1
|
Chen Y, Pang J, Chen Y, Liang Y, Zhang Z, Wang Z. Diallyl trisulfide regulates PGK1/Nrf2 expression and reduces inflammation to alleviate neurological damage in mice after traumatic brain injury. Brain Res 2024; 1843:149116. [PMID: 38977238 DOI: 10.1016/j.brainres.2024.149116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Diallyl trisulfide (DATS) has a direct antioxidant capacity and emerges as a promising neuroprotective agent. This study was designed to investigate the role of DATS in traumatic brain injury (TBI). METHODS TBI mouse models were established using the controlled cortical impact, followed by DATS administration. The effects of DATS on neurological deficit, brain damage, inflammation and phosphoglycerate kinase 1 (PGK1) expression were detected using mNSS test, histological analysis, TUNEL assay, enzyme-linked immunosorbent assay and immunofluorescence. PC12 cells were subjected to H2O2-induced oxidative injury after pre-treatment with DATS, followed by cell counting kit-8 assay, flow cytometry and ROS production detection. Apoptosis-related proteins and the PGK1/nuclear factor erythroid-2 related factor 2 (Nrf2) pathway were examined using Western blot. RESULTS DATS ameliorated the cerebral cortex damage, neurological dysfunction and apoptosis, as well as decreased PGK1 expression and expressions of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) in mice after TBI. DATS also enhanced viability, blocked apoptosis and inhibited ROS production in H2O2-induced PC12 cells. DATS downregulated Cleaved-Caspase3, Bax and PGK1 levels, and upregulated Bcl-2 and Nrf2 levels in TBI mouse models and the injured cells. CONCLUSION DATS regulates PGK1/Nrf2 expression and inflammation to alleviate neurological damage in mice after TBI.
Collapse
Affiliation(s)
- Yafei Chen
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Jianliang Pang
- Department of Vascular Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital) , PR China
| | - Yulong Chen
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Ying Liang
- Injection Room, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Zhengbo Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China
| | - Zhangquan Wang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), PR China.
| |
Collapse
|
2
|
Darmanto AG, Jan JS, Yen TL, Huang SW, Teng RD, Wang JY, Taliyan R, Sheu JR, Yang CH. Targeting Circadian Protein Rev-erbα to Alleviate Inflammation, Oxidative Stress, and Enhance Functional Recovery Following Brain Trauma. Antioxidants (Basel) 2024; 13:901. [PMID: 39199147 PMCID: PMC11351136 DOI: 10.3390/antiox13080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide, and its pathophysiology is characterized by oxidative stress and inflammation. Despite extensive research, effective treatments for TBI remain elusive. Recent studies highlighted the critical interplay between TBI and circadian rhythms, but the detailed regulation remains largely unknown. Motivated by the observed sustained decrease in Rev-erbα after TBI, we aimed to understand the critical role of Rev-erbα in the pathophysiology of TBI and determine its feasibility as a therapeutic target. Using a mouse model of TBI, we observed that TBI significantly downregulates Rev-erbα levels, exacerbating inflammatory and oxidative stress pathways. The regulation of Rev-erbα with either the pharmacological activator or inhibitor bidirectionally modulated inflammatory and oxidative events, which in turn influenced neurobehavioral outcomes, highlighting the protein's protective role. Mechanistically, Rev-erbα influences the expression of key oxidative stress and inflammatory regulatory genes. A reduction in Rev-erbα following TBI likely contributes to increased oxidative damage and inflammation, creating a detrimental environment for neuronal survival and recovery which could be reversed via the pharmacological activation of Rev-erbα. Our findings highlight the therapeutic potential of targeting Rev-erbα to mitigate TBI-induced damage and improve outcomes, especially in TBI-susceptible populations with disrupted circadian regulation.
Collapse
Affiliation(s)
- Arief Gunawan Darmanto
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (A.G.D.); (J.-R.S.)
- School of Medicine, Universitas Ciputra, Surabaya 60219, Indonesia
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Shin-Wei Huang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Ruei-Dun Teng
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India;
| | - Joen-Rong Sheu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (A.G.D.); (J.-R.S.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (J.-S.J.); (T.-L.Y.); (S.-W.H.); (R.-D.T.)
| |
Collapse
|
3
|
Chlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathways. Heliyon 2023; 9:e13917. [PMID: 36873494 PMCID: PMC9982044 DOI: 10.1016/j.heliyon.2023.e13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Coffee pulp (CP) is a coffee byproduct that contains various active ingredients, namely, chlorogenic acid (CGA) and caffeine. These active compounds show several benefits, including antihyperlipidemia, antioxidants, and anti-inflammation. However, the anti-inflammatory properties of Coffea pulp extract (CPE) are unknown. This work determined the impact of CPE on lipopolysaccharide (LPS)-activated murine macrophage cells and the molecular mechanism behind this action. RAW 264.7 cells were exposed to varying doses of CPE with or without LPS. Inflammatory markers and their mechanism were studied. CPE therapy has been shown to suppress the synthesis of inflammatory cytokines and mediators, namely, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Finally, CPE inactivated the nuclear factor-kappa B (NF-κB) and MAPK signaling pathways. Consequently, CPE might be used as a nutraceutical to treat inflammation and its related disorders.
Collapse
|
4
|
Hsieh CT, Yen TL, Chen YH, Jan JS, Teng RD, Yang CH, Sun JM. Aging-Associated Thyroid Dysfunction Contributes to Oxidative Stress and Worsened Functional Outcomes Following Traumatic Brain Injury. Antioxidants (Basel) 2023; 12:antiox12020217. [PMID: 36829776 PMCID: PMC9952686 DOI: 10.3390/antiox12020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The incidence of traumatic brain injury (TBI) increases dramatically with advanced age and accumulating evidence indicates that age is one of the important predictors of an unfavorable prognosis after brain trauma. Unfortunately, thus far, evidence-based effective therapeutics for geriatric TBI is limited. By using middle-aged animals, we first confirm that there is an age-related change in TBI susceptibility manifested by increased inflammatory events, neuronal death and impaired functional outcomes in motor and cognitive behaviors. Since thyroid hormones function as endogenous regulators of oxidative stress, we postulate that age-related thyroid dysfunction could be a crucial pathology in the increased TBI severity. By surgically removing the thyroid glands, which recapitulates the age-related increase in TBI-susceptible phenotypes, we provide direct evidence showing that endogenous thyroid hormone-dependent compensatory regulation of antioxidant events modulates individual TBI susceptibility, which is abolished in aged or thyroidectomized individuals. The antioxidant capacity of melatonin is well-known, and we found acute melatonin treatment but not liothyronine (T3) supplementation improved the TBI-susceptible phenotypes of oxidative stress, excitotoxic neuronal loss and promotes functional recovery in the aged individuals with thyroid dysfunction. Our study suggests that monitoring thyroid function and acute administration of melatonin could be feasible therapeutics in the management of geriatric-TBI in clinic.
Collapse
Affiliation(s)
- Cheng-Ta Hsieh
- Division of Neurosurgery, Department of Surgery, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Yu-Hao Chen
- Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City 62241, Taiwan
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 600, Taiwan
- Department of Biotechnology, Asia University, Taichung City 41354, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan
| | - Ruei-Dun Teng
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan
| | - Jui-Ming Sun
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 600, Taiwan
- Department of Biotechnology, Asia University, Taichung City 41354, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Crocodile Oil Modulates Inflammation and Immune Responses in LPS-Stimulated RAW 264.7 Macrophages. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123784. [PMID: 35744910 PMCID: PMC9229527 DOI: 10.3390/molecules27123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Crocodile oil (CO) is generated from the fatty tissues of crocodiles as a by-product of commercial aquaculture. CO is extensively applied in the treatment of illnesses including asthma, emphysema, skin ulcers, and cancer, as well as wound healing. Whether CO has anti-inflammatory properties and encourages an immune response remains uncertain. The impact of CO on inflammatory conditions in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the mechanisms behind it were examined in this work. Cells were treated with 0.125–2% CO dissolved in 0.5% propylene glycol with or without LPS. The production and expression of inflammatory cytokines and mediators were also examined in this research. CO reduced the synthesis and gene expression of interleukin-6 (IL-6). Consistently, CO inhibited the expression and synthesis of inflammatory markers including cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nitric oxide (NO), and nuclear factor kappa B (NF-κB). Furthermore, CO reduced the effects of DNA damage. CO also increased the cell-cycle regulators, cyclins D2 and E2, which improved the immunological response. CO might thus be produced as a nutraceutical supplement to help avoid inflammatory diseases.
Collapse
|
6
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
7
|
Platonin protects against cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasomes via BNIP3/LC3 signaling mediated autophagy. Brain Res Bull 2022; 180:12-23. [DOI: 10.1016/j.brainresbull.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022]
|
8
|
Tongmee B, Ontawong A, Lailerd N, Mengamphan K, Amornlerdpisan D. Anti-inflammatory effects and enhancing immune response of freshwater hybrid catfish oil in RAW264.7 cells. Exp Ther Med 2021; 22:1223. [PMID: 34603520 PMCID: PMC8453337 DOI: 10.3892/etm.2021.10657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
The present study assessed the effect of freshwater hybrid catfish oil (FFO) on the inflammatory status of lipopolysaccharide (LPS)-stimulated RAW264.7 cells and investigated the underlying mechanisms. RAW264.7 cells were supplemented with various concentrations [0.125-2% in 0.5% propylene glycol (v/v)] of FFO with or without LPS (1 µg/ml) for 24 h. Inflammatory cytokines and mediators were quantified using ELISA and reverse transcription-quantitative PCR. The results revealed that FFO treatment inhibited the secretion and mRNA expression of the pro-inflammatory cytokines IL-6, IL-1β, TNF-α. In line with this, FFO suppressed the expression and secretion of the inflammatory mediators cyclooxygenase-2 and prostaglandin E2. FFO also reduced apoptotic body formation and DNA damage. Correspondingly, FFO enhanced the immune response by modulating the cell cycle regulators p53, cyclin D2 and cyclin E2. Accordingly, FFO may be developed as a nutraceutical product to prevent inflammation.
Collapse
Affiliation(s)
- Bussarin Tongmee
- Agricultural Interdisciplinary Program, Faculty of Engineer and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
| | - Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kriangsak Mengamphan
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, Chiang Mai 50290, Thailand
| | - Doungporn Amornlerdpisan
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, Chiang Mai 50290, Thailand
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| |
Collapse
|
9
|
Formyl Peptide Receptor 1 Signaling in Acute Inflammation and Neural Differentiation Induced by Traumatic Brain Injury. BIOLOGY 2020; 9:biology9090238. [PMID: 32825368 PMCID: PMC7563302 DOI: 10.3390/biology9090238] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is a shocking disease frequently followed by behavioral disabilities, including risk of cerebral atrophy and dementia. N-formylpeptide receptor 1 (FPR1) is expressed in cells and neurons in the central nervous system. It is involved in inflammatory processes and during the differentiation process in the neural stem cells. We investigate the effect of the absence of Fpr1 gene expression in mice subjected to TBI from the early stage of acute inflammation to neurogenesis and systematic behavioral testing four weeks after injury. C57BL/6 animals and Fpr1 KO mice were subjected to TBI and sacrificed 24 h or four weeks after injury. Twenty-four hours after injury, TBI Fpr1 KO mice showed reduced histological impairment, tissue damage and acute inflammation (MAPK activation, NF-κB signaling induction, NRLP3 inflammasome pathway activation and oxidative stress increase). Conversely, four weeks after TBI, the Fpr1 KO mice showed reduced survival of the proliferated cells in the Dentate Gyrus compared to the WT group. Behavioral analysis confirmed this trend. Moreover, TBI Fpr1 KO animals displayed reduced neural differentiation (evaluated by beta-III tubulin expression) and upregulation of astrocyte differentiation (evaluated by GFAP expression). Collectively, our study reports that, immediately after TBI, Fpr1 increased acute inflammation, while after four weeks, Fpr1 promoted neurogenesis.
Collapse
|
10
|
He J, Russell T, Qiu X, Hao F, Kyle M, Chin L, Zhao LR. The contribution of stem cell factor and granulocyte colony-stimulating factor in reducing neurodegeneration and promoting neurostructure network reorganization after traumatic brain injury. Brain Res 2020; 1746:147000. [PMID: 32579949 DOI: 10.1016/j.brainres.2020.147000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in young adults worldwide. TBI-induced long-term cognitive deficits represent a growing clinical problem. Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are involved in neuroprotection and neuronal plasticity. However, the knowledge concerning reparative efficacy of SCF + G-CSF treatment in post-acute TBI recovery remains incomplete. This study aims to determine the efficacy of SCF + G-CSF on post-acute TBI recovery in young adult mice. The controlled cortical impact model of TBI was used for inducing a severe damage in the motor cortex of the right hemisphere in 8-week-old male C57BL mice. SCF + G-CSF treatment was initiated 3 weeks after induction of TBI. Severe TBI led to persistent motor functional deficits (Rota-Rod test) and impaired spatial learning function (water maze test). SCF + G-CSF treatment significantly improved the severe TBI-impaired spatial learning function 6 weeks after treatment. TBI also caused significant increases of Fluoro-Jade C positive degenerating neurons in bilateral frontal cortex, striatum and hippocampus, and significant reductions in MAP2+ apical dendrites and overgrowth of SMI312+ axons in peri-TBI cavity frontal cortex and in the ipsilateral hippocampal CA1 at 24 weeks post-TBI. SCF + G-CSF treatment significantly reduced TBI-induced neurodegeneration in the contralateral frontal cortex and hippocampal CA1, increased MAP2+ apical dendrites in the peri-TBI cavity frontal cortex, and prevented TBI-induced axonal overgrowth in both the peri-TBI cavity frontal cortex and ipsilateral hippocampal CA1.These findings reveal a novel pathology of axonal overgrowth after severe TBI and demonstrate a therapeutic potential of SCF + G-CSF in ameliorating severe TBI-induced long-term neuronal pathology, neurostructural network malformation, and impairments in spatial learning.
Collapse
Affiliation(s)
- Junchi He
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Thomas Russell
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Fei Hao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Lawrence Chin
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
11
|
Chang CY, Liang MZ, Wu CC, Huang PY, Chen HI, Yet SF, Tsai JW, Kao CF, Chen L. WNT3A Promotes Neuronal Regeneration upon Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21041463. [PMID: 32098078 PMCID: PMC7073099 DOI: 10.3390/ijms21041463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023] Open
Abstract
The treatment of traumatic brain injury (TBI) remains a challenge due to limited knowledge about the mechanisms underlying neuronal regeneration. This current study compared the expression of WNT genes during regeneration of injured cortical neurons. Recombinant WNT3A showed positive effect in promoting neuronal regeneration via in vitro, ex vivo, and in vivo TBI models. Intranasal administration of WNT3A protein to TBI mice increased the number of NeuN+ neurons without affecting GFAP+ glial cells, compared to control mice, as well as retained motor function based on functional behavior analysis. Our findings demonstrated that WNT3A, 8A, 9B, and 10A promote regeneration of injured cortical neurons. Among these WNTs, WNT3A showed the most promising regenerative potential in vivo, ex vivo, and in vitro.
Collapse
Affiliation(s)
- Chu-Yuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
| | - Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
| | - Ching-Chih Wu
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Pei-Yuan Huang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
| | - Hong-I Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11574, Taiwan
- Correspondence: (C.-F.K.); (L.C.); Tel.: +886-3-574-2775 (L.C.); Fax: +886-3-571-5934 (L.C.)
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (M.-Z.L.); (P.-Y.H.); (H.-I.C.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (C.-F.K.); (L.C.); Tel.: +886-3-574-2775 (L.C.); Fax: +886-3-571-5934 (L.C.)
| |
Collapse
|
12
|
Teng S, Palmieri A, Maita I, Zheng C, Das G, Park J, Zhou R, Alder J, Thakker-Varia S. Inhibition of EphA/Ephrin-A signaling using genetic and pharmacologic approaches improves recovery following traumatic brain injury in mice. Brain Inj 2019; 33:1385-1401. [DOI: 10.1080/02699052.2019.1641622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Isabella Maita
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Cynthia Zheng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gitanjali Das
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Juyeon Park
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
13
|
Abstract
One of the important features of polymethine (cyanine) dyes is isomerization about one of C–C bonds of the polymethine chain. In this review, spectral properties of the isomers, photoisomer-ization and thermal back isomerization of carbocyanine dyes, mostly meso-substituted carbocy-anine dyes, are considered. meso-Alkyl-substituted thiacarbocyanine dyes are present in polar solvents mainly as cis isomers and, hence, exhibit no photoisomerization, whereas in nonpolar solvents, in which the dyes are in the trans form, photoisomerization takes place. In contrast, the meso-substituted dyes 3,3′-dimethyl-9-phenylthiacarbocyanine and 3,3′-diethyl-9-(2-hydroxy-4-methoxyphenyl)thiacarbocyanine occur as trans isomers and exhibit photoisomerization in both polar and nonpolar solvents. The behavior of these dyes may be ex-plained by the fact that the phenyl ring of the substituent in their molecules can be twisted at some angle, removing the substituent from the plane of the molecule and reducing its steric ef-fect on the conformation of the trans isomer. In some cases, photoisomerization of cis isomers of meso-substituted carbocyanine dyes is also observed (for some meso-alkyl-substituted dyes com-plexed with DNA and chondroitin-4-sulfate; for 3,3′-diethyl-9-methoxythiacarbocyanine in moderate polarity solvents). The cycle photoisomerization–thermal back isomerization of cya-nine dyes can be used in various systems of information storage and deserves further investiga-tion using modern research methods.
Collapse
|
14
|
Molecular Pharmacology and Pathology of Strokes. Int J Mol Sci 2018; 19:ijms19124103. [PMID: 30567346 PMCID: PMC6321196 DOI: 10.3390/ijms19124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022] Open
Abstract
Stroke, an important neurological disease, is becoming an increasingly non-communicable ailment and is the second leading cause of death after coronary heart disease in developed countries [...].
Collapse
|
15
|
Abstract
One of the important features of polymethine (cyanine) dyes is isomerization around one of C–C bonds of the polymethine chain. In this review, spectral properties of the isomers, photoisomerization and thermal back isomerization of carbocyanine dyes, mostly meso-substituted carbocyanine dyes, are considered. meso-Alkyl-substituted thiacarbocyanine dyes are present in polar solvents mainly as cis isomers and, hence, exhibit no photoisomerization, whereas in nonpolar solvents, in which the dyes are in the trans form, photoisomerization takes place. In contrast, the meso-substituted dyes 3,3′-dimethyl-9-phenylthiacarbocyanine and 3,3′-diethyl-9-(2-hydroxy-4-methoxyphenyl)thiacarbocyanine occur as trans isomers and exhibit photoisomerization in both polar and nonpolar solvents. The behavior of these dyes may be explained by the fact that the phenyl ring of the substituent in their molecules can be twisted at some angle, removing the substituent from the plane of the molecule and reducing its steric effect on the conformation of the trans isomer. In some cases, photoisomerization of cis isomers of meso-substituted carbocyanine dyes is also observed (for some meso-alkyl-substituted dyes complexed with DNA and chondroitin-4-sulfate; for 3,3′-diethyl-9-methoxythiacarbocyanine in moderate polarity solvents). The cycle photoisomerization–thermal back isomerization of cyanine dyes can be used in various systems of information storage and deserves further investigation using modern research methods.
Collapse
|