1
|
Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M. Regulation of autophagy by non-coding RNAs in human glioblastoma. Med Oncol 2024; 41:260. [PMID: 39375229 DOI: 10.1007/s12032-024-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Collapse
Affiliation(s)
- Mehran Molavand
- Student Research Commitee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhade
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arash Kiani
- Student Research Commite, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Nazari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Tang X, Guo M, Zhang Y, Lv J, Gu C, Yang Y. Examining the evidence for mutual modulation between m6A modification and circular RNAs: current knowledge and future prospects. J Exp Clin Cancer Res 2024; 43:216. [PMID: 39095902 PMCID: PMC11297759 DOI: 10.1186/s13046-024-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The resistance of cancer cells to treatment significantly impedes the success of therapy, leading to the recurrence of various types of cancers. Understanding the specific mechanisms of therapy resistance may offer novel approaches for alleviating drug resistance in cancer. Recent research has shown a reciprocal relationship between circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification, and their interaction can affect the resistance and sensitivity of cancer therapy. This review aims to summarize the latest developments in the m6A modification of circRNAs and their importance in regulating therapy resistance in cancer. Furthermore, we explore their mutual interaction and exact mechanisms and provide insights into potential future approaches for reversing cancer resistance.
Collapse
Affiliation(s)
- Xiaozhu Tang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junxian Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Wang C, Wang Z, Fu L, Du J, Ji F, Qiu X. CircNRCAM up-regulates NRCAM to promote papillary thyroid carcinoma progression. J Endocrinol Invest 2024; 47:1215-1226. [PMID: 38485895 DOI: 10.1007/s40618-023-02241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/04/2023] [Indexed: 04/23/2024]
Abstract
PURPOSE Papillary Thyroid Carcinoma (PTC) is the most prevalent subtype of Thyroid Carcinoma (THCA), a type of malignancy in the endocrine system. According to prior studies, Neural Cell Adhesion Molecule (NRCAM) has been found to be up-regulated in PTC and stimulates the proliferation and migration of PTC cells. However, the specific mechanism of NRCAM in PTC cells is not yet fully understood. Consequently, this study aimed to investigate the underlying mechanism of NRCAM in PTC cells, the findings of which could provide new insights for the development of potential treatment targets for PTC. METHODS AND RESULTS Bioinformatics tools were utilized and a series of experiments were conducted, including Western blot, colony formation, and dual-luciferase reporter assays. The data collected indicated that NRCAM was overexpressed in THCA tissues and PTC cells. Circular RNA NRCAM (circNRCAM) was found to be highly expressed in PTC cells and to positively regulate NRCAM expression. Through loss-of-function assays, both circNRCAM and NRCAM were shown to promote the proliferation, invasion, and migration of PTC cells. Mechanistically, this study confirmed that precursor microRNA-506 (pre-miR-506) could bind with m6A demethylase AlkB Homolog 5 (ALKBH5), leading to its m6A demethylation. It was also discovered that circNRCAM could competitively bind to ALKBH5, which restrained miR-506-3p expression and promoted NRCAM expression. CONCLUSION In summary, circNRCAM could up-regulate NRCAM by down-regulating miR-506-3p, thereby enhancing the biological behaviors of PTC cells.
Collapse
Affiliation(s)
- C Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Z Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - L Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - J Du
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - F Ji
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - X Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Ma P, Yu H, Zhu M, Liu L, Cheng L, Han Z, Jin W. NCAPD2 promotes the malignant progression of oral squamous cell carcinoma via the Wnt/β-catenin pathway. Cell Cycle 2024; 23:588-601. [PMID: 38743408 PMCID: PMC11135826 DOI: 10.1080/15384101.2024.2348918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with a poor prognosis, yet the underlying mechanism needs further exploration. Non-SMC condensin I complex subunit D2 (NCAPD2) is a widely expressed protein in OSCC, but its role in tumor development is unclear. This study aimed to explore NCAPD2 expression and its biological function in OSCC. NCAPD2 expression in OSCC cell lines and tissue specimens was analyzed using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Cancer cell growth was evaluated using cell proliferation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, and colony formation assays. Cell migration was evaluated using wound healing and Transwell assays. Apoptosis was detected using flow cytometry. The influence of NCAPD2 on tumor growth in vivo was evaluated in a mouse xenograft model. NCAPD2 expression was significantly higher in OSCC than that in normal oral tissue. In vitro, the knockdown of NCAPD2 inhibited OSCC cell proliferation and promoted apoptosis. NCAPD2 depletion also significantly inhibited the migration of OSCC cells. Moreover, NCAPD2 overexpression induced inverse effects on OSCC cell phenotypes. In vivo, we demonstrated that downregulating NCAPD2 could inhibit the tumorigenicity of OSCC cells. Mechanically, OSCC regulation by NCAPD2 involved the Wnt/β-catenin signaling pathway. These results suggest NCAPD2 as a novel oncogene with an important role in OSCC development and a candidate therapeutic target for OSCC.
Collapse
Affiliation(s)
- Ping Ma
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Huajiao Yu
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Mingda Zhu
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Liu
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Luyao Cheng
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Zhengxue Han
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wulong Jin
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| |
Collapse
|
5
|
A Biflavonoid-Rich Extract from Selaginella doederleinii Hieron. against Throat Carcinoma via Akt/Bad and IKKβ/NF-κB/COX-2 Pathways. Pharmaceuticals (Basel) 2022; 15:ph15121505. [PMID: 36558956 PMCID: PMC9785591 DOI: 10.3390/ph15121505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Selaginella doederleinii Hieron. is a common pharmacological plant, and this folk herbal medicine and its complex preparations have been widely used for the treatment of throat carcinoma (TC) and several associated complications in traditional Chinese medicine. This study was aimed at investigating the specific anti-throat carcinoma impacts and potential mechanisms of a biflavonoid-rich extract from S. doederleinii (SD-BFRE). The phytochemical profiling of SD-BFRE was performed by HPLC-ESI-QTOF-MS and UPLC-PDA, and the detailed pharmacological effects and mechanisms were respectively evaluated in vitro and in vivo. MTT assay, the Transwell assay and flow cytometry were performed to evaluate the abilities of SD-BFRE on inhibiting cell infiltrative growth in TC cells (Hep-2 and FaDu) in in vitro experiments. In vivo experiments used Hep-2 tumor-bearing nude mice to evaluate the anti-TC effect of SD-BFRE. Western blotting was used to explore the potential apoptotic pathway of TC cells. Here, we found that SD-BFRE exhibited anti-proliferation and pro-apoptotic effects in TC cells. Mechanistic studies have identified that SD-BFRE can suppress the activity of IKKβ and IκB-α kinase and then down-regulate the effector proteins of NF-κB/COX-2 signaling. Moreover, SD-BFRE induced apoptosis partly by regulating the Akt/Bad/caspase signaling pathway. Taken together, this study firstly demonstrated that SD-BFRE exerted its anti-TC effects by way of IKKβ/NF-κB/COX-2 and Akt/Bad pathways and might represent a potential chemotherapeutic agent for throat carcinoma.
Collapse
|
6
|
Lin H, Wang Y, Wang P, Long F, Wang T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol Cancer 2022; 21:148. [PMID: 35843942 PMCID: PMC9290271 DOI: 10.1186/s12943-022-01620-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
The resistance of tumor cells to therapy severely impairs the efficacy of treatment, leading to recurrence and metastasis of various cancers. Clarifying the underlying mechanisms of therapeutic resistance may provide new strategies for overcoming cancer resistance. N6-methyladenosine (m6A) is the most prevalent RNA modification in eukaryotes, and is involved in the regulation of RNA splicing, translation, transport, degradation, stability and processing, thus affecting several physiological processes and cancer progression. As a novel type of multifunctional non-coding RNAs (ncRNAs), circular RNAs (circRNAs) have been demonstrated to play vital roles in anticancer therapy. Currently, accumulating studies have revealed the mutual regulation of m6A modification and circRNAs, and their interaction can further influence the sensitivity of cancer treatment. In this review, we mainly summarized the recent advances of m6A modification and circRNAs in the modulation of cancer therapeutic resistance, as well as their interplay and potential mechanisms, providing promising insights and future directions in reversal of therapeutic resistance in cancer.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Gao L, Jiang Z, Han Y, Li Y, Yang X. Regulation of Pyroptosis by ncRNA: A Novel Research Direction. Front Cell Dev Biol 2022; 10:840576. [PMID: 35419365 PMCID: PMC8995973 DOI: 10.3389/fcell.2022.840576] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 01/17/2023] Open
Abstract
Pyroptosis is a novel form of programmed cell death (PCD), which is characterized by DNA fragmentation, chromatin condensation, cell swelling and leakage of cell contents. The process of pyroptosis is performed by certain inflammasome and executor gasdermin family member. Previous researches have manifested that pyroptosis is closely related to human diseases (such as inflammatory diseases) and malignant tumors, while the regulation mechanism of pyroptosis is not yet clear. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) have been widely identified in the genome of eukaryotes and played a paramount role in the development of cell function and fate after transcription. Accumulating evidences support the importance of ncRNA biology in the hallmarks of pyroptosis. However, the associations between ncRNA and pyroptosis are rarely reviewed. In this review, we are trying to summarize the regulation and function of ncRNA in cell pyroptosis, which provides a new research direction and ideas for the study of pyroptosis in different diseases.
Collapse
Affiliation(s)
- Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
9
|
Xu L, Zhang C, Yin H, Gong S, Wu N, Ren Z, Zhang Y. RNA modifications act as regulators of cell death. RNA Biol 2021; 18:2183-2193. [PMID: 34313542 PMCID: PMC8632120 DOI: 10.1080/15476286.2021.1925460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, more than one hundred types of RNA modifications have been found, and many of these modifications are reversible and dynamically regulated. RNA modifications can regulate RNA stability and translation and are thus involved in multiple biological activities. Recently, RNA modifications have been shown to have important roles in the regulation of cell death. Cell death is a critical process that maintains tissue homoeostasis and is regulated by multiple pathways in response to specific stimuli. In this review, we summarize the current understanding of the roles of RNA modifications in cell death mediation and discuss the prospects of such research.Abbreviations: m6A, N6-Methyladenosine; m6Am, N6,2'-O-Dimethyladenosine; m1A, N1-Methyladenosine; m5C, 5-Methylcytosine; hm5C, 5-Hydroxymethylcytosine; Ψ, pseudouridine; A-to-I, adenosine-to- inosine; hnRNPs, heterogeneous nuclear ribonucleoproteins; MOMP, mitochondrial outer membrane permeabilization; DD, death domain; DISC, death-inducing signalling complex; DED, death effector domain; FADD, FAS-associated protein with the death domain; TRADD, TNF receptor-associated protein with death domain; CMA, chaperone- mediated autophagy; PE, phosphatidylethanolamine; AD, alzheimer's disease; AML, acute myeloid leukaemia; miR, microRNA; 6-OHDA, 6-hydroxydopamine hydrochloride; R-2HG, R-2-hydroxyglutarate; IRES, internal ribosome entry site; BMSCs, bone-derived mesenchymal stem cells; NPCs, nucleus pulposus cells; HsCG, human chorionic gonadotropin; snoRNAs, small nucleolar RNAs; ER, endoplasmic reticulum; lncRNAs, long noncoding RNAs; TNM, tumour-node-metastasis.
Collapse
Affiliation(s)
- Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hang Yin
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Gong
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nai Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Li G, Zhou X, Tian L, Meng G, Li B, Yu H, Li Y, Huo Z, Du L, Ma X, Xu B. Identification of aberrantly methylated-differentially expressed genes and potential agents for Ewing sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1557. [PMID: 34790763 PMCID: PMC8576650 DOI: 10.21037/atm-21-4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Background Human DNA methylation is a common epigenetic regulatory mechanism, and it plays a critical role in various diseases. However, the potential role of DNA methylation in Ewing sarcoma (ES) is not clear. This study aimed to explore the regulatory roles of DNA methylation in ES. Methods The microarray data of gene expression and methylation were downloaded from the Gene Expression Omnibus (GEO) database, and analyzed via GEO2R. Venn analysis was then applied to identify aberrantly methylated-differentially expressed genes (DEGs). Subsequently, function and pathway enrichment analysis was conducted, a protein-protein interaction (PPI) network was constructed, and hub genes were determined. Besides, a connectivity map (CMap) analysis was performed to screen bioactive compounds for ES treatment. Results A total of 135 hypomethylated high expression genes and 523 hypermethylated low expression genes were identified. The hypomethylated high expression genes were enriched in signal transduction and the apoptosis process. Meanwhile, hypermethylated low expression genes were related to DNA replication and transcription regulation. The PPI network analysis indicated C3, TF, and TCEB1 might serve as diagnostic and therapeutic targets of ES. Furthermore, CMap analysis revealed 6 chemicals as potential options for ES treatment. Conclusions The introduction of DNA methylation characteristics over DEGs is helpful to understand the pathogenesis of ES. The identified hub aberrantly methylated DEGs and chemicals might provide some novel insights on ES treatment.
Collapse
Affiliation(s)
- Guowang Li
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Xuan Zhou
- Department of Pediatrics, Haikou Hospital of The Maternal and Child Health, Haikou, China
| | - Lijun Tian
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Orthopedic, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Gedong Meng
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Spine Surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Yu
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Yongjin Li
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Zhenxin Huo
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| |
Collapse
|
11
|
Yu C, Heidari Majd M, Shiri F, Shahraki S, Karimi P. The role of folic acid in inducing of apoptosis by zinc(II) complex in ovary and cervix cancer cells. Mol Divers 2021; 26:1545-1555. [PMID: 34417716 DOI: 10.1007/s11030-021-10293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
Herein, the synthesis, structure, binding affinity, cytotoxicity, and apoptotic properties of the new Zn(II) complex composed of folic acid and bipyridine ligands are reported. Because folic acid has the ability to target cancer cells directly, so it can play a role in targeted drug delivery of the complex and be useful to distinguish normal cells from cancerous. After characterization of Zinc complex utilizing FTIR, EA, and NMR, the results of MTT assay were shown that viability levels of two FR-positive cell lines (HeLa and Ovcar-3) are dependent on time and concentration of [Zn(bpy)FA], whereas, did not show a significant effect on FR-negative cell lines (A549). Also, Real-time PCR revealed that the presence of FA can influence the expression of apoptosis in cervical carcinoma HeLa cells while cisplatin alone doesn't have the ability to trigger apoptosis. Furthermore, the experimental results were evaluated using pharmacophore modeling and molecular docking analysis. Finally, the stability of the Zn(II) complex was surveyed using quantum mechanical studies.
Collapse
Affiliation(s)
- Chuanrong Yu
- Department of Gynecology and Obstetrics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Mostafa Heidari Majd
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.
| | - Fereshteh Shiri
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Somaye Shahraki
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Pouya Karimi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
12
|
Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:pharmaceutics13071062. [PMID: 34371753 PMCID: PMC8309156 DOI: 10.3390/pharmaceutics13071062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
13
|
Quiroz-Reyes AG, Delgado-Gonzalez P, Islas JF, Gallegos JLD, Martínez Garza JH, Garza-Treviño EN. Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:1062. [DOI: https:/doi.org/10.3390/pharmaceutics13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
14
|
Wan FC, Zhang C, Jin Q, Wei C, Zhao HB, Zhang XL, You W, Liu XM, Liu GF, Liu YF, Tan XW. Protective effects of astaxanthin on lipopolysaccharide-induced inflammation in bovine endometrial epithelial cells†. Biol Reprod 2021; 102:339-347. [PMID: 31566218 DOI: 10.1093/biolre/ioz187] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Astaxanthin (AST), a natural antioxidant carotenoid, has been shown to exert anti-inflammatory effects. However, to our knowledge, no study has specifically addressed the potential protective effects of AST against bovine endometritis. The purpose of this study was to examine whether treatment with AST could protect endometrial epithelial cells against lipopolysaccharide (LPS)-induced inflammatory injury. Treatment of bovine endometrial (BEND) epithelial cell line with AST reduced LPS-induced production of interleukin-6 and tumor necrosis factor-alpha, increased the cellular activity of superoxide dismutase and catalase, decreased the proportion of apoptotic cells, and promoted the production of insulin-like growth factor and epithelial growth factor. The effects of AST were mediated through the downregulation of B-cell lymphoma 2 (Bcl-2) associated X, apoptosis regulator (Bax), and cleaved caspase-3 and through the upregulation of Bcl-2. Moreover, AST significantly increased the expression of the tight junction proteins (TJP) claudin, cadherin-1, and TJP1, which play an essential role in the maintenance of host endometrial defense barrier against pathogen infection. Collectively, these results demonstrated that treatment with AST protected against oxidative stress, prevented cell apoptosis, promoted BEND cells viability, and increased the production of growth factors, in addition to activating the endometrial defense barrier. Therefore, AST is a promising therapeutic agent for the prevention and treatment of endometritis. This finding is of utmost importance in the present times when the excessive use of antibiotics has resulted in the development of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Fa-Chun Wan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China.,College of Life Sciences, Shandong Normal University, Ji'nan City, China
| | - Chen Zhang
- College of Life Sciences, Shandong Normal University, Ji'nan City, China
| | - Qing Jin
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Hong-Bo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Xiang-Lun Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Wei You
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Xiao-Mu Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Gui-Fen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Yi-Fan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Xiu-Wen Tan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| |
Collapse
|
15
|
Tang X, Tao F, Xiang W, Zhao Y, Jin L, Tao H. Anticancer effects and the mechanism underlying 2-methoxyestradiol in human osteosarcoma in vitro and in vivo. Oncol Lett 2020; 20:64. [PMID: 32863897 PMCID: PMC7436181 DOI: 10.3892/ol.2020.11925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/22/2020] [Indexed: 12/05/2022] Open
Abstract
Osteosarcoma (OS) occurs in both children and adolescents and leads to a poor prognosis. 2-methoxyestradiol (2-ME) has a strong antitumor effect and is effective against numerous types of tumor. However, 2-ME has a low level of antitumor effects in OS. The present study investigated the effects of 2-ME on the proliferation and apoptosis of human MG63 OS cells. The potential biological mechanisms by which 2-ME exerts its biological effects were also investigated in the present study. The results of the present study demonstrated that 2-ME inhibited the proliferation of OS cells in a time- and dose-dependent manner, induced G2/M phase cell cycle arrest and early apoptosis. The expression levels of vascular endothelial growth factor (VEGF), Bcl-2 and caspase-3 were measured via western blotting and reverse transcription-quantitative PCR. As the concentration of 2-ME increased, the RNA and protein expression levels of VEGF and Bcl-2 decreased gradually, whereas the expression of caspase-3 increased gradually. In addition, tumor growth in nude mice was suppressed by 2-ME with no toxic side effects observed in the liver or kidney. Immunohistochemistry demonstrated that the expression levels of Bcl-2 and VEGF were significantly lower, and those of caspase-3 were significantly higher in test mice compared with the control group. TUNEL staining of xenograft tumors revealed that with increased 2-ME concentration, the number of apoptotic cells also gradually increased. Thus, 2-ME effectively inhibited the proliferation and induced apoptosis of MG63 OS cells in vitro and in vivo with no obvious side effects. The mechanism of the anticancer effect of 2-ME may be associated with the actions of Bcl-2, VEGF and caspase-3.
Collapse
Affiliation(s)
- Xiaoyan Tang
- General Department, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
16
|
Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 2020; 12:E1662. [PMID: 32585857 PMCID: PMC7352793 DOI: 10.3390/cancers12061662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a cancer treatment that applies high doses of ionizing radiation to induce cell death, mainly by triggering DNA double-strand breaks. The outcome of radiotherapy greatly depends on radiosensitivity of cancer cells, which is determined by multiple proteins and cellular processes. In this review, we summarize current knowledge on the role of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in determining the response to radiation. Non-coding RNAs modulate ionizing radiation response by targeting key signaling pathways, including DNA damage repair, apoptosis, glycolysis, cell cycle arrest, and autophagy. Additionally, we indicate miRNAs and lncRNAs that upon overexpression or inhibition alter cellular radiosensitivity. Current data indicate the potential of using specific non-coding RNAs as modulators of cellular radiosensitivity to improve outcome of radiotherapy.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | | | | |
Collapse
|
17
|
miR-1285-3p Controls Colorectal Cancer Proliferation and Escape from Apoptosis through DAPK2. Int J Mol Sci 2020; 21:ijms21072423. [PMID: 32244500 PMCID: PMC7177834 DOI: 10.3390/ijms21072423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are tiny but powerful regulators of gene expression at the post-transcriptional level. Aberrant expression of oncogenic and tumor-suppressor microRNAs has been recognized as a common feature of human cancers. Colorectal cancer represents a major clinical challenge in the developed world and the design of innovative therapeutic approaches relies on the identification of novel biological targets. Here, we perform a functional screening in colorectal cancer cells using a library of locked nucleic acid (LNA)-modified anti-miRs in order to unveil putative oncogenic microRNAs whose inhibition yields a cytotoxic effect. We identify miR-1285-3p and further explore the effect of its targeting in both commercial cell lines and primary colorectal cancer stem cells, finding induction of cell cycle arrest and apoptosis. We show that DAPK2, a known tumor-suppressor, is a novel miR-1285 target and mediates both the anti-proliferative and the pro-apoptotic effects of miR-1285 depletion. Altogether, our findings uncover a novel oncogenic microRNA in colorectal cancer and lay the foundation for further studies aiming at the development of possible therapeutic strategies based on miR-1285 targeting.
Collapse
|
18
|
Kelly GL, Strasser A. Toward Targeting Antiapoptotic MCL-1 for Cancer Therapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apoptosis is critical for embryonic development, tissue homeostasis, and the removal of infected or otherwise dangerous cells. It is controlled by three subgroups of the BCL-2 protein family—the BH3-only proteins that initiate cell death; the effectors of cell killing, BAX and BAK; and the antiapoptotic guardians, including MCL-1 and BCL-2. Defects in apoptosis can promote tumorigenesis and render malignant cells refractory to anticancer therapeutics. Activation of cell death by inhibiting antiapoptotic BCL-2 family members has emerged as an attractive strategy for cancer therapy, with the BCL-2 inhibitor venetoclax leading the way. Large-scale cancer genome analyses have revealed frequent amplification of the locus encoding antiapoptotic MCL-1 in human cancers, and functional studies have shown that MCL-1 is essential for the sustained survival and expansion of many types of tumor cells. Structural analysis and medicinal chemistry have led to the development of three distinct small-molecule inhibitors of MCL-1 that are currently undergoing clinical testing.
Collapse
Affiliation(s)
- Gemma L. Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia;,
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia;,
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
19
|
Sun S, Cui Z, Yan T, Wu J, Liu Z. CCN5 inhibits proliferation and promotes apoptosis of oral squamous cell carcinoma cells. Cell Biol Int 2020; 44:998-1008. [PMID: 31889370 DOI: 10.1002/cbin.11296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis and high mortality. The role of CCN5 has attracted a great focus on the regulation of cancer progression. However, the biological function and mechanism of CCN5 in OSCC are still not well elucidated. The current study was designed to determine the effects of CCN5 on OSCC cell proliferation and apoptosis using two OSCC cell lines. Further, LY294002, a PI3K/AKT antagonist, was employed to explore the mechanism underlying the effects of CCN5 in the regulation of OSCC. The results showed that overexpression of CCN5 in TSCCa cells significantly reduced viable cell number, arrested cell cycle, and suppressed cell-cycle regulators (cyclin D1, cyclin E, and CDK2). CCN5 overexpression increased the apoptotic ratio and Hoechst-positive cell number, and altered the apoptotic-related proteins (caspase-3/9, Bax, and Bcl-2). However, CCN5 silencing induced opposite effects on cell proliferation and apoptosis in Tca-8113 cells. In addition, we observed that CCN5 knockdown increased the expression levels of PI3K (p85α and p110α) and phosphorylated AKT at serine 473 (p-AKT Ser473) in Tca-8113 cells. Inhibiting PI3K/AKT signaling with LY294002 rescued the apoptotic process in CCN5-silenced OSCC cells. Finally, xenograft analysis showed that CCN5 represses tumorigenesis of OSCC cells. These findings together suggest that CCN5 functions as a tumor suppressor for OSCC cell development through inactivation of PI3K/AKT signaling pathway, providing a potential candidate for OSCC therapy.
Collapse
Affiliation(s)
- Shiqun Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhi Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Tongtong Yan
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Jian Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhihui Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
20
|
Li B, Zhang J, Su Y, Hou Y, Wang Z, Zhao L, Sun S, Fu H. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism. Mol Med Rep 2019; 20:3793-3801. [PMID: 31485626 PMCID: PMC6755145 DOI: 10.3892/mmr.2019.10617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of tumor-associated mortality, and >75% of patients with lung cancer have non-small cell lung cancer (NSCLC). Pemetrexed, a folate antagonist, is a first-line chemotherapy drug for NSCLC that is administered alone or in combination with cisplatin. The present study established in vitro cell models of PTEN inhibition and overexpression, and the effects of the treatment with pemetrexed were investigated in these cell models. Result from the present study demonstrated that treatment with pemetrexed suppressed lung cancer cell proliferation, inhibited mRNA and protein expression levels of anti-apoptotic Bcl2, and increased the mRNA and the protein expression levels of pro-apoptotic p53 and apoptosis regulator BAX. The present study suggested that pemetrexed regulated apoptosis via the inhibition of the mTOR/PI3K/AKT signaling pathway. Additionally, cellular processes associated with the aerobic oxidation of carbohydrates were identified to be significantly inhibited. The present findings suggested that treatment with pemetrexed may exhibit synergistic effects with PTEN on lung cancer cells via the inhibition of the PI3K/AKT/mTOR signaling pathway and through carbohydrate metabolism, and treatment with pemetrexed combined with PTEN overexpression may represent a novel therapeutic strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Bo Li
- Department of Thoracic Medicine, Chest Hospital, Tianjin 300051, P.R. China
| | - Junkai Zhang
- Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Ya Su
- Neurology Department, Pingjin Hospital, Tianjin 300162, P.R. China
| | - Yiling Hou
- Physical Examination Center, Pingjin Hospital, Tianjin 300162, P.R. China
| | - Zhenguo Wang
- Medical Research Department, Pingjin Hospital, Tianjin 300162, P.R. China
| | - Lin Zhao
- Department of Geriatric Medicine, Fourth People's Hospital of Shanghai Affiliated to Tongji University School of Medicine, Shanghai 200081, P.R. China
| | - Shengkai Sun
- Medical Research Department, Pingjin Hospital, Tianjin 300162, P.R. China
| | - Hao Fu
- Department of Geriatric Medicine, Pingjin Hospital, Tianjin 300162, P.R. China
| |
Collapse
|
21
|
Anti-Cancer Effects of Green Tea Polyphenols Against Prostate Cancer. Molecules 2019; 24:molecules24010193. [PMID: 30621039 PMCID: PMC6337309 DOI: 10.3390/molecules24010193] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most common cancer among men. Green tea consumption is reported to play an important role in the prevention of carcinogenesis in many types of malignancies, including prostate cancer; however, epidemiological studies show conflicting results regarding these anti-cancer effects. In recent years, in addition to prevention, many investigators have shown the efficacy and safety of green tea polyphenols and combination therapies with green tea extracts and anti-cancer agents in in vivo and in vitro studies. Furthermore, numerous studies have revealed the molecular mechanisms of the anti-cancer effects of green tea extracts. We believe that improved understanding of the detailed pathological roles at the molecular level is important to evaluate the prevention and treatment of prostate cancer. Therefore, in this review, we present current knowledge regarding the anti-cancer effects of green tea extracts in the prevention and treatment of prostate cancer, with a particular focus on the molecular mechanisms of action, such as influencing tumor growth, apoptosis, androgen receptor signaling, cell cycle, and various malignant behaviors. Finally, the future direction for the use of green tea extracts as treatment strategies in patients with prostate cancer is introduced.
Collapse
|
22
|
García-Aranda M, Pérez-Ruiz E, Redondo M. Bcl-2 Inhibition to Overcome Resistance to Chemo- and Immunotherapy. Int J Mol Sci 2018; 19:E3950. [PMID: 30544835 PMCID: PMC6321604 DOI: 10.3390/ijms19123950] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract: According to the World Health Organization (WHO), cancer is a leading cause of death worldwide. The identification of novel targets for cancer treatment is an area of intense work that has led Bcl-2 over-expression to be proposed as one of the hallmarks of cancer and Bcl-2 inhibition as a promising strategy for cancer treatment. In this review, we describe the different pathways related to programmed cell death, the role of Bcl-2 family members in apoptosis resistance to anti-cancer treatments, and the potential utility of Bcl-2 inhibitors to overcome resistance to chemo- and immunotherapy.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, REDISSEC, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Elisabet Pérez-Ruiz
- Oncology Department, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Research Unit, REDISSEC, Hospital Costa del Sol, Universidad de Málaga, Autovía A-7 km 187, 29603 Marbella, Málaga, Spain.
| |
Collapse
|
23
|
Mu M, Li Y, Zhan Y, Li X, Zhang B. Knockdown of HOXA transcript at the distal tip suppresses the growth and invasion and induces apoptosis of oral tongue squamous carcinoma cells. Onco Targets Ther 2018; 11:8033-8044. [PMID: 30519045 PMCID: PMC6239101 DOI: 10.2147/ott.s174637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) is an aggressive cancer which has high mortality rates. HOXA transcript at the distal tip (HOTTIP) is a lncRNA that can be used as a prognostic marker in multiple carcinomas. The expression of HOTTIP is found to be elevated in OTSCC tissues, and such elevation is correlated with poor prognosis. However, its functional role in regulating the growth and metastasis of OTSCC cells remains elusive and requires further investigation. Methods HOTTIP-silenced OTSCC cells were established by inhibiting HOTTIP expression via its exclusive shRNA. Whether HOTTIP knockdown affected the aggressive tumor behaviors of OTSCC cells was investigated in vitro and in vivo. Results We found that HOTTIP shRNA restrained the cell proliferation and arrested the cell cycle at G1 phase in TSCCA and TCA8113 cells. The expression levels of cyclins B, D1, and E were downregulated in HOTTIP-silenced cells. HOTTIP silencing suppressed the growth of xenograft tumors. Moreover, the silencing of HOTTIP triggered apoptosis in TSCCA and TCA8113 cells and altered the expression of a group of apoptosis-related molecules: downregulated Bcl-2, upregulated Bax, and enhanced the cleavage of caspase 3 and PARP. Knockdown of HOTTIP also suppressed the migration, invasion, and epithelial-mesenchymal transition (EMT) of both TSCCA and TCA8113 cell lines. Conclusion Our findings suggest that HOTTIP is required by the OTSCC cells to maintain their growth and metastasis in vitro. It may serve as a promising potential candidate for OTSCC therapy.
Collapse
Affiliation(s)
- Mingkui Mu
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yue Li
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yuanbo Zhan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China,
| | - Xin Li
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China, .,Heilongjiang Academy of Medical Sciences, Harbin 150001, People's Republic of China,
| |
Collapse
|