1
|
Lamana A, Castro-Vázquez D, de la Fuente H, Triguero-Martínez A, Martínez-Hernández R, Revenga M, Villanueva-Romero R, Llamas-Velasco M, Chicharro P, Juarranz Y, Marazuela M, Sales-Sanz M, García-Vicuña R, Tomero E, González-Álvaro I, Martínez C, Gomariz RP. VIP/VPAC Axis Expression in Immune-Mediated Inflammatory Disorders: Associated miRNA Signatures. Int J Mol Sci 2022; 23:ijms23158578. [PMID: 35955723 PMCID: PMC9369218 DOI: 10.3390/ijms23158578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Few studies have considered immune-mediated inflammatory disorders (IMID) together, which is necessary to adequately understand them given they share common mechanisms. Our goal was to investigate the expression of vasoactive intestinal peptide (VIP) and its receptors VPAC1 and VPAC2 in selected IMID, analyze the effect of biological therapies on them, and identify miRNA signatures associated with their expression. Serum VIP levels and mRNA of VPAC and miRNA expression in peripheral blood mononuclear cells were analyzed from 52 patients with psoriasis, rheumatoid arthritis, Graves’ disease, or spondyloarthritis and from 38 healthy subjects. IMID patients showed higher levels of VIP and increased expression of VPAC2 compared to controls (p < 0.0001 and p < 0.0192, respectively). Receiver operating characteristic curve analysis showed that the levels of VIP or VPAC2 expression were adequate discriminators capable of identifying IMID. Treatment of IMID patients with anti-TNFα and anti-IL12/23 significantly affected serum VIP levels. We identified miRNA signatures associated with levels of serum VIP and VPAC2 expression, which correlated with IMID diagnosis of the patients. The results indicate that the expression of VIP/VPAC2 is able of identify IMIDs and open up a line of research based on the association between the VIP/VPAC axis and miRNA signatures in immune-mediated diseases.
Collapse
Affiliation(s)
- Amalia Lamana
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - David Castro-Vázquez
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain;
| | - Ana Triguero-Martínez
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Rebeca Martínez-Hernández
- Department of Endocrinology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (R.M.-H.); (M.M.)
| | - Marcelino Revenga
- Department of Rheumatology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
- Department of Medicine and Medical Specialties, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Raúl Villanueva-Romero
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - Mar Llamas-Velasco
- Department of Dermatology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (M.L.-V.); (P.C.)
| | - Pablo Chicharro
- Department of Dermatology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (M.L.-V.); (P.C.)
| | - Yasmina Juarranz
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
| | - Mónica Marazuela
- Department of Endocrinology, Instituto de Investigación Princesa, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (R.M.-H.); (M.M.)
| | - Marco Sales-Sanz
- Department of Ophthalmology, Hospital Universitario Ramón y Cajal-IRYCIS, 28034 Madrid, Spain;
| | - Rosario García-Vicuña
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Eva Tomero
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Isidoro González-Álvaro
- Department of Rheumatology, Instituto de Investigación Princesa Madrid, Hospital Universitario de La Princesa, 28006 Madrid, Spain; (A.T.-M.); (R.G.-V.); (E.T.); (I.G.-Á.)
| | - Carmen Martínez
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
- Correspondence: (C.M.); (R.P.G.); Tel.: +34-91-3944971 (R.P.G.)
| | - Rosa P. Gomariz
- Department of Cell Biology, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.L.); (D.C.-V.); (R.V.-R.); (Y.J.)
- Correspondence: (C.M.); (R.P.G.); Tel.: +34-91-3944971 (R.P.G.)
| |
Collapse
|
2
|
Xu Z, Wei Y, Huang H, Guo S, Ye H. Immunomodulatory role of short neuropeptide F in the mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104260. [PMID: 34536467 DOI: 10.1016/j.dci.2021.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Short neuropeptide F (sNPF) is bioactive peptide secreted by neurons of invertebrates. It is one of the important pleiotropic neural molecules that is associated with a variety of physiological processes in invertebrates. However, little is known about the role of sNPF in the immune response. This study aimed to determine the distribution, localization, functional characteristics and signaling mechanisms of the sNPF gene and sNPF receptor (sNPF-R) gene in the mud crab Scylla paramamosain. Results of this study showed that Sp-sNPF and Sp-sNPF-R were widely expressed in neural tissue and other tissues including hemocytes. Further, in situ hybridization analysis revealed that Sp-sNPF and Sp-sNPF-R have specific localization in cerebral ganglion and hemocytes. It was also found that immune stimuli significantly induced Sp-sNPF expression in cerebral ganglion. The hemocyte-derived Sp-sNPF and Sp-sNPF-R were also efficiently activated upon immune stimulation. In vitro sNPF peptide administration enhanced phagocytic ability of hemocytes. However, this activity could be blocked through knockdown of sNPF-R-dsRNA or using adenylate cyclase inhibitors SQ 22536. The results of this study also demonstrated that the contents of signaling molecule adenylyl cyclase (AC), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in hemocytes can be up-regulated after incubation with sNPF peptide. In addition, the results of in vivo experiments showed that sNPF increased concentration of nitric oxide (NO) and enhanced phagocytic potential in S. paramamosain. The sNPF also significantly induced the expression of immune-related molecules at the gene level in S. paramamosain. In conclusion, the findings of this study indicate that sNPF mediates hemocyte phagocytosis via sNPF-R receptor-coupled AC-cAMP-PKA pathway and influences the innate immune processes in S. paramamosain.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Songlin Guo
- College of Fisheries, Jimei University, Xiamen 361021, China
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen 361021, China.
| |
Collapse
|
3
|
Mandwie M, Karunia J, Niaz A, Keay KA, Musumeci G, Rennie C, McGrath K, Al-Badri G, Castorina A. Metformin Treatment Attenuates Brain Inflammation and Rescues PACAP/VIP Neuropeptide Alterations in Mice Fed a High-Fat Diet. Int J Mol Sci 2021; 22:ijms222413660. [PMID: 34948457 PMCID: PMC8706124 DOI: 10.3390/ijms222413660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022] Open
Abstract
High-fat diet (HFD)-induced comorbid cognitive and behavioural impairments are thought to be the result of persistent low-grade neuroinflammation. Metformin, a first-line medication for the treatment of type-2 diabetes, seems to ameliorate these comorbidities, but the underlying mechanism(s) are not clear. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are neuroprotective peptides endowed with anti-inflammatory properties. Alterations to the PACAP/VIP system could be pivotal during the development of HFD-induced neuroinflammation. To unveil the pathogenic mechanisms underlying HFD-induced neuroinflammation and assess metformin’s therapeutic activities, (1) we determined if HFD-induced proinflammatory activity was present in vulnerable brain regions associated with the development of comorbid behaviors, (2) investigated if the PACAP/VIP system is altered by HFD, and (3) assessed if metformin rescues such diet-induced neurochemical alterations. C57BL/6J male mice were divided into two groups to receive either standard chow (SC) or HFD for 16 weeks. A further HFD group received metformin (HFD + M) (300 mg/kg BW daily for 5 weeks) via oral gavage. Body weight, fasting glucose, and insulin levels were measured. After 16 weeks, the proinflammatory profile, glial activation markers, and changes within the PI3K/AKT intracellular pathway and the PACAP/VIP system were evaluated by real-time qPCR and/or Western blot in the hypothalamus, hippocampus, prefrontal cortex, and amygdala. Our data showed that HFD causes widespread low-grade neuroinflammation and gliosis, with regional-specific differences across brain regions. HFD also diminished phospho-AKT(Ser473) expression and caused significant disruptions to the PACAP/VIP system. Treatment with metformin attenuated these neuroinflammatory signatures and reversed PI3K/AKT and PACAP/VIP alterations caused by HFD. Altogether, our findings demonstrate that metformin treatment rescues HFD-induced neuroinflammation in vulnerable brain regions, most likely by a mechanism involving the reinstatement of PACAP/VIP system homeostasis. Data also suggests that the PI3K/AKT pathway, at least in part, mediates some of metformin’s beneficial effects.
Collapse
Affiliation(s)
- Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
| | - Jocelyn Karunia
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
| | - Aram Niaz
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
| | - Kevin A. Keay
- Laboratory of Neural Structure and Function, School of Medical Science (Neuroscience), University of Sydney, Sydney, NSW 2006, Australia;
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy;
| | - Claire Rennie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.R.); (K.M.)
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.R.); (K.M.)
| | - Ghaith Al-Badri
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
- Laboratory of Neural Structure and Function, School of Medical Science (Neuroscience), University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence:
| |
Collapse
|
4
|
Protective Effects of PACAP in a Rat Model of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms221910691. [PMID: 34639032 PMCID: PMC8509403 DOI: 10.3390/ijms221910691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with a widespread occurrence and diverse effects. PACAP has well-documented neuro- and cytoprotective effects, proven in numerous studies. Among others, PACAP is protective in models of diabetes-associated diseases, such as diabetic nephropathy and retinopathy. As the neuropeptide has strong neurotrophic and neuroprotective actions, we aimed at investigating the effects of PACAP in a rat model of streptozotocin-induced diabetic neuropathy, another common complication of diabetes. Rats were treated with PACAP1-38 every second day for 8 weeks starting simultaneously with the streptozotocin injection. Nerve fiber morphology was examined with electron microscopy, chronic neuronal activation in pain processing centers was studied with FosB immunohistochemistry, and functionality was assessed by determining the mechanical nociceptive threshold. PACAP treatment did not alter body weight or blood glucose levels during the 8-week observation period. However, PACAP attenuated the mechanical hyperalgesia, compared to vehicle-treated diabetic animals, and it markedly reduced the morphological signs characteristic for neuropathy: axon–myelin separation, mitochondrial fission, unmyelinated fiber atrophy, and basement membrane thickening of endoneurial vessels. Furthermore, PACAP attenuated the increase in FosB immunoreactivity in the dorsal spinal horn and periaqueductal grey matter. Our results show that PACAP is a promising therapeutic agent in diabetes-associated complications, including diabetic neuropathy.
Collapse
|
5
|
Xu Z, Wei Y, Wang G, Ye H. B-type allatostatin regulates immune response of hemocytes in mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104050. [PMID: 33631272 DOI: 10.1016/j.dci.2021.104050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
B-type allatostatins (AST-B) are neuropeptides that have important physiological roles in arthropods, they have also been identified in a number of crustacean species. Recent research on neuroendocrine-immune (NEI) regulatory system in invertebrates has exploded, it reveals that the NEI network plays an indispensable role in optimizing the immune response and maintaining homeostasis. Herein, mud crab Scylla paramamosain provides a primitive and ancient model to study crosstalk between the neuroendocrine and immune systems. In this study, qRT-PCR analysis showed that the nervous system was the main production site for Sp-AST-B mRNA in S. paramamosain, while its receptor gene (Sp-AST-BR) mRNA could be detected in all the analyzed tissues including hemocytes. This reveals that AST-B might act as a pleiotropic neuropeptide. In situ hybridization further confirmed that granular cells of hemocyte subpopulations express Sp-AST-BR. Time-course analysis revealed that bacteria-analog LPS or virus-analog Poly (I:C) challenge significantly induced Sp-AST-B expression in the thoracic ganglion, and the expression of Sp-AST-BR in hemocytes were also positively changed. Furthermore, mud crabs treated with a synthetic AST-B peptide significantly increased the mRNA levels of AST-BR, nuclear factor-κB (NF-κB) transcription factor (Dorsal and Relish), pro-inflammatory cytokine (IL-16) and immune-effector molecules, and also dramatically enhanced the nitric oxide (NO) production and phagocytic activity in hemocytes. Meanwhile dsRNA-mediated knockdown of Sp-AST-B remarkably suppressed the NO concentrations, phagocytic activity and the expression of immune related genes, resulting in markedly impaired ability of crabs to inhibit bacterial proliferation in vivo. Combined, these data demonstrate that AST-B induced innate immune in the mud crab.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guizhong Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
6
|
Effects of Pacap on Schwann Cells: Focus on Nerve Injury. Int J Mol Sci 2020; 21:ijms21218233. [PMID: 33153152 PMCID: PMC7663204 DOI: 10.3390/ijms21218233] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
Collapse
|
7
|
Ning XJ, Lu XH, Luo JC, Chen C, Gao Q, Li ZY, Wang H. Molecular mechanism of microRNA-21 promoting Schwann cell proliferation and axon regeneration during injured nerve repair. RNA Biol 2020; 17:1508-1519. [PMID: 32507001 DOI: 10.1080/15476286.2020.1777767] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
At present, the functional recovery after nerve injury is not satisfactory in clinical practice. The aim of this study was to explore the molecular mechanism of miR-21 promoting Schwann cells (SC) proliferation and axon regeneration after peripheral nerve injury, providing a theoretical basis for injured nerve repair. Nerve injury models were constructed to determine the expression of miR-21 in the injured nerve by Quantitative Real-Time PCR (qRT-PCR). After miR-21 over-expression SC (mimic-miR-21) group, control SC (control-miR-21) group and blank SC (RSC96) group were constructed, SC proliferation was determined by CCK-8, cell cycle was analysed by flow cytometry, dorsal root ganglion neuron (DRGn) axon regeneration was observed after DRGn was cultured with SCs for 7 days, the expressions of TGFβI, TIMP3, EPHA4 as well as apoptosis-related proteins caspase-3 and caspase-9 were detected by qRT-PCR and Western blot in the three groups, respectively. Target genes were confirmed by dual-luciferase reporter gene assay. The expressions of TGFβI, TIMP3 and EPHA4 were assessed by immunofluorescence in vivo. qRT-PCR indicated that miR-21 expression was significantly higher in the model group than in the sham operation and blank groups. SC proliferation index (PI) was significantly higher, the apoptosis rate was significantly lower, the axon was significantly longer, and mRNA and protein expressions of TGFβI, TIMP3, EPHA4 as well as apoptosis-related proteins caspase-3 and caspase-9 were significantly lower in the mimic-miR-21 group than in the control-miR-21 and RSC96 groups. The double luciferase assay confirmed that TGFβI, TIMP3 and EPHA4 were potential target genes of miR-21. In vivo immunofluorescence also indicated that expressions of TGFβI, TIMP3, EPHA4 were lower in the mimic-miR-21 group than in the control-miR-21 and RSC96 groups. We conclude that during injured peripheral nerve repair, miRNA-21 plays an important role in promoting SC proliferation and axon regeneration by regulating TGFβI, TIMP3 and EPHA4 target genes.
Collapse
Affiliation(s)
- Xin-Jie Ning
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Xin-Hua Lu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Jun-Cheng Luo
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Qun Gao
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Zhang-Yu Li
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| |
Collapse
|