1
|
Rozkiewicz D, Hermanowicz JM, Kwiatkowska I, Krupa A, Pawlak D. Bruton's Tyrosine Kinase Inhibitors (BTKIs): Review of Preclinical Studies and Evaluation of Clinical Trials. Molecules 2023; 28:2400. [PMID: 36903645 PMCID: PMC10005125 DOI: 10.3390/molecules28052400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
In the last few decades, there has been a growing interest in Bruton's tyrosine kinase (BTK) and the compounds that target it. BTK is a downstream mediator of the B-cell receptor (BCR) signaling pathway and affects B-cell proliferation and differentiation. Evidence demonstrating the expression of BTK on the majority of hematological cells has led to the hypothesis that BTK inhibitors (BTKIs) such as ibrutinib can be an effective treatment for leukemias and lymphomas. However, a growing body of experimental and clinical data has demonstrated the significance of BTK, not just in B-cell malignancies, but also in solid tumors, such as breast, ovarian, colorectal, and prostate cancers. In addition, enhanced BTK activity is correlated with autoimmune disease. This gave rise to the hypothesis that BTK inhibitors can be beneficial in the therapy of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), Sjögren's syndrome (SS), allergies, and asthma. In this review article, we summarize the most recent findings regarding this kinase as well as the most advanced BTK inhibitors that have been developed to date and their clinical applications mainly in cancer and chronic inflammatory disease patients.
Collapse
Affiliation(s)
- Dariusz Rozkiewicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Anna Krupa
- Department of Internal Medicine and Metabolic, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| |
Collapse
|
2
|
Hermanowicz JM, Szymanowska A, Sieklucka B, Czarnomysy R, Pawlak K, Bielawska A, Bielawski K, Kalafut J, Przybyszewska A, Surazynski A, Rivero-Muller A, Mojzych M, Pawlak D. Exploration of novel heterofused 1,2,4-triazine derivative in colorectal cancer. J Enzyme Inhib Med Chem 2021; 36:535-548. [PMID: 33522320 PMCID: PMC7850456 DOI: 10.1080/14756366.2021.1879803] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in men and in women. The impact of the new pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide (MM-129) was evaluated against human colon cancer in vitro and in zebrafish xenografts. Our results show that this new synthesised compound effectively inhibits cell survival in BTK-dependent mechanism. Its effectiveness is much higher at a relatively low concentration as compared with the standard chemotherapy used for CRC, i.e. 5-fluorouracil (5-FU). Flow cytometry analysis after annexin V-FITC and propidium iodide staining revealed that apoptosis was the main response of CRC cells to MM-129 treatment. We also found that MM-129 effectively inhibits tumour development in zebrafish embryo xenograft model, where it showed a markedly synergistic anticancer effect when used in combination with 5-FU. The above results suggest that this novel heterofused 1,2,4-triazine derivative may be a promising candidate for further evaluation as chemotherapeutic agent against CRC.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.,Department of Clinical Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Alicja Przybyszewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Adolfo Rivero-Muller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Rozkiewicz D, Hermanowicz JM, Tankiewicz-Kwedlo A, Sieklucka B, Pawlak K, Czarnomysy R, Bielawski K, Surazynski A, Kalafut J, Przybyszewska A, Koda M, Jakubowska K, Rivero-Muller A, Pawlak D. The intensification of anticancer activity of LFM-A13 by erythropoietin as a possible option for inhibition of breast cancer. J Enzyme Inhib Med Chem 2021; 35:1697-1711. [PMID: 32912025 PMCID: PMC7717683 DOI: 10.1080/14756366.2020.1818738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recombinant human erythropoietin (Epo) is an effective and convenient treatment for cancer-related anaemia. In our study for the first time, we evaluated the effect of simultaneous use of Epo and Bruton’s tyrosine kinase (BTK) inhibitor LFM-A13 on the viability and tumour development of breast cancer cells. The results demonstrated that Epo significantly intensifies the anticancer activity of LFM-A13 in MCF-7 and MDA-MB-231. The featured therapeutic scheme efficiently blocked the tumour development in zebrafish experimental cancer model. Epo and LFM-A13 administered together resulted in effective cell killing, accompanied by attenuation of the BTK signalling pathways, loss of mitochondrial membrane potential (MMP), accumulation of apoptotic breast cancer cells with externalised PS, a slight increase in phase G0/G1 and a reduction in cyclin D1 expression. Simultaneous use of Epo with LFM-A13 inhibited early stages of tumour progression. This therapeutic scheme may be rationale for further possible research.
Collapse
Affiliation(s)
- Dariusz Rozkiewicz
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.,Department of Clinical Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Anna Tankiewicz-Kwedlo
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Alicja Przybyszewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Mariusz Koda
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | | | - Adolfo Rivero-Muller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Uckun FM, Venkatachalam T. Targeting Solid Tumors With BTK Inhibitors. Front Cell Dev Biol 2021; 9:650414. [PMID: 33937249 PMCID: PMC8079762 DOI: 10.3389/fcell.2021.650414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/08/2021] [Indexed: 01/05/2023] Open
Abstract
The repurposing of FDA-approved Bruton's tyrosine kinase (BTK) inhibitors as therapeutic agents for solid tumors may offer renewed hope for chemotherapy-resistant cancer patients. Here we review the emerging evidence regarding the clinical potential of BTK inhibitors in solid tumor therapy. The use of BTK inhibitors may through lead optimization and translational research lead to the development of new and effective combination regimens for metastatic and/or therapy-refractory solid tumor patients.
Collapse
Affiliation(s)
- Fatih M Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, LLC, St. Paul, MN, United States
| | | |
Collapse
|