1
|
Yu HL, Liang XL, Ge ZY, Zhang Z, Ruan Y, Tang H, Zhang QY. Metabolic Flux Analysis of Xanthomonas oryzae Treated with Bismerthiazol Revealed Glutathione Oxidoreductase in Glutathione Metabolism Serves as an Effective Target. Int J Mol Sci 2024; 25:12236. [PMID: 39596301 PMCID: PMC11594844 DOI: 10.3390/ijms252212236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pathovar oryzae (Xoo) is a serious global rice disease. Due to increasing bactericide resistance, developing new inhibitors is urgent. Drug repositioning offers a potential strategy to address this issue. In this study, we integrated transcriptional data into a genome-scale metabolic model (GSMM) to screen novel anti-Xoo targets. Two RNA-seq datasets (before and after bismerthiazol treatment) were used to constrain the GSMM and simulate metabolic processes. Metabolic fluxes were calculated using parsimonious flux balance analysis (pFBA) identifying reactions with significant changes for target screening. Glutathione oxidoreductase (GSR) was selected as a potential anti-Xoo target and validated through antibacterial experiments. Virtual screening based on the target identified DB12411 as a lead compound with the potential for new antibacterial agents. This approach demonstrates that integrating metabolic networks and transcriptional data can aid in both understanding antibacterial mechanisms and discovering novel drug targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing-Ye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Lami R, Urios L, Molmeret M, Grimaud R. Quorum sensing in biofilms: a key mechanism to target in ecotoxicological studies. Crit Rev Microbiol 2023; 49:786-804. [PMID: 36334083 DOI: 10.1080/1040841x.2022.2142089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Our environment is heavily contaminated by anthropogenic compounds, and this issue constitutes a significant threat to all life forms, including biofilm-forming microorganisms. Cell-cell interactions shape microbial community structures and functions, and pollutants that affect intercellular communications impact biofilm functions and ecological roles. There is a growing interest in environmental science fields for evaluating how anthropogenic pollutants impact cell-cell interactions. In this review, we synthesize existing literature that evaluates the impacts of quorum sensing (QS), which is a widespread density-dependent communication system occurring within many bacterial groups forming biofilms. First, we examine the perturbating effects of environmental contaminants on QS circuits; and our findings reveal that QS is an essential yet underexplored mechanism affected by pollutants. Second, our work highlights that QS is an unsuspected and key resistance mechanism that assists bacteria in dealing with environmental contamination (caused by metals or organic pollutants) and that favors bacterial growth in unfavourable environments. We emphasize the value of considering QS a critical mechanism for monitoring microbial responses in ecotoxicology. Ultimately, we determine that QS circuits constitute promising targets for innovative biotechnological approaches with major perspectives for applications in the field of environmental science.
Collapse
Affiliation(s)
- Raphaël Lami
- Sorbonne Université, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
- Centre National de la Recherche Scientifique, USR 3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Maëlle Molmeret
- Université de Toulon, Laboratoire MAPIEM, EA4323, Avenue de l'université, BP 20132, La Garde Cedex, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
3
|
Wang W, Rui H, Yu L, Jin N, Liu W, Guo C, Cheng Y, Lou Y. Four-Chlorophenoxyacetic Acid Treatment Induces the Defense Resistance of Rice to White-Backed Planthopper Sogatella furcifera. Int J Mol Sci 2023; 24:15722. [PMID: 37958711 PMCID: PMC10648403 DOI: 10.3390/ijms242115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemical elicitors can increase plant defense against herbivorous insects and pathogens. The use of synthetic chemical elicitors is likely to be an alternative to traditional pesticides for crop pest control. However, only a few synthetic chemicals are reported to protect plants by regulating signaling pathways, increasing the levels of defense metabolites and interfering with insect feeding. Here, we found that the exogenous application of a phenoxycarboxylic compound, 4-chlorophenoxyacetic acid (4-CPA), can induce chemical defenses to protect rice plants from white-backed planthoppers (WBPH, Sogatella furcifera). Four-CPA was rapidly taken up by plant roots and degraded to 4-chlorophenol (4-CP). Four-CPA treatment modulated the activity of peroxidase (POD) and directly induced the deposition of lignin-like polymers using hydrogen peroxide (H2O2) as the electron acceptor. The polymers, which are thought to prevent the planthopper's stylet from reaching the phloem, were broken down by WBPH nymphs. Meanwhile, 4-CPA increased the levels of flavonoids and phenolamines (PAs). The increased flavonoids and PAs, together with the degradation product of the polymers, avoided nymphal feeding and prolonged the nymphal period for 1 day. These results indicate that 4-CPA has the potential to be used as a chemical elicitor to protect rice from planthoppers. Moreover, these findings also open a pathway for molecule structure design of phenoxycarboxylic compounds as chemical elicitors.
Collapse
Affiliation(s)
- Wanwan Wang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Haiyun Rui
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Lei Yu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Nuo Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Wan Liu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Chen Guo
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Yumeng Cheng
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China; (H.R.); (L.Y.); (W.L.); (C.G.); (Y.C.)
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
4
|
Huang Y, Li H, Zhao G, Bai Q, Huang M, Luo D, Li X. Ethylicin Inhibition of Xanthomonas oryzae pv. oryzicola In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1405-1416. [PMID: 36644843 DOI: 10.1021/acs.jafc.2c07327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Infestation of rice with the bacterium Xanthomonas oryzae pv. oryzicola (Xoc) causes the serious disease bacterial leaf streak (BLS). We studied the effect of ethylicin, a broad-spectrum bactericide, on Xoc both in vivo and in vitro. Ethylicin increases the defensive enzyme activities and defensive genes expression of rice. Ethylicin also significantly inhibited Xoc activity in vitro compared with other commercial bactericides. The half-maximal effective concentration (EC50) of ethylicin was 2.12 μg/mL. It has been shown that ethylicin can inhibit Xoc quorum sensing through the production of extracellular polysaccharides and enzymes, which disrupt the Xoc cell membrane. We used proteomic analysis to identify two oxidative phosphorylation pathway proteins (ACU12_RS13405 and ACU12_RS13355) which affected the virulence of Xoc and validated them using quantitative real-time polymerase chain reaction (qRT-PCR). The results indicate that ethylicin can increase the defense responses of rice and control Xoc proliferation.
Collapse
Affiliation(s)
- Yajiao Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Hongde Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Guili Zhao
- College of Chemical Engineering, Guizhou Institute of Technology, Guiyang550003, China
| | - Qian Bai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Min Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Dan Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| |
Collapse
|
5
|
Shen W, Zhang X, Liu J, Tao K, Li C, Xiao S, Zhang W, Li J. Plant elicitor peptide signalling confers rice resistance to piercing-sucking insect herbivores and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:991-1005. [PMID: 35068048 PMCID: PMC9055822 DOI: 10.1111/pbi.13781] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Rice is a staple food crop worldwide, and its production is severely threatened by phloem-feeding insect herbivores, particularly the brown planthopper (BPH, Nilaparvata lugens), and destructive pathogens. Despite the identification of many BPH resistance genes, the molecular basis of rice resistance to BPH remains largely unclear. Here, we report that the plant elicitor peptide (Pep) signalling confers rice resistance to BPH. Both rice PEP RECEPTORs (PEPRs) and PRECURSORs of PEP (PROPEPs), particularly OsPROPEP3, were transcriptionally induced in leaf sheaths upon BPH infestation. Knockout of OsPEPRs impaired rice resistance to BPH, whereas exogenous application of OsPep3 improved the resistance. Hormone measurement and co-profiling of transcriptomics and metabolomics in OsPep3-treated rice leaf sheaths suggested potential contributions of jasmonic acid biosynthesis, lipid metabolism and phenylpropanoid metabolism to OsPep3-induced rice immunity. Moreover, OsPep3 elicitation also strengthened rice resistance to the fungal pathogen Magnaporthe oryzae and bacterial pathogen Xanthamonas oryzae pv. oryzae and provoked immune responses in wheat. Collectively, this work demonstrates a previously unappreciated importance of the Pep signalling in plants for combating piercing-sucking insect herbivores and promises exogenous application of OsPep3 as an eco-friendly immune stimulator in agriculture for crop protection against a broad spectrum of insect pests and pathogens.
Collapse
Affiliation(s)
- Wenzhong Shen
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xue Zhang
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jiuer Liu
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kehan Tao
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Chong Li
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Shi Xiao
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenqing Zhang
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jian‐Feng Li
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
6
|
Zhang X, Ran W, Li X, Zhang J, Ye M, Lin S, Liu M, Sun X. Exogenous Application of Gallic Acid Induces the Direct Defense of Tea Plant Against Ectropis obliqua Caterpillars. FRONTIERS IN PLANT SCIENCE 2022; 13:833489. [PMID: 35211143 PMCID: PMC8861190 DOI: 10.3389/fpls.2022.833489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 06/02/2023]
Abstract
Gallic acid (GA), an important polyphenolic compound in the plant, is a well-known antioxidant, antihyperglycemic, and anti-lipid peroxidative agent. Recently, GA treatment exhibited ameliorative effects on plants in response to some abiotic stresses. However, the elicitation effect of GA on plant defense against herbivorous insects has not yet been reported. In this study, we found that the exogenous application of GA induced the direct defense of tea plant (Camellia sinensis) against tea geometrid (Ectropis obliqua) larvae, through activating jasmonic acid (JA) signaling and phenylpropanoid pathways. These signaling cascades resulted in the efficient induction of several defensive compounds. Among them, astragalin, naringenin, and epigallocatechin-3-gallate were the three of the most active anti-feeding compounds. However, the exogenous GA treatment did not affect the preference of E. obliqua female moths and larval parasitoid Apanteles sp. Our study suggests that GA may serve as an elicitor that triggers a direct defense response against tea geometrid larvae in tea plants. This study will help to deepen the understanding of the interaction between plants and phytophagous insects and also provide theoretical and technical guidance for the development of plant defense elicitors.
Collapse
Affiliation(s)
- Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Wei Ran
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Meng Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Songbo Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Miaomiao Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
7
|
Wang X, Duan WG, Lin GS, Chen M, Lei FH. Synthesis, antifungal activity and 3D-QSAR study of novel nopol-based 1,3,4-thiadiazole–thioether compounds. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04510-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
El-Emam AA, Saveeth Kumar E, Janani K, Al-Wahaibi LH, Blacque O, El-Awady MI, Al-Shaalan NH, Percino MJ, Thamotharan S. Quantitative assessment of the nature of noncovalent interactions in N-substituted-5-(adamantan-1-yl)-1,3,4-thiadiazole-2-amines: insights from crystallographic and QTAIM analysis. RSC Adv 2020; 10:9840-9853. [PMID: 35498588 PMCID: PMC9050220 DOI: 10.1039/d0ra00733a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Three adamantane-1,3,4-thiadiazole hybrid derivatives namely; N-ethyl-5-(adamantan-1-yl)-1,3,4-thiadiazole-2-amine I, N-(4-fluorophenyl)-5-(adamantan-1-yl)-1,3,4-thiadiazole-2-amine II and (4-bromophenyl)-5-(adamantan-1-yl)-N-1,3,4-thiadiazole-2-amine III, have been synthesized and crystal structures have been determined at low temperature. The structures revealed that the orientation of the amino group is different in non-halogenated structures. Intra- and intermolecular interactions were characterized on the basis of the quantum theory of atoms-in-molecules (QTAIM) approach. Intermolecular interaction energies for different molecular pairs have been obtained using the PIXEL method. Hirshfeld surface analysis and 2D-fingerprint plots revealed that the relative contributions of different non-covalent interactions are comparable in compounds with halogen (Br and F) substitutions. Crystal structures of II and III show isostructural behaviour with 1D supramolecular constructs. In all three structures, the N-H⋯N hydrogen bond was found to be stronger among other noncovalent interactions. The H-H bonding showed a closed shell in nature and played significant roles in the stabilization of these crystal structures.
Collapse
Affiliation(s)
- Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Elangovan Saveeth Kumar
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 India
| | - Krishnakumar Janani
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 India
| | - Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Olivier Blacque
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Mohamed I El-Awady
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Nora H Al-Shaalan
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - M Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo Independencia O2 Sur 50, San Pedro Zacachimalpa Puebla-C.P. 72960 Mexico
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University Thanjavur-613401 India
| |
Collapse
|
9
|
Ling Y, Ang L, Weilin Z. Current understanding of the molecular players involved in resistance to rice planthoppers. PEST MANAGEMENT SCIENCE 2019; 75:2566-2574. [PMID: 31095858 DOI: 10.1002/ps.5487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Rice planthoppers are the most widespread and destructive pest of rice. Planthopper control depends greatly on the understanding of molecular players involved in resistance to planthoppers. This paper summarizes the recent progress in the understanding of some molecular players involved in resistance to planthoppers and the mechanisms involved. Recent researches showed that host-plant resistance is the most promising sustainable approach for controlling planthoppers. Planthopper-resistant varieties with a host-plant resistance gene have been released for rice products. Integrated planthopper management is a proposed strategy to prolong the durability of host-plant resistance. Bacillus spp. and their gene products or insect pathogenic fungi have great potential for application in the biological control of planthoppers. Enhancement of the activity of the natural enemies of planthoppers would be more cost-effective and environmentally friendly. Various molecular processes regulate rice-planthopper interactions. Rice encounters planthopper attacks via transcription factors, secondary metabolites, and signaling networks in which phytohormones have central roles. Maintenance of cell wall integrity and lignification act as physical barriers. Indirect defenses of rice are regulated via chemical elicitors, honeydew-associated elicitor, amendment with silicon and biochar, and salivary protein of BPH as elicitor or effector. Further research directions on planthopper control and rice defense against planthoppers are also put forward. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Ling
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
- Department of Environmental Engineering, Quzhou University, Quzhou, P.R. China
| | - Li Ang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Zhang Weilin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
10
|
Zhou S, Chen M, Zhang Y, Gao Q, Noman A, Wang Q, Li H, Chen L, Zhou P, Lu J, Lou Y. OsMKK3, a Stress-Responsive Protein Kinase, Positively Regulates Rice Resistance to Nilaparvata lugens via Phytohormone Dynamics. Int J Mol Sci 2019; 20:E3023. [PMID: 31226870 PMCID: PMC6628034 DOI: 10.3390/ijms20123023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Plants undergo several but very precise molecular, physiological, and biochemical modulations in response to biotic stresses. Mitogen-activated protein kinase (MAPK) cascades orchestrate multiple cellular processes including plant growth and development as well as plant responses against abiotic and biotic stresses. However, the role of MAPK kinases (MAPKKs/MKKs/MEKs) in the regulation of plant resistance to herbivores has not been extensively investigated. Here, we cloned a rice MKK gene, OsMKK3, and investigated its function. It was observed that mechanical wounding, infestation of brown planthopper (BPH) Nilaparvata lugens, and treatment with methyl jasmonate (MeJA) or salicylic acid (SA) could induce the expression of OsMKK3. The over-expression of OsMKK3 (oe-MKK3) increased levels of jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-Ile), and abscisic acid (ABA), and decreased SA levels in rice after BPH attack. Additionally, the preference for feeding and oviposition, the hatching rate of BPH eggs, and BPH nymph survival rate were significantly compromised due to over-expression of OsMKK3. Besides, oe-MKK3 also augmented chlorophyll content but impaired plant growth. We confirm that MKK3 plays a pivotal role in the signaling pathway. It is proposed that OsMKK3 mediated positive regulation of rice resistance to BPH by means of herbivory-induced phytohormone dynamics.
Collapse
Affiliation(s)
- Shuxing Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Mengting Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuebai Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qing Gao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ali Noman
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Botany, Government college university, Faisalabad 38040, Pakistan.
| | - Qi Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Heng Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lin Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Pengyong Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jing Lu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|