1
|
Rizzi G, Digiovanni S, Degani G, Barbiroli A, Di Pisa F, Popolo L, Visentin C, Vanoni MA, Ricagno S. Site-directed mutagenesis reveals the interplay between stability, structure, and enzymatic activity in RidA from Capra hircus. Protein Sci 2024; 33:e5036. [PMID: 38801230 PMCID: PMC11129622 DOI: 10.1002/pro.5036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Reactive intermediate deaminase A (RidA) is a highly conserved enzyme that catalyzes the hydrolysis of 2-imino acids to the corresponding 2-keto acids and ammonia. RidA thus prevents the accumulation of such potentially harmful compounds in the cell, as exemplified by its role in the degradation of 2-aminoacrylate, formed during the metabolism of cysteine and serine, catalyzing the conversion of its stable 2-iminopyruvate tautomer into pyruvate. Capra hircus (goat) RidA (ChRidA) was the first mammalian RidA to be isolated and described. It has the typical homotrimeric fold of the Rid superfamily, characterized by remarkably high thermal stability, with three active sites located at the interface between adjacent subunits. ChRidA exhibits a broad substrate specificity with a preference for 2-iminopyruvate and other 2-imino acids derived from amino acids with non-polar non-bulky side chains. Here we report a biophysical and biochemical characterization of eight ChRidA variants obtained by site-directed mutagenesis to gain insight into the role of specific residues in protein stability and catalytic activity. Each mutant was produced in Escherichia coli cells, purified and characterized in terms of quaternary structure, thermal stability and substrate specificity. The results are rationalized in the context of the high-resolution structures obtained by x-ray crystallography.
Collapse
Affiliation(s)
- Giulia Rizzi
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | | | - Genny Degani
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'AmbienteUniversità degli Studi di MilanoMilanItaly
| | - Flavio Di Pisa
- Istituto di BiofisicaConsiglio Nazionale delle RicercheMilanItaly
| | - Laura Popolo
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | - Cristina Visentin
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | | | - Stefano Ricagno
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
- Institute of Molecular and Translational CardiologyI.R.C.C.S. Policlinico San DonatoSan Donato MilaneseItaly
| |
Collapse
|
2
|
Shen W, Downs DM. Tetrahydrofolate levels influence 2-aminoacrylate stress in Salmonella enterica. J Bacteriol 2024; 206:e0004224. [PMID: 38563759 PMCID: PMC11025330 DOI: 10.1128/jb.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
In Salmonella enterica, the absence of the RidA deaminase results in the accumulation of the reactive enamine 2-aminoacrylate (2AA). The resulting 2AA stress impacts metabolism and prevents growth in some conditions by inactivating a specific target pyridoxal 5'-phosphate (PLP)-dependent enzyme(s). The detrimental effects of 2AA stress can be overcome by changing the sensitivity of a critical target enzyme or modifying flux in one or more nodes in the metabolic network. The catabolic L-alanine racemase DadX is a target of 2AA, which explains the inability of an alr ridA strain to use L-alanine as the sole nitrogen source. Spontaneous mutations that suppressed the growth defect of the alr ridA strain were identified as lesions in folE, which encodes GTP cyclohydrolase and catalyzes the first step of tetrahydrofolate (THF) synthesis. The data here show that THF limitation resulting from a folE lesion, or inhibition of dihydrofolate reductase (FolA) by trimethoprim, decreases the 2AA generated from endogenous serine. The data are consistent with an increased level of threonine, resulting from low folate levels, decreasing 2AA stress.IMPORTANCERidA is an enamine deaminase that has been characterized as preventing the 2-aminoacrylate (2AA) stress. In the absence of RidA, 2AA accumulates and damages various cellular enzymes. Much of the work describing the 2AA stress system has depended on the exogenous addition of serine to increase the production of the enamine stressor. The work herein focuses on understanding the effect of 2AA stress generated from endogenous serine pools. As such, this work describes the consequences of a subtle level of stress that nonetheless compromises growth in at least two conditions. Describing mechanisms that alter the physiological consequences of 2AA stress increases our understanding of endogenous metabolic stress and how the robustness of the metabolic network allows perturbations to be modulated.
Collapse
Affiliation(s)
- Wangchen Shen
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Fulton RL, Downs DM. Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins. Adv Microb Physiol 2023; 83:117-179. [PMID: 37507158 PMCID: PMC10642521 DOI: 10.1016/bs.ampbs.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Metabolism is an integrated network of biochemical pathways that assemble to generate the robust, responsive physiologies of microorganisms. Despite decades of fundamental studies on metabolic processes and pathways, our understanding of the nuance and complexity of metabolism remains incomplete. The ability to predict and model metabolic network structure, and its influence on cellular fitness, is complicated by the persistence of genes of unknown function, even in the best-studied model organisms. This review describes the definition and continuing study of the Rid superfamily of proteins. These studies are presented with a perspective that illustrates how metabolic complexity can complicate the assignment of function to uncharacterized genes. The Rid superfamily of proteins has been divided into eight subfamilies, including the well-studied RidA subfamily. Aside from the RidA proteins, which are present in all domains of life and prevent metabolic stress, most members of the Rid superfamily have no demonstrated physiological role. Recent progress on functional assignment supports the hypothesis that, overall, proteins in the Rid superfamily modulate metabolic processes to ensure optimal organismal fitness.
Collapse
Affiliation(s)
- Ronnie L Fulton
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
4
|
Fulton RL, Downs DM. DadY (PA5303) is required for fitness of Pseudomonas aeruginosa when growth is dependent on alanine catabolism. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:190-201. [PMID: 36483308 PMCID: PMC9714295 DOI: 10.15698/mic2022.12.788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 07/30/2023]
Abstract
Pseudomonas aeruginosa inhabits diverse environmental niches that can have varying nutrient composition. The ubiquity of this organism is facilitated by a metabolic strategy that preferentially utilizes low-energy, non-fermentable organic acids, such as amino acids, rather than the high-energy sugars preferred by many other microbes. The amino acid alanine is among the preferred substrates of P. aeruginosa. The dad locus encodes the constituents of the alanine catabolic pathway of P. aeruginosa. Physiological roles for DadR (AsnC-type transcriptional activator), DadX (alanine racemase), and DadA (D-amino acid dehydrogenase) have been defined in this pathway. An additional protein, PA5303, is encoded in the dad locus in P. aeruginosa. PA5303 is a member of the ubiquitous Rid protein superfamily and is designated DadY based on the data presented herein. Despite its conservation in numerous Pseudomonas species and membership in the Rid superfamily, no physiological function has been assigned to DadY. In the present study, we demonstrate that DadA releases imino-alanine that can be deaminated by DadY in vitro. While DadY was not required for alanine catabolism in monoculture, dadY mutants had a dramatic fitness defect in competition with wild-type P. aeruginosa when alanine served as the sole carbon or nitrogen source. The data presented herein support a model in which DadY facilitates flux through the alanine catabolic pathway by removing the imine intermediate generated by DadA. Functional characterization of DadY contributes to our understanding of the role of the broadly conserved Rid family members.
Collapse
Affiliation(s)
- Ronnie L. Fulton
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605
| |
Collapse
|
5
|
Mantas MJQ, Nunn PB, Codd GA, Barker D. Genomic insights into the biosynthesis and physiology of the cyanobacterial neurotoxin 3-N-methyl-2,3-diaminopropanoic acid (BMAA). PHYTOCHEMISTRY 2022; 200:113198. [PMID: 35447107 DOI: 10.1016/j.phytochem.2022.113198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are an ancient clade of photosynthetic prokaryotes, present in many habitats throughout the world, including water resources. They can present health hazards to humans and animals due to the production of a wide range of toxins (cyanotoxins), including the diaminoacid neurotoxin, 3-N-methyl-2,3-diaminopropanoic acid (β-N-methylaminoalanine, BMAA). Knowledge of the biosynthetic pathway for BMAA, and its role in cyanobacteria, is lacking. Present evidence suggests that BMAA is derived by 3-N methylation of 2,3-diaminopropanoic acid (2,3-DAP) and, although the latter has never been reported in cyanobacteria, there are multiple pathways to its biosynthesis known in other bacteria and in plants. Here, we used bioinformatics analyses to investigate hypotheses concerning 2,3-DAP and BMAA biosynthesis in cyanobacteria. We assessed the potential presence or absence of each enzyme in candidate biosynthetic routes known in Albizia julibrissin, Lathyrus sativus seedlings, Streptomyces, Clostridium, Staphylococcus aureus, Pantoea agglomerans, and Paenibacillus larvae, in 130 cyanobacterial genomes using sequence alignment, profile hidden Markov models, substrate specificity/active site identification and the reconstruction of gene phylogenies. Most enzymes involved in pathways leading to 2,3-DAP in other species were not found in the cyanobacteria analysed. Nevertheless, two species appear to have the genes sbnA and sbnB, responsible for forming the 2,3-DAP constituent in staphyloferrin B, a siderophore from Staphylococcus aureus. It is currently undetermined whether these species are also capable of biosynthesising BMAA. It is possible that, in some cyanobacteria, the formation of 2,3-DAP and/or BMAA is associated with environmental iron-scavenging. The pam gene cluster, responsible for the biosynthesis of the BMAA-containing peptide, paenilamicin, so far appears to be restricted to Paenibacillus larvae. It was not detected in any of the cyanobacterial genomes analysed, nor was it found in 93 other Paenibacillus genomes or in the genomes of two BMAA-producing diatom species. We hypothesise that the presence, in some cyanobacterial species, of the enzymes 2,3-diaminopropionate ammonia-lyase (DAPAL) and reactive intermediate deaminase A (RidA) may explain the failure to detect 2,3-DAP in analytical studies. Overall, the taxonomic distribution of 2,3-DAP and BMAA in cyanobacteria is unclear; there may be multiple and additional routes, and roles, for the biosynthesis of 2,3-DAP and BMAA in these organisms.
Collapse
Affiliation(s)
- Maria José Q Mantas
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| | - Peter B Nunn
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom; School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom.
| | - Daniel Barker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| |
Collapse
|
6
|
Apis mellifera RidA, a novel member of the canonical YigF/YER057c/UK114 imine deiminase superfamily of enzymes pre-empting metabolic damage. Biochem Biophys Res Commun 2022; 616:70-75. [DOI: 10.1016/j.bbrc.2022.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
|
7
|
The Cysteine Desulfurase IscS Is a Significant Target of 2-Aminoacrylate Damage in Pseudomonas aeruginosa. mBio 2022; 13:e0107122. [PMID: 35652590 PMCID: PMC9239102 DOI: 10.1128/mbio.01071-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa encodes eight members of the Rid protein superfamily. PA5339, a member of the RidA subfamily, is required for full growth and motility of P. aeruginosa. Our understanding of RidA integration into the metabolic network of P. aeruginosa is at an early stage, with analyses largely guided by the well-established RidA paradigm in Salmonella enterica. A P. aeruginosa strain lacking RidA has a growth and motility defect in a minimal glucose medium, both of which are exacerbated by exogenous serine. All described ridA mutant phenotypes are rescued by supplementation with isoleucine, indicating the primary generator of the reactive metabolite 2-aminoacrylate (2AA) in ridA mutants is a threonine/serine dehydratase. However, the critical (i.e., phenotype determining) targets of 2AA leading to growth and motility defects in P. aeruginosa remained undefined. This study was initiated to probe the effects of 2AA stress on the metabolic network of P. aeruginosa by defining the target(s) of 2AA that contribute to physiological defects of a ridA mutant. Suppressor mutations that restored growth to a P. aeruginosa ridA mutant were isolated, including an allele of iscS (encoding cysteine desulfurase). Damage to IscS was identified as a significant cause of growth defects of P. aeruginosa during enamine stress. A suppressing allele encoded an IscS variant that was less sensitive to damage by 2AA, resulting in a novel mechanism of phenotypic suppression of a ridA mutant. IMPORTANCE 2-aminoacrylate (2AA) is a reactive metabolite formed as an intermediate in various enzymatic reactions. In the absence of RidA, this metabolite can persist in vivo where it attacks and inactivates specific PLP-dependent enzymes, causing metabolic defects and organism-specific phenotypes. This work identifies the cysteine desulfurase IscS as the critical target of 2AA in Pseudomonas aeruginosa. A single substitution in IscS decreased sensitivity to 2AA and suppressed growth phenotypes of a ridA mutant. Here, we provide the first report of suppression of a ridA mutant phenotype by altering the sensitivity of a target enzyme to 2AA.
Collapse
|
8
|
Rid7C, a member of the YjgF/YER057c/UK114 (Rid) protein family, is a novel endoribonuclease that regulates the expression of a specialist RNA polymerase involved in differentiation in Nonomuraea gerenzanensis. J Bacteriol 2021; 204:e0046221. [PMID: 34694905 DOI: 10.1128/jb.00462-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YjgF/YER057c/UK114 (Rid) is a protein family breadth conserved in all domains of life and includes the widely distributed archetypal RidA (YjgF) subfamily and seven other subfamilies (Rid1 to Rid7). Among these subfamilies, RidA is the only family to have been biochemically well characterized and is involved in the deamination of the reactive enamine/imine intermediates. In this study, we have characterized a protein of the Rid7 subfamily, named Rid7C, in Nonomuraea gerenzanensis, an actinomycete that is characterized by the presence of two types of RNA polymerases. This is due to the co-existence in its genome of two RNAP β chain-encoding genes: rpoB(S) (the wild-type rpoB gene) and rpoB(R) (a specialist, mutant-type rpoB gene) that controls A40926 antibiotic production and a wide range of metabolic adaptive behaviors. Here, we found that expression of rpoB(R) is regulated post-transcriptionally by RNA processing in the 5'-UTR of rpoB(R) mRNA, and that the endoribonuclease activity of Rid7C is responsible for mRNA processing thereby overseeing several tracts of morphological and biochemical differentiation. We also provide evidence that Rid7C may be associated with ribonuclease P M1 RNA, although M1 RNA is not required for rpoB(R) mRNA processing in vitro, and that Rid7C endoribonuclease activity is inhibited by A40926 suggesting the existence of a negative feedback loop on A40926 production, and a role of the endogenous synthesis of A40926 in the modulation of biochemical differentiation in this microorganism. Importance The YjgF/YER057c/UK114 family includes many proteins with diverse functions involved in detoxification, RNA maturation, and control of mRNA translation. We found that Rid7C is an endoribonuclease that is involved in processing of rpoB(R) mRNA, coding for a specialized RNA polymerase beta subunit that oversees morphological differentiation and A40926 antibiotic production in Nonomuraea gerenzanensis. Rid7C-mediated processing promotes rpoB(R) mRNA translation and antibiotic production, while Rid7C endoribonuclease activity is inhibited by A40926 suggesting a role of the endogenous synthesis of A40926 in modulation of biochemical differentiation in this microorganism. Finally, we show that recombinant Rid7C co-purified with M1 RNA (the RNA subunit of ribonuclease P) from Escherichia coli extract, suggesting a functional interaction between Rid7C and M1 RNA activities.
Collapse
|
9
|
Siculella L, Giannotti L, Di Chiara Stanca B, Calcagnile M, Rochira A, Stanca E, Alifano P, Damiano F. Evidence for a Negative Correlation between Human Reactive Enamine-Imine Intermediate Deaminase A (RIDA) Activity and Cell Proliferation Rate: Role of Lysine Succinylation of RIDA. Int J Mol Sci 2021; 22:ijms22083804. [PMID: 33916919 PMCID: PMC8067581 DOI: 10.3390/ijms22083804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/17/2023] Open
Abstract
Reactive intermediate deaminase (Rid) proteins are enzymes conserved in all domains of life. UK114, a mammalian member of RidA subfamily, has been firstly identified as a component of liver perchloric acid-soluble proteins (L-PSP). Although still poorly defined, several functions have been attributed to the mammalian protein UK114/RIDA, including the reactive intermediate deamination activity. The expression of UK114/RIDA has been observed in some tumors, arousing interest in this protein as an evaluable tumor marker. However, other studies reported a negative correlation between UK114/RIDA expression, tumor differentiation degree and cell proliferation. This work addressed the question of UK114/RIDA expression in human non-tumor HEK293 cell lines and in some human tumor cell lines. Here we reported that human RIDA (hRIDA) was expressed in all the analyzed cell line and subjected to lysine (K-)succinylation. In HEK293, hRIDA K-succinylation was negatively correlated to the cell proliferation rate and was under the control of SIRT5. Moreover, K-succinylation clearly altered hRIDA quantification by immunoblotting, explaining, at least in part, some discrepancies about RIDA expression reported in previous studies. We found that hRIDA was able to deaminate reactive enamine-imine intermediates and that K-succinylation drastically reduced deaminase activity. As predicted by in silico analysis, the observed reduction of deaminase activity has been related to the drastic alterations of hRIDA structure inferred by K-succinylation. The role of hRIDA and the importance of its K-succinylation in cell metabolism, especially in cancer biology, have been discussed.
Collapse
Affiliation(s)
- Luisa Siculella
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
- Correspondence: (L.S.); (F.D.); Tel.: +39-0832-298-696 (L.S.); +39-0832-298-698 (F.D.)
| | - Laura Giannotti
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
| | - Benedetta Di Chiara Stanca
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
| | - Matteo Calcagnile
- Laboratory of Microbiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.C.); (P.A.)
| | - Alessio Rochira
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
| | - Eleonora Stanca
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
| | - Pietro Alifano
- Laboratory of Microbiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.C.); (P.A.)
| | - Fabrizio Damiano
- Laboratory of Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (A.R.); (E.S.)
- Correspondence: (L.S.); (F.D.); Tel.: +39-0832-298-696 (L.S.); +39-0832-298-698 (F.D.)
| |
Collapse
|
10
|
Using D- and L-Amino Acid Oxidases to Generate the Imino Acid Substrate to Measure the Activity of the Novel Rid (Enamine/Imine Deaminase) Class of Enzymes. Methods Mol Biol 2021. [PMID: 33751437 DOI: 10.1007/978-1-0716-1286-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
This chapter describes a method to assay the activity of reactive intermediate deaminases (Rid), a large family of conserved soluble enzymes, which have been proposed to prevent damages from metabolic intermediates such as the highly reactive and unstable compounds enamines/imines. In this method, the flavin adenine dinucleotide-dependent L- or D-amino acid oxidases generate an imino acid starting from a L- or D- amino acid, respectively. This reaction is coupled to the hydrolysis of the imino acid to the corresponding α-keto acid and ammonium ion catalyzed by a Rid enzyme. The spectrophotometric assay consists of measuring the decrease of the initial rate of formation of the semicarbazone, derived from the spontaneous reaction of the imino acid and semicarbazide, caused by the presence of the Rid enzyme. The set-up and testing of this method imply a preliminary characterization of the ability of the amino acid oxidase to release the imino acid required for the subsequent reactions. To this purpose, the activity of the L- or D-amino acid oxidases with different amino acids can be measured as production of hydrogen peroxide or formation of semicarbazone in parallel assays. The advantages and limitations of this assay of Rid activity are discussed.
Collapse
|
11
|
Buckner BA, Lato AM, Campagna SR, Downs DM. The Rid family member RutC of Escherichia coli is a 3-aminoacrylate deaminase. J Biol Chem 2021; 296:100651. [PMID: 33839153 PMCID: PMC8113886 DOI: 10.1016/j.jbc.2021.100651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
The Rid protein family (PF14588, IPR006175) is divided into nine subfamilies, of which only the RidA subfamily has been characterized biochemically. RutC, the founding member of one subfamily, is encoded in the pyrimidine utilization (rut) operon that encodes a pathway that allows Escherichia coli to use uracil as a sole nitrogen source. Results reported herein demonstrate that RutC has 3-aminoacrylate deaminase activity and facilitates one of the reactions previously presumed to occur spontaneously in vivo. RutC was active with several enamine-imine substrates, showing similarities and differences in substrate specificity with the canonical member of the Rid superfamily, Salmonella enterica RidA. Under standard laboratory conditions, a Rut pathway lacking RutC generates sufficient nitrogen from uracil for growth of E. coli. These results support a revised model of the Rut pathway and provide evidence that Rid proteins may modulate metabolic fitness, rather than catalyzing essential functions.
Collapse
Affiliation(s)
- Brandi A Buckner
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Ashley M Lato
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
12
|
Irons JL, Hodge-Hanson K, Downs DM. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol Mol Biol Rev 2020; 84:e00024-20. [PMID: 32669283 PMCID: PMC7373157 DOI: 10.1128/mmbr.00024-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.
Collapse
Affiliation(s)
- Jessica L Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Digiovanni S, Visentin C, Degani G, Barbiroli A, Chiara M, Regazzoni L, Di Pisa F, Borchert AJ, Downs DM, Ricagno S, Vanoni MA, Popolo L. Two novel fish paralogs provide insights into the Rid family of imine deaminases active in pre-empting enamine/imine metabolic damage. Sci Rep 2020; 10:10135. [PMID: 32576850 PMCID: PMC7311433 DOI: 10.1038/s41598-020-66663-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Reactive Intermediate Deaminase (Rid) protein superfamily includes eight families among which the RidA is conserved in all domains of life. RidA proteins accelerate the deamination of the reactive 2-aminoacrylate (2AA), an enamine produced by some pyridoxal phosphate (PLP)-dependent enzymes. 2AA accumulation inhibits target enzymes with a detrimental impact on fitness. As a consequence of whole genome duplication, teleost fish have two ridA paralogs, while other extant vertebrates contain a single-copy gene. We investigated the biochemical properties of the products of two paralogs, identified in Salmo salar. SsRidA-1 and SsRidA-2 complemented the growth defect of a Salmonella enterica ridA mutant, an in vivo model of 2AA stress. In vitro, both proteins hydrolyzed 2-imino acids (IA) to keto-acids and ammonia. SsRidA-1 was active on IA derived from nonpolar amino acids and poorly active or inactive on IA derived from other amino acids tested. In contrast, SsRidA-2 had a generally low catalytic efficiency, but showed a relatively higher activity with IA derived from L-Glu and aromatic amino acids. The crystal structures of SsRidA-1 and SsRidA-2 provided hints of the remarkably different conformational stability and substrate specificity. Overall, SsRidA-1 is similar to the mammalian orthologs whereas SsRidA-2 displays unique properties likely generated by functional specialization of a duplicated ancestral gene.
Collapse
Affiliation(s)
- Stefania Digiovanni
- Department of Biosciences, University of Milan, Milan, Italy.,Department of Chemical Biology I, University of Groningen, Groningen, The Netherlands
| | | | - Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Flavio Di Pisa
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrew J Borchert
- Department of Microbiology, University of Georgia, Athens, GA, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Integrated Metabolomics and Transcriptomics Suggest the Global Metabolic Response to 2-Aminoacrylate Stress in Salmonella enterica. Metabolites 2019; 10:metabo10010012. [PMID: 31878179 PMCID: PMC7023182 DOI: 10.3390/metabo10010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
In Salmonella enterica, 2-aminoacrylate (2AA) is a reactive enamine intermediate generated during a number of biochemical reactions. When the 2-iminobutanoate/2-iminopropanoate deaminase (RidA; EC: 3.5.99.10) is eliminated, 2AA accumulates and inhibits the activity of multiple pyridoxal 5’-phosphate(PLP)-dependent enzymes. In this study, untargeted proton nuclear magnetic resonance (1H NMR) metabolomics and transcriptomics data were used to uncover the global metabolic response of S. enterica to the accumulation of 2AA. The data showed that elimination of RidA perturbed folate and branched chain amino acid metabolism. Many of the resulting perturbations were consistent with the known effect of 2AA stress, while other results suggested additional potential enzyme targets of 2AA-dependent damage. The majority of transcriptional and metabolic changes appeared to be the consequence of downstream effects on the metabolic network, since they were not directly attributable to a PLP-dependent enzyme. In total, the results highlighted the complexity of changes stemming from multiple perturbations of the metabolic network, and suggested hypotheses that will be valuable in future studies of the RidA paradigm of endogenous 2AA stress.
Collapse
|
15
|
Borchert AJ, Ernst DC, Downs DM. Reactive Enamines and Imines In Vivo: Lessons from the RidA Paradigm. Trends Biochem Sci 2019; 44:849-860. [PMID: 31103411 PMCID: PMC6760865 DOI: 10.1016/j.tibs.2019.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
Metabolic networks are webs of integrated reactions organized to maximize growth and replication while minimizing the detrimental impact that reactive metabolites can have on fitness. Enamines and imines, such as 2-aminoacrylate (2AA), are reactive metabolites produced as short-lived intermediates in a number of enzymatic processes. Left unchecked, the inherent reactivity of enamines and imines may perturb the metabolic network. Genetic and biochemical studies have outlined a role for the broadly conserved reactive intermediate deaminase (Rid) (YjgF/YER057c/UK114) protein family, in particular RidA, in catalyzing the hydrolysis of enamines and imines to their ketone product. Herein, we discuss new findings regarding the biological significance of enamine and imine production and outline the importance of RidA in controlling the accumulation of reactive metabolites.
Collapse
Affiliation(s)
- Andrew J Borchert
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Dustin C Ernst
- Current address: Center for Circadian Biology, University of California, San Diego, San Diego, CA 92161, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
16
|
Irons J, Sacher JC, Szymanski CM, Downs DM. Cj1388 Is a RidA Homolog and Is Required for Flagella Biosynthesis and/or Function in Campylobacter jejuni. Front Microbiol 2019; 10:2058. [PMID: 31555246 PMCID: PMC6742949 DOI: 10.3389/fmicb.2019.02058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of acute gastroenteritis worldwide and thus significant to public health. C. jejuni primarily lives in the gastrointestinal tracts of poultry and can contaminate meat during processing. Despite a small genome, the metabolic plasticity of C. jejuni allows proliferation in chicken ceca and mammalian host intestines, and survival in environments with a variety of temperatures, pH, osmotic conditions, and nutrient availabilities. The exact mechanism of C. jejuni infection is unknown, however, virulence requires motility. Our data suggest the C. jejuni RidA homolog, Cj1388, plays a role in flagellar biosynthesis, regulation, structure, and/or function and, as such is expected to influence virulence of the organism. Mutants lacking cj1388 have defects in motility, autoagglutination, and phage infectivity under the conditions tested. Comparison to the RidA paradigm from Salmonella enterica indicates the phenotypes of the C. jejuni cj1388 mutant are likely due to the inhibition of one or more pyridoxal 5'-phosphate-dependent enzymes by the reactive enamine 2-aminoacrylate.
Collapse
Affiliation(s)
- Jessica Irons
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, United States.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
17
|
Ball J, Gannavaram S, Gadda G. Structural determinants for substrate specificity of flavoenzymes oxidizing d-amino acids. Arch Biochem Biophys 2018; 660:87-96. [PMID: 30312594 DOI: 10.1016/j.abb.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022]
Abstract
The oxidation of d-amino acids is relevant to neurodegenerative diseases, detoxification, and nutrition in microorganisms and mammals. It is also important for the resolution of racemic amino acid mixtures and the preparation of chiral building blocks for the pharmaceutical and food industry. Considerable biochemical and structural knowledge has been accrued in recent years on the enzymes that carry out the oxidation of the Cα-N bond of d-amino acids. These enzymes contain FAD as a required coenzyme, share similar overall three-dimensional folds and highly conserved active sites, but differ in their specificity for substrates with neutral, anionic, or cationic side-chains. Here, we summarize the current biochemical and structural knowledge regarding substrate specificity on d-amino acid oxidase, d-aspartate oxidase, and d-arginine dehydrogenase for which a wealth of biochemical and structural studies is available.
Collapse
Affiliation(s)
- Jacob Ball
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Swathi Gannavaram
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Giovanni Gadda
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA; Departments of Biology, Georgia State University, Atlanta, GA, 30302-3965, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30302-3965, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302-3965, USA.
| |
Collapse
|