine suppressed cancer progression by targeting endoplasmic reticulum stress responses: A review. Medicine (Baltimore) 2022; 101:e32394. [PMID: 36595834 PMCID: PMC9794298 DOI: 10.1097/md.0000000000032394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer has a high morbidity and mortality; therefore, it poses a major global health concern. Imbalance in endoplasmic reticulum homeostasis can induce endoplasmic reticulum stress (ERS). ERS has been shown to play both tumor-promoting and tumor-suppressive roles in various cancer types by activating a series of adaptive responses to promote tumor cell survival and inducing ERS-related apoptotic pathways to promote tumor cell death, inhibit tumor growth and suppress tumor invasion. Because multiple roles of ERS in tumors continue to be reported, many studies have attempted to target ERS in cancer therapy. The therapeutic effects of traditional Chinese medicine (TCM) treatments on tumors have been widely recognized. TCM treatments can enhance the sensitivity of tumor radiotherapy, delay tumor recurrence and improve patients' quality of life. However, there are relatively few reports exploring the antitumor effects of TCM from the perspective of ERS. This review addresses the progress of TCM intervention in tumors via ERS with a view to providing a new direction for tumor treatment.
Collapse
Affiliation(s)
- Fan Xia
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Suling Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Li Xia
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xiuli Xu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ge Hu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongzhi Wang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xueran Chen
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- * Correspondence: Xueran Chen, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China (e-mail: )
| |
Collapse
|
16
|
Li J, Yuan J, Li Y, Wang J, Xie Q, Ma R, Wang J, Ren M, Lu D, Xu Z. d-Borneol enhances cisplatin sensitivity via autophagy dependent EMT signaling and NCOA4-mediated ferritinophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154411. [PMID: 36030746 DOI: 10.1016/j.phymed.2022.154411] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND d-Borneol has been widely used as a drug absorption enhancer, but there are few studies on the anti-resistance ability of d-borneol combined with cisplatin in cisplatin-resistant non-small cell lung cancer cells. Ferroptosis, autophagy and epithelial-mesenchymal transition (EMT) have been reported to be associated with drug resistance. PURPOSE To investigate the molecular mechanisms and sensitizing effects of d-borneol combined with cisplatin to against drug cisplatin resistance from the perspective of ferroptosis, autophagy and EMT resistance. METHODS H460/CDDP xenograft tumor model was established to verify the antitumor activity and safety in vivo. RNA sequencing was used to predict target molecules and signaling pathways. Reactive oxygen species (ROS) were used as marker of ferroptosis, and its level was determined by a dichlorodihydrofluorescein diacetate fluorescent probe and flow cytometry. Levels of glutathione (GSH), malondialdehyde (MDA), and antioxidants such as superoxide dismutase (SOD) and thioredoxin (Trx) involved in the balance of oxidative stress were measured by an assay kit or enzyme-linked immunosorbent assay. Western blotting and real-time polymerase chain reaction were used to assess the regulatory mechanism of EMT markers, autophagy, and ferroptosis signaling pathways. RESULTS d-Borneol in combination with cisplatin reduced tumor volume and weight, enhanced tumor-inhibiting effects, and alleviated cisplatin-induced damage to the liver and kidney in vivo. RNA-sequencing showed that differentially expressed genes were enriched in ferroptosis. d-Borneol in combination with cisplatin promoted ROS accumulation, increased the content of MDA levels, and decreased GSH, SOD, Trx, and heme oxygenase-1 expression to induce oxidative damage. d-Borneol combination with cisplatin induced ferroptosis by promoting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and regulating intracellular iron ion transport via upregulating PRNP and downregulating PCBP2. In addition, d-borneol combined with cisplatin promoted autophagy by upregulating expression of LC3II/ATG5/Beclin-1 and inhibited the EMT by increasing the expression of epithelial marker E-cadherin and decreasing mesenchymal markers (N-cadherin and vimentin) and transcription factors (Snail and ZEB1). CONCLUSION For the first time, our study implies that d-borneol enhanced cisplatin sensitivity by inducing ferroptosis, promoting autophagy and inhibiting EMT progression, thereby enhancing antitumor activity. It suggests that d-borneol could be developed as a novel chemosensitizers.
Collapse
Affiliation(s)
- Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Hong H, Lu X, Lu Q, Huang C, Cui Z. Potential therapeutic effects and pharmacological evidence of sinomenine in central nervous system disorders. Front Pharmacol 2022; 13:1015035. [PMID: 36188580 PMCID: PMC9523510 DOI: 10.3389/fphar.2022.1015035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sinomenine is a natural compound extracted from the medicinal plant Sinomenium acutum. Its supplementation has been shown to present benefits in a variety of animal models of central nervous system (CNS) disorders, such as cerebral ischemia, intracerebral hemorrhage, traumatic brain injury (TBI), Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy, depression, multiple sclerosis, morphine tolerance, and glioma. Therefore, sinomenine is now considered a potential agent for the prevention and/or treatment of CNS disorders. Mechanistic studies have shown that inhibition of oxidative stress, microglia- or astrocyte-mediated neuroinflammation, and neuronal apoptosis are common mechanisms for the neuroprotective effects of sinomenine. Other mechanisms, including activation of nuclear factor E2-related factor 2 (Nrf2), induction of autophagy in response to inhibition of protein kinase B (Akt)-mammalian target of rapamycin (mTOR), and activation of cyclic adenosine monophosphate-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), may also mediate the anti-glioma and neuroprotective effects of sinomenine. Sinomenine treatment has also been shown to enhance dopamine receptor D2 (DRD2)-mediated nuclear translocation of αB-crystallin (CRYAB) in astrocytes, thereby suppressing neuroinflammation via inhibition of Signal Transducer and Activator of Transcription 3 (STAT3). In addition, sinomenine supplementation can suppress N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ influx and induce γ-aminobutyric acid type A (GABAA) receptor-mediated Cl− influx, each of which contributes to the improvement of morphine dependence and sleep disturbance. In this review, we outline the pharmacological effects and possible mechanisms of sinomenine in CNS disorders to advance the development of sinomenine as a new drug for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- *Correspondence: Zhiming Cui,
| |
Collapse
|
18
|
Shen C, Li J, Li R, Ma Z, Tao Y, Zhang Q, Wang Z. Effects of Tumor-Derived DNA on CXCL12-CXCR4 and CCL21-CCR7 Axes of Hepatocellular Carcinoma Cells and the Regulation of Sinomenine Hydrochloride. Front Oncol 2022; 12:901705. [PMID: 35860597 PMCID: PMC9289293 DOI: 10.3389/fonc.2022.901705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, chemokines and their receptors, CXCL12-CXCR4 and CCL21-CCR7 axes, are deemed vital factors in the modulation of angiogenesis and are crucial for the growth and development of liver cancer. Tumor-derived DNA can be recognized by immune cells to induce an autoimmune response. In this study, we demonstrated the mechanism of tumor-derived DNA on the CXCL12-CXCR4 and CCL21-CCR7 axes of hepatocellular carcinoma (HCC) cells and the regulatory effect of sinomenine hydrochloride. Tumor-derived DNA was separated from HCCLM cell lines. Tumor-derived DNA was transfected into SK-Hep1 cells by Lipofectamine 2000. We found that sinomenine hydrochloride reduced the expression of CXCR4, CXCR12, CCR7, and CCL21 in HCC cells, suppressed the growth and invasion of HCC cells, and increased apoptosis. In contrast to the controls, the protein expressions of CXCR4, CXCL12, CCR7, CCL21, P-ERK1/2, MMP-9, and MMP-2 in SK-Hep1 cells were significantly increased after transfection of tumor-derived DNA, while the increase was reversed by sinobine hydrochloride. Acid sinomenine interferes with tumor-derived DNA and affects ERK/MMP signaling via the CXCL12/CXCR4 axis in HCC cells. CXCR4 siRNA and CCR7 siRNA attenuated tumor-derived DNA activation of ERK1/2/MMP2/9 signaling pathways in HCC cells. CXCR4-oe and CCR7-OE enhance the stimulation of erK1/2/MMP2/9 signaling pathway by tumor-derived DNA in HCC cells. Tumor-derived DNA reduced apoptosis and increased invasion of SK-Hep1 cells by CXCL12-CXCR4 axis and CCL21-CCR7 axis, and sinobine hydrochloride reversed this regulation. These results strongly suggest that tumor-derived DNA can increase the growth and invasion of oncocytes via the upregulation of the expression of CXCL12-CXCR4 and CCL21-CCR7 axis and through ERK1/2/MMP2/9 signaling pathway in HCC cells, and sinobine hydrochloride can inhibit this signaling pathway, thus inhibiting HCC cells. These results provide new potential therapeutic targets for blocking the progression of HCC induced by CXCL12-CXCR4 axis and CCL21-CCR7.
Collapse
|
19
|
Luo Y, Liu L, Zhao J, Jiao Y, Zhang M, Xu G, Jiang Y. PI3K/AKT1 Signaling Pathway Mediates Sinomenine-Induced Hepatocellular Carcinoma Cells Apoptosis: An <i>in Vitro</i> and <i>in Vivo</i> Study. Biol Pharm Bull 2022; 45:614-624. [DOI: 10.1248/bpb.b21-01063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yan Luo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Liwei Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences
| | - Jihua Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences
| | - Meiyu Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences
| | - Guangli Xu
- The First Affiliated Hospital of Henan University of Chinese Medicine
| | - Yumao Jiang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| |
Collapse
|
20
|
Li X, Chen W, Huang L, Zhu M, Zhang H, Si Y, Li H, Luo Q, Yu B. Sinomenine hydrochloride suppresses the stemness of breast cancer stem cells by inhibiting Wnt signaling pathway through down-regulation of WNT10B. Pharmacol Res 2022; 179:106222. [DOI: 10.1016/j.phrs.2022.106222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
|
21
|
Sinomenine Inhibits Vasculogenic Mimicry and Migration of Breast Cancer Side Population Cells via Regulating miR-340-5p/SIAH2 Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4914005. [PMID: 35309179 PMCID: PMC8926463 DOI: 10.1155/2022/4914005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/29/2022] [Indexed: 12/24/2022]
Abstract
Hypoxia and its induced vasculogenic mimicry (VM) formation, which both closely related with stem-like side population (SP) cells, are the main culprits leading to tumor invasion and metastasis. Sinomenine exhibits excellent anticancer activity in breast cancer, but whether and how it affects hypoxia-triggered VM formation in breast cancer SP cells remains unclear. In this study, breast cancer SP cells were sorted from MDA-MB-231 cells and cultured with sinomenine under hypoxic conditions. Sinomenine obviously repressed the migration and VM formation of breast cancer SP cells. Through downregulating SIAH2 and HIF-1α, sinomenine can inhibit epithelial-mesenchymal transition process of breast cancer SP cells. SIAH2 was identified as a target of miR-340-5p and was downregulated by it, and sinomenine can upregulate miR-340-5p. Hypoxia-induced downregulation of miR-340-5p and activation of SIAH2/HIF-1α pathway can be both counteracted by the sinomenine. Moreover, miR-340-5p inhibition and SIAH2 overexpression can partly counteract the anticancer effects of sinomenine. Taken together, sinomenine inhibits hypoxia-caused VM formation and metastasis of breast cancer SP cells by regulating the miR-340-5p/SIAH2 axis.
Collapse
|
22
|
Magnolol Induces the Extrinsic/Intrinsic Apoptosis Pathways and Inhibits STAT3 Signaling-Mediated Invasion of Glioblastoma Cells. Life (Basel) 2021; 11:life11121399. [PMID: 34947930 PMCID: PMC8706091 DOI: 10.3390/life11121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of malignant brain tumor, with poor prognosis; the efficacy of current standard therapy for GBM remains unsatisfactory. Magnolol, an herbal medicine from Magnolia officinalis, exhibited anticancer properties against many types of cancers. However, whether magnolol suppresses GBM progression as well as its underlying mechanism awaits further investigation. In this study, we used the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay, apoptosis marker analysis, transwell invasion and wound-healing assays to identify the effects of magnolol on GBM cells. We also validated the potential targets of magnolol on GBM with the GEPIA (Gene Expression Profiling Interactive Analysis) and Western blotting assay. Magnolol was found to trigger cytotoxicity and activate extrinsic/intrinsic apoptosis pathways in GBM cells. Both caspase-8 and caspase-9 were activated by magnolol. In addition, GEPIA data indicated the PKCδ (Protein kinase C delta)/STAT3 (Signal transducer and activator of transcription 3) signaling pathway as a potential target of GBM. Magnolol effectively suppressed the phosphorylation and nuclear translocation of STAT3 in GBM cells. Meanwhile, tumor invasion and migration ability and the associated genes, including MMP-9 (Matrix metalloproteinase-9) and uPA (Urokinase-type plasminogen activator), were all diminished by treatment with magnolol. Taken together, our results suggest that magnolol-induced anti-GBM effect may be associated with the inactivation of PKCδ/STAT3 signaling transduction.
Collapse
|
23
|
Hall MK, Burch AP, Schwalbe RA. Functional analysis of N-acetylglucosaminyltransferase-I knockdown in 2D and 3D neuroblastoma cell cultures. PLoS One 2021; 16:e0259743. [PMID: 34748597 PMCID: PMC8575246 DOI: 10.1371/journal.pone.0259743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor development can be promoted/suppressed by certain N-glycans attached to proteins at the cell surface. Here we examined aberrant neuronal properties in 2D and 3D rat neuroblastoma (NB) cell cultures with different N-glycan populations. Lectin binding studies revealed that the engineered N-glycosylation mutant cell line, NB_1(-Mgat1), expressed solely oligomannose N-glycans, and verified that the parental cell line, NB_1, and a previous engineered N-glycosylation mutant, NB_1(-Mgat2), expressed significant levels of higher order N-glycans, complex and hybrid N-glycans, respectively. NB_1 grew faster than mutant cell lines in monolayer and spheroid cell cultures. A 2-fold difference in growth between NB_1 and mutants occurred much sooner in 2D cultures relative to that observed in 3D cultures. Neurites and spheroid cell sizes were reduced in mutant NB cells of 2D and 3D cultures, respectively. Cell invasiveness was highest in 2D cultures of NB_1 cells compared to that of NB_1(-Mgat1). In contrast, NB_1 spheroid cells were much less invasive relative to NB_1(-Mgat1) spheroid cells while they were more invasive than NB_1(-Mgat2). Gelatinase activities supported the ranking of cell invasiveness in various cell lines. Both palladin and HK2 were more abundant in 3D than 2D cultures. Levels of palladin, vimentin and EGFR were modified in a different manner under 2D and 3D cultures. Thus, our results support variations in the N-glycosylation pathway and in cell culturing to more resemble in vivo tumor environments can impact the aberrant cellular properties, particularly cell invasiveness, of NB.
Collapse
Affiliation(s)
- M. Kristen Hall
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Adam P. Burch
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Ruth A. Schwalbe
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
24
|
Zheng X, Li W, Xu H, Liu J, Ren L, Yang Y, Li S, Wang J, Ji T, Du G. Sinomenine ester derivative inhibits glioblastoma by inducing mitochondria-dependent apoptosis and autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway. Acta Pharm Sin B 2021; 11:3465-3480. [PMID: 34900530 PMCID: PMC8642618 DOI: 10.1016/j.apsb.2021.05.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) in the central nervous system is the most lethal advanced glioma and currently there is no effective treatment for it. Studies of sinomenine, an alkaloid from the Chinese medicinal plant, Sinomenium acutum, showed that it had inhibitory effects on several kinds of cancer. Here, we synthesized a sinomenine derivative, sino-wcj-33 (SW33), tested it for antitumor activity on GBM and explored the underlying mechanism. SW33 significantly inhibited proliferation and colony formation of GBM and reduced migration and invasion of U87 and U251 cells. It also arrested the cell cycle at G2/M phase and induced mitochondria-dependent apoptosis. Differential gene enrichment analysis and pathway validation showed that SW33 exerted anti-GBM effects by regulating PI3K/AKT and AMPK signaling pathways and significantly suppressed tumorigenicity with no obvious adverse effects on the body. SW33 also induced autophagy through the PI3K/AKT/mTOR and AMPK/mTOR pathways. Thus, SW33 appears to be a promising drug for treating GBM effectively and safely.
Collapse
|
25
|
Jalili-Nik M, Afshari AR, Sabri H, Bibak B, Mollazadeh H, Sahebkar A. Zerumbone, a ginger sesquiterpene, inhibits migration, invasion, and metastatic behavior of human malignant glioblastoma multiforme in vitro. Biofactors 2021; 47:729-739. [PMID: 34046952 DOI: 10.1002/biof.1756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
The most widespread and challenging aggressive malignant tumor in the brain is glioblastoma multiforme (GBM). GBM is characterized, in particular, by significant intratumor cell variability, high growth rates, and widespread invasiveness within the surrounding normal brain parenchyma. The present study aimed to examine the impact of the natural product Zerumbone, a promising sesquiterpenoid phytochemical from Zingiber zerumbet, on U-87 MG GBM cells and its underlying molecular mechanisms. At sub-lethal doses, Zerumbone exerted a concentration- and time-dependent suppression of cell migration ability utilizing scratch wound closure assay; it also inhibited GBM cells' invasion using Transwell invasion assay in a concentration-dependent fashion. The enzymatic activity of matrix metalloproteinase (MMP)-2/-9 and their protein expression has also been reduced by administration of Zerumbone. Furthermore, Zerumbone was revealed to downregulate the mRNA expression level of IL-1β and MCP-1, two genes contributing to MMPs expression. We also found that Zerumbone exerted an inhibitory effect on the expression of Akt and total p44/42 MAPK (Erk1/Erk2) against U-87 MG cells. These findings collectively provide further proof for the possible molecular signaling basis of the antimetastatic effects of Zerumbone as a promising phytochemical, indicating a therapeutic strategy for the treatment of GBM through repression of migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Sabri
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Luo Y, Yin S, Lu J, Zhou S, Shao Y, Bao X, Wang T, Qiu Y, Yu H. Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment. Cancer Cell Int 2021; 21:386. [PMID: 34284780 PMCID: PMC8290600 DOI: 10.1186/s12935-021-02085-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Malignant tumor has become one of the major diseases that seriously endangers human health. Numerous studies have demonstrated that tumor microenvironment (TME) is closely associated with patient prognosis. Tumor growth and progression are strongly dependent on its surrounding tumor microenvironment, because the optimal conditions originated from stromal elements are required for cancer cell proliferation, invasion, metastasis and drug resistance. The tumor microenvironment is an environment rich in immune/inflammatory cells and accompanied by a continuous, gradient of hypoxia and pH. Overcoming immunosuppressive environment and boosting anti-tumor immunity may be the key to the prevention and treatment of cancer. Most traditional Chinese medicine have been proved to have good anti-tumor activity, and they have the advantages of better therapeutic effect and few side effects in the treatment of malignant tumors. An increasing number of studies are giving evidence that alkaloids extracted from traditional Chinese medicine possess a significant anticancer efficiency via regulating a variety of tumor-related genes, pathways and other mechanisms. This paper reviews the anti-tumor effect of alkaloids targeting tumor microenvironment, and further reveals its anti-tumor mechanism through the effects of alkaloids on different components in tumor microenvironment.
Collapse
Affiliation(s)
- Yanming Luo
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Lu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingying Shao
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tao Wang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Haiyang Yu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
27
|
de Seabra Rodrigues Dias IR, Lo HH, Zhang K, Law BYK, Nasim AA, Chung SK, Wong VKW, Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol Res 2021; 170:105696. [PMID: 34052360 DOI: 10.1016/j.phrs.2021.105696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kaixi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
28
|
Qu X, Yu B, Zhu M, Li X, Ma L, Liu C, Zhang Y, Cheng Z. Sinomenine Inhibits the Growth of Ovarian Cancer Cells Through the Suppression of Mitosis by Down-Regulating the Expression and the Activity of CDK1. Onco Targets Ther 2021; 14:823-834. [PMID: 33574676 PMCID: PMC7873025 DOI: 10.2147/ott.s284261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Ovarian cancer is one of the most common gynecological cancers worldwide. While, therapies against ovarian cancer have not been completely effective, sinomenine has been proved to have anti-tumor activity in various cancer cells. However, study of its anti-ovarian cancer effect is still rare, and the underlying mechanism has not been elucidated. Therefore, we aim to explore the mechanism of sinomenine anti-ovarian cancer. Materials and Methods The effect of anti-ovarian cancer HeyA8 cells was analyzed by CCK8 and colony formation assay. The mechanism of sinomenine anti-ovarian cancer was explored via high throughput RNA-seq, and then the target mRNA and protein expression were verified by real-time PCR and Western blot, respectively. Results We found that the proliferation and clone formation ability of ovarian cancer HeyA8 cells were markedly reduced by 1.56 mM sinomenine. The transcriptome analysis showed that 2679 genes were differentially expressed after sinomenine treatment in HeyA8 cells, including 1323 down-regulated genes and 1356 up-regulated genes. Gene ontology and KEGG pathway enrichment indicated that differential expression genes (DEGs) between the groups of sinomenine and DMSO-treated HeyA8 cells were mainly involved in the process of the cell cycle, such as kinetochore organization, chromosome segregation, and DNA replication. Strikingly, the top 18 ranked degree genes in the protein-protein interaction (PPI) network were mainly involved in the process of mitosis, such as sister chromatid segregation, condensed chromosome, and microtubule cytoskeleton organization. Moreover, real-time PCR results showed consistent expression trends of DEGs with transcriptome analysis. The results of Western blot showed the expression level of CDK1, which was the highest degree gene in PPI and the main regulator controlling the process of mitosis, and the levels of phosphorylated P-CDK (Thr161) and P-Histone H3 (Ser10) were decreased after being treated with sinomenine. Conclusion Our results demonstrated that sinomenine inhibited the proliferation of HeyA8 cells through suppressing mitosis by down-regulating the expression and the activity of CDK1. The study may provide a preliminary research basis for the application of sinomenine in anti-ovarian cancer.
Collapse
Affiliation(s)
- Xiaoyan Qu
- Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Bing Yu
- Department of Cell Biology, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Mengmei Zhu
- Department of Cell Biology, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Xiaomei Li
- Department of Cell Biology, Navy Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China.,Cancer Research Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563003, People's Republic of China
| | - Lishan Ma
- Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Chuyin Liu
- Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Yixing Zhang
- Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People's Republic of China
| | - Zhongping Cheng
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
29
|
Collagen type VIII alpha 2 chain (COL8A2), an important component of the basement membrane of the corneal endothelium, facilitates the malignant development of glioblastoma cells via inducing EMT. J Bioenerg Biomembr 2021; 53:49-59. [PMID: 33405048 DOI: 10.1007/s10863-020-09865-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Glioblastoma (GBM) is one of the most lethal tumor of all human cancers. Due to its poor response to chemotherapy and radiotherapy as well as its high rate of recurrence after treatment, the treatment is still undesired. The identification of potential related genes and bio-markers in the development of GBM could provide some new targets for the treatment of GBM. Our purpose in this study was to evaluate the mission of COL8A2 in GBM. Combined with TCGA, Oncomine databases, CGGA, GEPIA website and qRT-PCR analyses, we found that COL8A2 was up-regulated both in GBM tissues and cells compared to the controls. Moreover, the high COL8A2 expression was associated with the shorter overall survival of patients with GBM. The expression of COL8A2 was also positively correlated with metastasis-associated genes including vimentin, snail, slug, MMP2 and MMP7 according to GEPIA website. Knockdown of COL8A2 could suppress the cell proliferation, cell migration and invasion, whereas the overexpression of COL8A2 significantly expedited these processes. What's more, the outcome of western blot analysis manifested that COL8A2 could induced the expression of vimentin, snail, slug, MMP2 and MMP7. Taken together, COL8A2 activated cell proliferation, cell migration and invasion via raising the relative expression of EMT-related proteins in GBM. Therefore, our investigation suggests the oncogenic role of COL8A2 in GBM and provides a potential application of COL8A2 for GBM therapy.
Collapse
|
30
|
Babaei G, Aziz SGG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother 2020; 133:110909. [PMID: 33227701 DOI: 10.1016/j.biopha.2020.110909] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/29/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and Cancer stem-like cells (CSCs) are major factors contributing to the metastasis of cancer cells. Consequently, the signaling pathways involved in both processes are appropriate therapeutic targets in the treatment of metastasis. Autophagy is another process that has recently attracted the attention of many researchers; depending on the type of cancer and tissue and the stage of cancer, this process can play a dual role in the development of cancer cells. Studies on cancer cells have shown that different signaling pathways are involved in all three processes, namely, cancer stem cells, autophagy, and EMT. The purpose of this study was to investigate and elucidate the relationship between the effective signaling pathways in all three processes, which could play an effective role in determining appropriate therapeutic goals.
Collapse
Affiliation(s)
- Ghader Babaei
- Department of Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Nasrin Zare Zavieyh Jaghi
- Department of Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
| |
Collapse
|
31
|
Qi W, Gu Y, Wang Z, Fan W. Sinomenine Inhibited Interleukin-1β-Induced Matrix Metalloproteinases Levels via SOCS3 Up-Regulation in SW1353 Cells. Biol Pharm Bull 2020; 43:1643-1652. [PMID: 32879146 DOI: 10.1248/bpb.b20-00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are required for collagen degradation which play a key pathological role in arthritis progression. Herein, the effect of sinomenine (SN) on Interleukin 1 beta (IL-1β)-induced MMPs production and its underlying mechanism were explored in SW1353 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that 200 and 400 µM SN significantly inhibited SW1353 cell proliferation, thus the lower dose of SN (25-100 µM) were used in the subsequent experiments. Notably, the increased mRNA and protein levels of suppressor of cytokine signaling (SOCS) 3 were dose-dependently induced by SN. SN significantly suppressed mRNA and protein levels of MMPs in IL-1β-induced SW1353 cells. Through Western blot analysis, SN showed inhibitory effect on IL-1β-induced TAK1 and p65 phosphorylation. Moreover, SN blocked the interaction of TRAF6 and TAK1 resulting in inactivation of IL-1β pathway. Mechanistically, the inhibitory effect of SN on MMPs levels alongside TRAF6 and TAK1 interactions was abrogated by silencing SOCS3. Moreover, SN did not inhibit TAK1 kinase activity. In TAK1 silencing cells, the levels of MMPs and p65 phosphorylation of SN-treatedcells were lower than dimethyl sulfoxide (DMSO)-treated cells, indicating that blocking interaction was not a unique way for SN to inhibit MMPs levels. Finally, SN significantly inhibited IL-6-induced Janus tyrosine kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in SW1353 cells. The levels of JAK2 phosphorylation and MMPs did not show a significant difference between IL-6 + SOCS3-small interfering RNA (siRNA) + SN group and IL-6 + SOCS3-siRNA + DMSO group. These findings demonstrated that SOCS3 expression was increased by SN blocked IL-1β-induced interaction between TRAF6 and TAK1 as well as IL-6 pathway activation, thereby culminating in the inhibition of MMPs levels.
Collapse
Affiliation(s)
- Wei Qi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University.,Department of Orthopedics, Zhenjiang Medical District of Eastern Theater General Hospital
| | - Yongfu Gu
- Department of Orthopedics, Zhenjiang Medical District of Eastern Theater General Hospital
| | - Zhen Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
32
|
Sinomenine Inhibits Migration and Invasion of Human Lung Cancer Cell through Downregulating Expression of miR-21 and MMPs. Int J Mol Sci 2020; 21:ijms21093080. [PMID: 32349289 PMCID: PMC7247699 DOI: 10.3390/ijms21093080] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Sinomenine is an alkaloid derived from Sinomenium acutum. Recent studies have found that sinomenine can inhibit various cancers by inhibiting the proliferation, migration and invasion of tumors and inducing apoptosis. This study aims to investigate the effect and mechanism of sinomenine on inhibiting the migration and invasion of human lung adenocarcinoma cells in vitro. The results demonstrate that viabilities of A549 and H1299 cells were inhibited by sinomenine in a dose-dependent manner. When treated with sub-toxic doses of sinomenine, cell migration and invasion are markedly suppressed. Sinomenine decreases the mRNA level of matrix metalloproteinase-2 (MMP-2), MMP-9, and the extracellular inducer of matrix metalloproteinase (EMMPRIN/CD147), but elevates the expression of reversion-inducing cysteine-rich proteins with kazal motifs (RECK) and the tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. In addition, sinomenine significantly increases the expression of the epithelial marker E-cadherin but concomitantly decreases the expression of the mesenchymal marker vimentin, suggesting that it suppresses epithelial–mesenchymal transition (EMT). Moreover, sinomenine downregulates oncogenic microRNA-21 (miR-21), which has been known to target RECK. The downregulation of miR-21 decreases cell invasion, while the upregulation of miR-21 increases cell invasion. Furthermore, the downregulation of miR-21 stimulates the expression of RECK, TIMP-1/-2, and E-cadherin, but reduces the expression of MMP-2/-9, EMMPRIN/CD147, and vimentin. Taken together, the results reveal that the inhibition of A549 cell invasion by sinomenine may, at least in part, be through the downregulating expression of MMPs and miR-21. These findings demonstrate an attractive therapeutic potential for sinomenine in lung cancer anti-metastatic therapy.
Collapse
|
33
|
Liu W, Yu X, Zhou L, Li J, Li M, Li W, Gao F. Sinomenine Inhibits Non-Small Cell Lung Cancer via Downregulation of Hexokinases II-Mediated Aerobic Glycolysis. Onco Targets Ther 2020; 13:3209-3221. [PMID: 32368080 PMCID: PMC7176511 DOI: 10.2147/ott.s243212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Addiction to aerobic glycolysis is a common metabolic phenotype in human non-small cell lung cancer (NSCLC). The natural product Sinomenine (Sin) exhibits significant anti-tumor effects in various human cancers. However, the underlying mechanism remains elusive. Methods The inhibitory effect of Sin on NSCLC cells was determined by MTS and soft agar assays. The glycolysis efficacy of NSCLC cells was examined by glucose uptake and lactate production. The activation of Akt signaling and the protein level of hexokinases II (HK2) were examined by immunoblot (IB), qRT-PCR, and immunohistochemical staining (IHC). The in vivo anti-tumor effect of Sin was validated by the xenograft mouse model. Results We showed that HK2 is highly expressed in NSCLC tissues and cell lines. Depletion of HK2 suppressed cell viability, anchorage-independent colony formation, and xenograft tumor growth. Sinomenine exhibited a profound inhibitory effect on NSCLC cells by reducing HK2-mediated glycolysis both in vitro and in vivo. Ectopic overexpression of HK2 compromised these anti-tumor efficacies in sinomenine-treated NSCLC cells. Moreover, we revealed that sinomenine decreased Akt activity, which caused the down-regulation of HK2-mediated glycolysis. Knockdown of Akt reduced HK2 protein level and impaired glycolysis. In contrast, overexpression of constitutively activated Akt1 reversed this phenotype. Conclusion This study suggests that targeting HK2-mediated aerobic glycolysis is required for sinomenine-mediated anti-tumor activity.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, People's Republic of China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jigang Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, People's Republic of China
| | - Ming Li
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.,Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410004, People's Republic of China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
34
|
Knockdown of N-Acetylglucosaminyltransferase-II Reduces Matrix Metalloproteinase 2 Activity and Suppresses Tumorigenicity in Neuroblastoma Cell Line. BIOLOGY 2020; 9:biology9040071. [PMID: 32260356 PMCID: PMC7236022 DOI: 10.3390/biology9040071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Neuroblastoma (NB) development and progression are accompanied by changes in N-glycans attached to proteins. Here, we investigated the role of N-acetylglucosaminyltransferase-II (GnTII, MGAT2) protein substrates in neuroblastoma (NB) cells. MGAT2 was silenced in human BE(2)-C NB (HuNB) cells to generate a novel cell line, HuNB(-MGAT2), lacking complex type N-glycans, as in rat B35 NB cells. Changes in N-glycan types were confirmed by lectin binding assays in both cell lines, and the rescued cell line, HuNB(-/+MGAT2). Western blotting of cells heterologously expressing a voltage-gated K+ channel (Kv3.1b) showed that some hybrid N-glycans of Kv3.1b could be processed to complex type in HuNB(-/+MGAT2) cells. In comparing HuNB and HuNB(-MGAT2) cells, decreased complex N-glycans reduced anchorage-independent cell growth, cell proliferation, and cell invasiveness, while they enhanced cell-cell interactions. Cell proliferation, invasiveness and adhesion of the HuNB(-/+MGAT2) cells were more like the HuNB than HuNB(-MGAT2). Western blotting revealed lower protein levels of MMP-2, EGFR and Gab2 in glycosylation mutant cells relative to parental cells. Gelatin zymography demonstrated that decreased MMP-2 protein activity was related to lowered MMP-2 protein levels. Thus, our results support that decreased complex type N-glycans suppress cell proliferation and cell invasiveness in both NB cell lines via remodeling ECM.
Collapse
|
35
|
Xu Y, Jiang T, Wang C, Wang F. Sinomenine hydrochloride exerts antitumor outcome in ovarian cancer cells by inhibition of long non-coding RNA HOST2 expression. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4131-4138. [PMID: 31701766 DOI: 10.1080/21691401.2019.1687496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: Accumulating evidence displays that sinomenine hydrochloride (SH) are utilised to treat a variety of cancers. Nevertheless, the influences of SH on ovarian cancer stay blurry. We endeavoured to uncover the antitumor effects of SH on ovarian cancer and underlying mechanism(s).Methods: Human ovarian epithelial cell line (HOEpiC), Caov3 and SKOV3 cells were administrated with SH and/or transfection with pc-long non-coding RNA (lncRNA) human ovarian cancer-specific transcript 2 (HOST2), then cell viability, cell cycle and apoptosis and the related-proteins were respectively inspected by MTT, flow cytometry, and Western blot. In addition, expression of HOST2 was investigated by real-time PCR. Kaplan-Meier manner with the log-rank investigation was achieved to calculate overall survival.Results: SH remarkably repressed cell viability, evoked apoptosis and induced cell cycle arrest in G0/G1. Moreover, SH statistically decreased HOST2 expression in Caov3 and SKOV3 cells. Overexpression of HOST2 significantly reversed the effects of SH on Caov3 cell viability, cell cycle and apoptosis. Clinical findings confirmed that HOST2 was profoundly higher expressed in ovarian cancer tissues and cells, and HOST2 predicated unfavourable prognosis of ovarian cancer individuals.Conclusion: Our findings recommended that SH exerted the antitumor effect in ovarian cancer cells by hindering expression of HOST2.
Collapse
Affiliation(s)
- Yuting Xu
- Department of Gynecology, Jining No.1 People's Hospital, Jining, China
| | - Tao Jiang
- Department of Gynecology, Jining No.1 People's Hospital, Jining, China
| | - Changhe Wang
- Department of Gynecology, Jining No.1 People's Hospital, Jining, China
| | - Fei Wang
- Department of Gynecology, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
36
|
Park SY, Cui Z, Kim B, Park G, Choi YW. Treatment with Gold Nanoparticles Using Cudrania tricuspidata Root Extract Induced Downregulation of MMP-2/-9 and PLD1 and Inhibited the Invasiveness of Human U87 Glioblastoma Cells. Int J Mol Sci 2020; 21:ijms21041282. [PMID: 32074974 PMCID: PMC7072962 DOI: 10.3390/ijms21041282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to elucidate the anti-invasive effects of Cudrania tricuspidata root-gold nanoparticles (CTR-GNPs) using glioblastoma cells. We demonstrated the rapid synthesis of CTR-GNPs using UV-vis spectra. The surface morphology, crystallinity, reduction, capsulation, and stabilization of CTR-GNPs were analyzed using high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Furthermore, CTR-GNPs displayed excellent photocatalytic activity as shown by the photo-degradation of methylene blue and rhodamine B. Cell migration and invasion assays with human glioblastoma cells were performed to investigate the anti-invasive effect of CTR-GNPs on U87 cells that were treated with phorbol 12-myristate 13-acetate. The results show that CTR-GNPs can significantly inhibit both basal and phorbol 12-myristate 13-acetate (PMA)-induced migration and invasion ability. Importantly, treatment with CTR-GNPs significantly decreased the levels of metalloproteinase (MMP)-2/-9 and phospholipase D1 (PLD1) and protein but not PLD2, which is involved in the modulation of migration and the invasion of glioblastoma cells. These results present a novel mechanism showing that CTR-GNPs can attenuate the migration and invasion of glioblastoma cells induced by PMA through transcriptional and translational regulation of MMP-2/-9 and PLD1. Taken together, our results suggest that CTR-GNPs might be an excellent therapeutic alternative for wide range of glioblastomas.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea;
- Correspondence: (S.Y.P.); (Y.-W.C.); Tel.: +82-515103631 (S.Y.P.); +82-553505522 (Y.-W.C.)
| | - Zhengwei Cui
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea;
| | - Beomjin Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea;
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Busan 609-735, Korea;
| | - Young-Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea;
- Correspondence: (S.Y.P.); (Y.-W.C.); Tel.: +82-515103631 (S.Y.P.); +82-553505522 (Y.-W.C.)
| |
Collapse
|
37
|
Wang K, Zheng J, Yu J, Wu Y, Guo J, Xu Z, Sun X. Knockdown of MMP‑1 inhibits the progression of colorectal cancer by suppressing the PI3K/Akt/c‑myc signaling pathway and EMT. Oncol Rep 2020; 43:1103-1112. [PMID: 32323782 PMCID: PMC7057971 DOI: 10.3892/or.2020.7490] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate the role of matrix metalloproteinase-1 (MMP-1) in the development of colorectal cancer and reveal the mechanism underlying this progression. Bioinformatics methods and a public dataset were first used to analyze MMP-1 gene expression in a public dataset. MMP-1 expression in colorectal cancer patients was assessed by immunohistochemistry; its association with clinicopathological parameters and its significance for prognosis were analyzed. Then proliferation, scratch and Transwell assays and a xenograft model were used to assess the change in malignant behavior in cells transfected with an MMP-1 shRNA. Changes involved in epithelial-mesenchymal transition (EMT) and the Akt signaling pathway were detected by western blotting. According to the results, MMP-1 expression was higher in colorectal cancer tissues than it was in matched adjacent noncancerous tissues, and its high expression was significantly related to lymphatic metastasis as well as TNM stage (P<0.05). Downregulation of MMP-1 expression inhibited the progression of colorectal cancer in vitro and in vivo. Furthermore, after the cells were stably transfected with MMP-1 shRNA, the expression of N-cadherin, vimentin and Twist1 decreased while that of E-cadherin increased. The expression of p-Akt and c-Myc also decreased. In conclusion, MMP-1 may promote malignant behavior in colorectal cancer via EMT and the Akt signaling pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yunhua Wu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Guo
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhengshui Xu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
38
|
Tang F, Wang H, Chen E, Bian E, Xu Y, Ji X, Yang Z, Hua X, Zhang Y, Zhao B. LncRNA-ATB promotes TGF-β-induced glioma cells invasion through NF-κB and P38/MAPK pathway. J Cell Physiol 2019; 234:23302-23314. [PMID: 31140621 DOI: 10.1002/jcp.28898] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Glioma constitutes the most aggressive primary intracranial malignancy in adults. We previously showed that long noncoding RNA activated by TGF-β (lncRNA-ATB) promoted the glioma cells invasion. However, whether lncRNA-ATB is involved in TGF-β-mediated invasion of glioma cells remains unknown. In this study, quantitative real-time polymerase chain reaction and western blot analysis were used for detecting the mRNA and protein expression of related genes, respectively. Transwell assay was performed to assess the impact of lncRNA-ATB on TGF-β-induced glioma cells migration and invasion. Immunofluorescence staining was utilized to characterize related protein distribution. Results showed that TGF-β upregulated lncRNA-ATB expression in glioma LN-18 and U251 cells. Overexpression of lncRNA-ATB activated nuclear factor-κB (NF-κB) pathway and promoted P65 translocation into the nucleus, thus facilitated glioma cells invasion stimulated by TGF-β. Similarly, lncRNA-ATB markedly enhanced TGF-β-mediated invasion of glioma cells through activation P38 mitogen-activated protein kinase (P38/MAPK) pathway. Moreover, both the NF-κB selected inhibitor pyrrolidinedithiocarbamate ammonium and P38/MAPK specific inhibitor SB203580 partly reversed lncRNA-ATB induced glioma cells invasion mediated by TGF-β. Collectively, this study revealed that lncRNA-ATB promotes TGF-β-induced glioma cell invasion through NF-κB and P38/MAPK pathway and established a detailed framework for understanding the way how lncRNA-ATB performs its function in TGF-β-mediated glioma invasion.
Collapse
Affiliation(s)
- Feng Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Hongliang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erfeng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xinghu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xiangyang Hua
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yile Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anuhi, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| |
Collapse
|
39
|
Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, Cao MT, Zhong CY, Liu Y, Shan H, Jiang GM. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer 2019; 18:101. [PMID: 31126310 PMCID: PMC6533683 DOI: 10.1186/s12943-019-1030-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a highly conserved catabolic process that mediates degradation of pernicious or dysfunctional cellular components, such as invasive pathogens, senescent proteins, and organelles. It can promote or suppress tumor development, so it is a “double-edged sword” in tumors that depends on the cell and tissue types and the stages of tumor. The epithelial-mesenchymal transition (EMT) is a complex biological trans-differentiation process that allows epithelial cells to transiently obtain mesenchymal features, including motility and metastatic potential. EMT is considered as an important contributor to the invasion and metastasis of cancers. Thus, clarifying the crosstalk between autophagy and EMT will provide novel targets for cancer therapy. It was reported that EMT-related signal pathways have an impact on autophagy; conversely, autophagy activation can suppress or strengthen EMT by regulating various signaling pathways. On one hand, autophagy activation provides energy and basic nutrients for EMT during metastatic spreading, which assists cells to survive in stressful environmental and intracellular conditions. On the other hand, autophagy, acting as a cancer-suppressive function, is inclined to hinder metastasis by selectively down-regulating critical transcription factors of EMT in the early phases. Therefore, the inhibition of EMT by autophagy inhibitors or activators might be a novel strategy that provides thought and enlightenment for the treatment of cancer. In this article, we discuss in detail the role of autophagy and EMT in the development of cancers, the regulatory mechanisms between autophagy and EMT, the effects of autophagy inhibition or activation on EMT, and the potential applications in anticancer therapy.
Collapse
Affiliation(s)
- Hong-Tao Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min-Jie Mao
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuan Tan
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.,Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiang-Qiong Mo
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiao-Jun Meng
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Meng-Ting Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Chu-Yu Zhong
- Department of Geriatrics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yan Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 2528000, Guangdong, China.
| |
Collapse
|
40
|
UPR: An Upstream Signal to EMT Induction in Cancer. J Clin Med 2019; 8:jcm8050624. [PMID: 31071975 PMCID: PMC6572589 DOI: 10.3390/jcm8050624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the organelle where newly synthesized proteins enter the secretory pathway. Different physiological and pathological conditions may perturb the secretory capacity of cells and lead to the accumulation of misfolded and unfolded proteins. To relieve the produced stress, cells evoke an adaptive signalling network, the unfolded protein response (UPR), aimed at recovering protein homeostasis. Tumour cells must confront intrinsic and extrinsic pressures during cancer progression that produce a proteostasis imbalance and ER stress. To overcome this situation, tumour cells activate the UPR as a pro-survival mechanism. UPR activation has been documented in most types of human tumours and accumulating evidence supports a crucial role for UPR in the establishment, progression, metastasis and chemoresistance of tumours as well as its involvement in the acquisition of other hallmarks of cancer. In this review, we will analyse the role of UPR in cancer development highlighting the ability of tumours to exploit UPR signalling to promote epithelial-mesenchymal transition (EMT).
Collapse
|
41
|
Chen C, Shan H. Keratin 6A gene silencing suppresses cell invasion and metastasis of nasopharyngeal carcinoma via the β‑catenin cascade. Mol Med Rep 2019; 19:3477-3484. [PMID: 30896882 PMCID: PMC6471251 DOI: 10.3892/mmr.2019.10055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/01/2019] [Indexed: 01/16/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. This study aimed to study the mechanisms of ectopic keratin 6A (KRT6A) in NPC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to detect KRT6A levels in NPC cell lines (C666-1, 5-8F and SUNE-1) and a nasopharyngeal epithelial cell line (NP69, as a control). After SUNE-1 NPC cells had been silenced by KRT6A, cell viability, metastasis and invasion were determined using Cell Counting Kit-8, wound healing and Transwell assays, respectively. KRT6A levels, metastasis-associated factors and the Wnt/β-catenin pathway were measured using RT-qPCR and western blotting. It was demonstrated that KRT6A was upregulated in all detected NPC cells, among which KRT6A was the highest in SUNE-1 cells. In SUNE-1 cells, cell viability was inhibited at 24 and 48 h, and that cell metastasis and invasion were demonstrated to be suppressed by KRT6A silencing. Both the mRNA and protein levels of KRT6A, matrix metalloproteinase (MMP)-2, MMP-9, β-catenin, lymphoid enhancer binding factor 1 and T-cell specific factor 4 were reduced in the small interfering (si)KRT6A group. However, the results demonstrated that the levels of epithelial-cadherin and tissue inhibitor of metalloproteinase-2 (TIMP-2) were promoted in the siKRT6A group. The activation of the Wnt/β-catenin pathway by lithium chloride reversed the effect of si-KRT6A by modulating the expression of MMP-2/9 and TIMP2. It was observed that KRT6A silencing suppressed cell invasion and metastasis of NPC via the β-catenin cascade. Together these results provide important insights into a novel approach for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Chuanjun Chen
- Oncology Department, Xinchang People's Hospital, Shaoxing, Zhejiang 312500, P.R. China
| | - Huiguo Shan
- Oncology Department, The Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| |
Collapse
|
42
|
Gao LN, Zhong B, Wang Y. Mechanism Underlying Antitumor Effects of Sinomenine. Chin J Integr Med 2019; 25:873-878. [DOI: 10.1007/s11655-019-3151-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
|