1
|
Kang S, Vu TH, Heo J, Kim C, Lillehoj HS, Hong YH. Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus. J Vet Sci 2023; 24:e73. [PMID: 38031652 PMCID: PMC10556288 DOI: 10.4142/jvs.23141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. OBJECTIVES To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. METHODS miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR-27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a-3p) from all comparisons and their immune-related target genes. RESULTS A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. CONCLUSIONS Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.
Collapse
Affiliation(s)
- Suyeon Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jubi Heo
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Chaeeun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
2
|
Park JW, Ndimukaga M, So J, Kim S, Truong AD, Tran HTT, Dang HV, Song KD. Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:183-196. [PMID: 37093904 PMCID: PMC10119460 DOI: 10.5187/jast.2022.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 01/19/2023]
Abstract
Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Marc Ndimukaga
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Jaerung So
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Sujung Kim
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Anh Duc Truong
- Vietnam National Institute of Veterinary
Research, Ha Noi 100000, Viet Nam
| | - Ha Thi Thanh Tran
- Vietnam National Institute of Veterinary
Research, Ha Noi 100000, Viet Nam
| | - Hoang Vu Dang
- Vietnam National Institute of Veterinary
Research, Ha Noi 100000, Viet Nam
| | - Ki-Duk Song
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
- The Animal Molecular Genetics and Breeding
Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
3
|
Qiu X, Jia Y, Zhang Z, Fo X, Wang W. Characterization of Chicken-Derived Genotype VII Newcastle Disease Virus Isolates from Northwest China. J Poult Sci 2023; 60:2023010. [PMID: 37124632 PMCID: PMC10132845 DOI: 10.2141/jpsa.2023010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Newcastle disease virus (NDV) threatens global poultry production, with genotype VII the most prevalent strain in China. However, little information is available regarding viral multiplication and pathogenicity based inoculation route. The objectives of this study were to sequence NDV VII isolates and to analyze their biological characteristics in detail. A total of 86 oral and cloacal swabs were collected from Shaanxi and Gansu provinces in northwest China. Identification of genotype VII NDV based on the M gene was performed by qPCR. Viral multiplication and pathogenicity were assessed as a function of route of infection. We observed increased morbidity and mortality using intravenous injection, whereas intranasal, intraocular, and cloacal infections resulted in slower progression and milder clinical disease, with viral proliferation obvious in different tissues. These results provide an important basis for the clinical control and prevention of NDV epidemics in poultry.
Collapse
Affiliation(s)
- Xinxin Qiu
- College of Veterinary Medicine, Gansu Agricultural
University, Lanzhou, Gansu 730070, China
- Department of animal engineering/Shaanxi engineering research
center of the prevention and control for animal disease, Yangling Vocational &
Technical College, Yangling, Shaanxi Province 712100, China
| | - Yanqing Jia
- Department of animal engineering/Shaanxi engineering research
center of the prevention and control for animal disease, Yangling Vocational &
Technical College, Yangling, Shaanxi Province 712100, China
| | - Zhencang Zhang
- Department of animal engineering/Shaanxi engineering research
center of the prevention and control for animal disease, Yangling Vocational &
Technical College, Yangling, Shaanxi Province 712100, China
| | - Xianglin Fo
- Department of animal engineering/Shaanxi engineering research
center of the prevention and control for animal disease, Yangling Vocational &
Technical College, Yangling, Shaanxi Province 712100, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural
University, Lanzhou, Gansu 730070, China
| |
Collapse
|
4
|
Wen J, Wu Y, Tian Y, Han J, Wang Q, Liu Y, Man C. Circulating miR-155, a potential regulator of immune responses to different vaccines in chicken. Res Vet Sci 2022; 152:670-677. [DOI: 10.1016/j.rvsc.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
|
5
|
Tian Y, Liu Y, Wang Q, Wen J, Wu Y, Han J, Man C. Stress-Induced Immunosuppression Affects Immune Response to Newcastle Disease Virus Vaccine via Circulating miRNAs. Animals (Basel) 2022; 12:ani12182376. [PMID: 36139236 PMCID: PMC9495071 DOI: 10.3390/ani12182376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Circulating miRNAs play important roles in immune response and stress-induced immunosuppression, but the function and mechanism of stress-induced immunosuppression affecting the NDV vaccine immune response remain unknown. In our study, key timepoints, functions, mechanisms, and potential biomarkers of circulating miRNAs involved in immune response and immunosuppression were discovered, providing a theoretical basis for studying the roles of circulating miRNAs in immune regulation. Abstract Studies have shown that circulating microRNAs (miRNAs) are important players in the immune response and stress-induced immunosuppression. However, the function and mechanism of stress-induced immunosuppression affecting the immune response to the Newcastle disease virus (NDV) vaccine remain largely unknown. This study analyzed the changes of 15 NDV-related circulating miRNAs at different immune stages by qRT-PCR, aiming to explore the key timepoints, potential biomarkers, and mechanisms for the functional regulation of candidate circulating miRNAs under immunosuppressed conditions. The results showed that stress-induced immunosuppression induced differential expressions of the candidate circulating miRNAs, especially at 2 days post immunization (dpi), 14 dpi, and 28 dpi. In addition, stress-induced immunosuppression significantly affected the immune response to NDV vaccine, which was manifested by significant changes in candidate circulating miRNAs at 2 dpi, 5 dpi, and 21 dpi. The featured expressions of candidate circulating miRNAs indicated their potential application as biomarkers in immunity and immunosuppression. Bioinformatics analysis revealed that the candidate circulating miRNAs possibly regulated immune function through key targeted genes, such as Mg2+/Mn2+-dependent 1A (PPM1A) and Nemo-like kinase (NLK), in the MAPK signaling pathway. This study provides a theoretical reference for studying the function and mechanism of circulating miRNAs in immune regulation.
Collapse
|
6
|
Intense Innate Immune Responses and Severe Metabolic Disorders in Chicken Embryonic Visceral Tissues Caused by Infection with Highly Virulent Newcastle Disease Virus Compared to the Avirulent Virus: A Bioinformatics Analysis. Viruses 2022; 14:v14050911. [PMID: 35632651 PMCID: PMC9145607 DOI: 10.3390/v14050911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The highly virulent Newcastle disease virus (NDV) isolates typically result in severe systemic pathological changes and high mortality in Newcastle disease (ND) illness, whereas avirulent or low-virulence NDV strains can cause subclinical disease with no morbidity and even asymptomatic infections in birds. However, understanding the host’s innate immune responses to infection with either a highly virulent strain or an avirulent strain, and how this response may contribute to severe pathological damages and even mortality upon infection with the highly virulent strain, remain limited. Therefore, the differences in epigenetic and pathogenesis mechanisms between the highly virulent and avirulent strains were explored, by transcriptional profiling of chicken embryonic visceral tissues (CEVT), infected with either the highly virulent NA-1 strain or the avirulent vaccine LaSota strain using RNA-seq. In our current paper, severe systemic pathological changes and high mortality were only observed in chicken embryos infected with the highly virulent NA-1 strains, although the propagation of viruses exhibited no differences between NA-1 and LaSota. Furthermore, virulent NA-1 infection caused intense innate immune responses and severe metabolic disorders in chicken EVT at 36 h post-infection (hpi), instead of 24 hpi, based on the bioinformatics analysis results for the differentially expressed genes (DEGs) between NA-1 and LaSota groups. Notably, an acute hyperinflammatory response, characterized by upregulated inflammatory cytokines, an uncontrolled host immune defense with dysregulated innate immune response-related signaling pathways, as well as severe metabolic disorders with the reorganization of host–cell metabolism were involved in the host defense response to the CEVT infected with the highly virulent NA-1 strain compared to the avirulent vaccine LaSota strain. Taken together, these results indicate that not only the host’s uncontrolled immune response itself, but also the metabolic disorders with viruses hijacking host cell metabolism, may contribute to the pathogenesis of the highly virulent strain in ovo.
Collapse
|
7
|
Jia Y, Wang X, Chen X, Qiu X, Wang X, Yang Z. Characterization of chicken IFI35 and its antiviral activity against Newcastle disease virus. J Vet Med Sci 2022; 84:473-483. [PMID: 35135934 PMCID: PMC8983280 DOI: 10.1292/jvms.21-0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Interferon-induced protein-35 kDa (IFI35) was an antiviral protein induced by interferon (IFN)-γ, which plays an important role in the IFN-mediated
antiviral signaling pathway. Here, we cloned and identified IFI35 in the chicken for the first time. Chicken IFI35 (chIFI35) contains an
open reading frame (ORF) of 1,152 bp encoding a protein of 384 amino acids containing two conserved Nmi/IFI35 domain (NID) motifs. Tissue distribution
analysis of chIFI35 in healthy and Newcastle disease (ND) virus-infected chickens indicated a positive correlation between chIFI35 mRNA transcription and ND
viral loads in various tissues. The role of chIFI35 in regulation NDV replication were further assessed by up- or down-regulated chIFI35 expression in DF-1
cells transfected with plasmid harboring chIFI35, pCMV-3HA-chIFI35 or shRNA targeting chIFI35, pshRNA-chIFI35 plasmids.
NDV replications in DF-1 cells were significantly reduced or slightly increased by over- or under-expression of the chIFI35 protein, respectively, indicating the role of
chIFI35 in anti-NDV infection. Moreover, chIFI35 also involved in regulation of viral gene transcription and IFNs expression. The collected data were
meaningful for research of chicken antiviral immunity and shed light on the pleiotropic antiviral effect of chIFI35 during NDV infection.
Collapse
Affiliation(s)
- Yanqing Jia
- Department of Animal Engineering/Engineering Research Center of Animal Disease Prevention and Control, Universities of Shaanxi Province, Yangling Vocational & Technical College
| | - Xiangwei Wang
- College of Veterinary Medicine, Northwest A&F University
| | - Xi Chen
- College of Veterinary Medicine, Northwest A&F University
| | - Xinxin Qiu
- Department of Animal Engineering/Engineering Research Center of Animal Disease Prevention and Control, Universities of Shaanxi Province, Yangling Vocational & Technical College
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University
| |
Collapse
|
8
|
Wu Y, Wen J, Han J, Tian Y, Man C. Stress-induced immunosuppression increases levels of certain circulating miRNAs and affects the immune response to an infectious bursal disease virus vaccine in chickens. Res Vet Sci 2021; 142:141-148. [PMID: 34954461 DOI: 10.1016/j.rvsc.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Stress-induced immunosuppression can affect the immune effect of vaccine. However, the mechanism of stress-induced immunosuppression affecting immune response to infectious bursal disease virus (IBDV) vaccine in chicken is still unclear. In this study, thirteen IBDV related circulating miRNAs were selected to study their expressions, possible functions and mechanisms in dexamethasone (Dex)-induced immunosuppressed chicken vaccinated with IBDV attenuated vaccine. The experiment aimed to explore the relationship between the expressions of IBDV related circulating miRNAs and stress-induced immunosuppression. The quantitative real-time PCR (qRT-PCR) results showed that Dex-induced immunosuppression could induce the differential expressions of the candidate serum circulating miRNAs, especially on the 2nd, 5th, 7th and 28th day after dexamethasone treatment. Dex-induced immunosuppression could affect the immune response to the IBDV vaccine, which was possibly achieved by partially regulating the differential expressions of the IBDV related circulating miRNAs. Bioinformatics analysis showed that the candidate miRNAs could regulate the immune function mainly through targeting genes (such as CREB1 and MAPK1) in TGF-β and MAPK signaling pathways. This study can provide a preliminary reference for further studying the function and mechanism of circulating miRNAs in immune regulation.
Collapse
Affiliation(s)
- Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin, China.
| |
Collapse
|
9
|
Liu H, Tian J, Lu K, Guan Z, Li Y, Cao X, Li X, Chang Z, Wang X, Sa X, Yang Z. Chicken ISG12(2) attenuates Newcastle disease virus and enhances the efficiency of Newcastle disease vaccine via activating immune pathways. Transbound Emerg Dis 2021; 69:2634-2648. [PMID: 34904395 DOI: 10.1111/tbed.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
Low virulence and strong immunogenicity are quite important for Newcastle disease virus (NDV) producing Newcastle disease (ND) living-attenuated vaccine. However, immunogenicity of NDV positively correlates to its virulence. Usually, the velogenic NDV induces stronger immune responses of poultry than the lentogenic strain, but virulent NDV poses a risk for chicken. In this study, we identified the chicken interferon (IFN)-stimulated gene 12-2 (ISG12(2)) not only attenuated NDV, but also increased immunogenicity of ND vaccine strain. Firstly, we found that NDV infection or IFNs stimulation induced expression of chicken ISG12(2) that reinforced expression of IFNs. Overexpression or knockdown proved that chicken ISG12(2) inhibited NDV replication. Then, recombinant NDV LaSota strains (rLaSota/Fmut/ISG12(2) and rLaSota/ISG12(2)), expressing ISG12(2), were rescued. Pathogenicity tests showed that ISG12(2) expression attenuated NDV. RNA-seq or RT-qPCR demonstrated that, comparing to rLaSota/Fmut and rLaSota, rLaSota/Fmut/ISG12(2) and rLaSota/ISG12(2) induced hosts to produce cytokines enriching in innate and adaptive immune pathways in vitro and in vivo. Finally, we showed that rLaSota/ISG12(2) vaccination improved immune condition of chicken to quickly response NDV infection and then enhance protection. These results suggest that chicken ISG12(2) is a potential novel molecular adjuvant to regulate immune responses, which decrease virulence and increase immunogenicity of NDV. The chicken ISG12(2) may contribute to development of high efficient poultry vaccine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianxia Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhao Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangyang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuhong Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqin Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhengwu Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Sa
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
10
|
Ponsuksili S, Hadlich F, Reyer H, Oster M, Trakooljul N, Iqbal MA, Sommerfeld V, Rodehutscord M, Wimmers K. Genetic background and production periods shape the microRNA profiles of the gut in laying hens. Genomics 2021; 113:1790-1801. [PMID: 33848585 DOI: 10.1016/j.ygeno.2021.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022]
Abstract
There is growing evidence of the importance of miRNAs for intestinal functional properties and nutritional uptake. Comparative miRNAs profiles of the jejunal mucosa were established against two genetic backgrounds (Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which are similar in egg production but differ in physiological traits including mineral utilization, along the production periods of laying hens. The target genes of miRNAs higher expressed in LB vs. LSL (miR-126-3p, miR-214, miR-24-3p, miR-726-5p, miR-29b-3p) were enriched for energy pathways at all stages. The target genes of the miRNAs higher in LSL (miR-1788-5p, miR-103-3p, miR-22-5p, miR-221-3p, miR-375) were more enriched for immune and the bone signalling pathways. The most prominent expression differences were between 16 and 24 weeks of age before and after onset of laying. Our results evidence central roles of intestinal miRNAs as regulators of gene expression, influencing intestinal homeostasis and adaptation to environment in different strains and production phases.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Muhammad A Iqbal
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- University of Hohenheim, Institute of Animal Science, 70599 Stuttgart, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; University Rostock, Faculty of Agricultural and Environmental Sciences, 18059 Rostock, Germany
| |
Collapse
|
11
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
12
|
Kemp V, Laconi A, Cocciolo G, Berends AJ, Breit TM, Verheije MH. miRNA repertoire and host immune factor regulation upon avian coronavirus infection in eggs. Arch Virol 2020; 165:835-843. [PMID: 32025807 PMCID: PMC7086581 DOI: 10.1007/s00705-020-04527-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
Avian infectious bronchitis virus (IBV) is a coronavirus with great economic impact on the poultry industry, causing an acute and highly contagious disease in chickens that primarily affects the respiratory and reproductive systems. The cellular regulation of IBV pathogenesis and the host immune responses involved remain to be fully elucidated. MicroRNAs (miRNAs) have emerged as a class of crucial regulators of numerous cellular processes, including responses to viral infections. Here, we employed a high-throughput sequencing approach to analyze the miRNA composition of the spleen and the lungs of chicken embryos upon IBV infection. Compared to healthy chicken embryos, 13 and six miRNAs were upregulated in the spleen and the lungs, respectively, all predicted to influence viral transcription, cytokine production, and lymphocyte functioning. Subsequent downregulation of NFATC3, NFAT5, SPPL3, and TGFB2 genes in particular was observed only in the spleen, demonstrating the biological functionality of the miRNAs in this lymphoid organ. This is the first study that describes the modulation of miRNAs and the related host immune factors by IBV in chicken embryos. Our data provide novel insight into complex virus-host interactions and specifically highlight components that could affect the host's immune response to IBV infection.
Collapse
Affiliation(s)
- Vera Kemp
- Faculty of Veterinary Medicine, Department Biomolecular Health Sciences, Division Pathology, Utrecht University, Utrecht, The Netherlands
| | - Andrea Laconi
- Faculty of Veterinary Medicine, Department Biomolecular Health Sciences, Division Pathology, Utrecht University, Utrecht, The Netherlands.,Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Giulio Cocciolo
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Alinda J Berends
- Faculty of Veterinary Medicine, Department Biomolecular Health Sciences, Division Pathology, Utrecht University, Utrecht, The Netherlands
| | - Timo M Breit
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - M Hélène Verheije
- Faculty of Veterinary Medicine, Department Biomolecular Health Sciences, Division Pathology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Wang X, Jia Y, Ren J, Liu H, Xiao S, Wang X, Yang Z. MicroRNA gga-miR-455-5p suppresses Newcastle disease virus replication via targeting cellular suppressors of cytokine signaling 3. Vet Microbiol 2019; 239:108460. [PMID: 31767079 DOI: 10.1016/j.vetmic.2019.108460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 11/26/2022]
Abstract
Newcastle disease (ND) is an acute and contagious avian disease caused by Newcastle disease virus (NDV). MicroRNAs (miRNAs) play a significant role in host-pathogen interactions and the innate immune response. However, the role of miRNAs in the host response to NDV infection is not clearly understood. In this study, we showed that expression of the cellular miRNA gga-miR-455-5p was downregulated in vivo and in vitro in response to NDV infection. Next, we found that the transfection of chicken embryonic fibroblasts (CEFs) with gga-miR-455-5p suppressed NDV replication, while the blockade of endogenous gga-miR-455-5p expression with inhibitors enhanced NDV replication. In addition, gga-miR-455-5p enhanced the expression of type I interferon and the interferon-inducible genes (ISGs) OASL and Mx1 by targeting SOCS3, a negative regulator of type I IFN signaling. Altogether, these findings highlight the crucial role of gga-miR-455-5p in host defense against NDV by targeting the SOCS3 gene to inhibit NDV replication.
Collapse
Affiliation(s)
- Xiangwei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanqing Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, 712100, China
| | - Juan Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
14
|
Wang X, Jia Y, Ren J, Huo N, Liu H, Xiao S, Wang X, Yang Z. Newcastle Disease Virus Nonstructural V Protein Upregulates SOCS3 Expression to Facilitate Viral Replication Depending on the MEK/ERK Pathway. Front Cell Infect Microbiol 2019; 9:317. [PMID: 31552199 PMCID: PMC6748215 DOI: 10.3389/fcimb.2019.00317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022] Open
Abstract
Newcastle disease virus (NDV) causes serious economic losses to the poultry industry. In our previous study, we found that NDV induced a strong innate immune response in the chicken embryo and bursa of Fabricius (BF). However, the underlying mechanisms by which NDV escapes the host innate immunity are not well-understood. The suppressor of cytokine signaling 3 (SOCS3) inhibits the type I interferon-dependent antiviral signaling pathway by utilizing a feedback loop. In this study, we analyzed the transcriptome data of the chicken embryo and BF infected with NDV and found significant upregulation of SOCS3. Next, we demonstrated that NDV infection and nonstructural V protein induced the up-regulation of SOCS3. Furthermore, we showed that overexpression of SOCS3 facilitated viral replication and reduced the expression of phosphorylation STAT1, MX1, and OASL, while inhibition of SOCS3 with siRNAs reduced virus replication and promoted the expression of phosphorylation STAT1, MX1, and OASL. Finally, we demonstrated that the MEK/ERK signaling pathway was involved in the expression of SOCS3 mediated by NDV infection and V protein transfection, and using specific inhibitor U0126 to block this signaling pathway attenuated SOCS3 expression and inhibited NDV replication through promoting the expression of type I interferon, OASL and MX1. Taken together, these data demonstrate that NDV infection and NDV nonstructural V protein activates the expression of SOCS3 at the mRNA and protein level through a mechanism dependent on the MEK/ERK signaling pathway, which benefits virus replication.
Collapse
Affiliation(s)
- Xiangwei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanqing Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Juan Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Na Huo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Chen Y, Liu W, Xu H, Liu J, Deng Y, Cheng H, Zhan T, Lu X, Liao T, Guo L, Zhu S, Pei Y, Hu J, Hu Z, Liu X, Wang X, Gu M, Hu S, Liu X. Gga-miR-19b-3p Inhibits Newcastle Disease Virus Replication by Suppressing Inflammatory Response via Targeting RNF11 and ZMYND11. Front Microbiol 2019; 10:2006. [PMID: 31507581 PMCID: PMC6718473 DOI: 10.3389/fmicb.2019.02006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022] Open
Abstract
Newcastle disease (ND), an acute and highly contagious avian disease caused by virulent Newcastle disease virus (NDV), often results in severe economic losses worldwide every year. Although it is clear that microRNAs (miRNAs) are implicated in modulating innate immune response to invading microbial pathogens, their role in host defense against NDV infection remains largely unknown. Our prior study indicates that gga-miR-19b-3p is up-regulated in NDV-infected DF-1 cells (a chicken embryo fibroblast cell line) and functions to suppress NDV replication. Here we report that overexpression of gga-miR-19b-3p promoted the production of NDV-induced inflammatory cytokines and suppressed NDV replication, whereas inhibition of endogenous gga-miR-19b-3p expression had an opposite effect. Dual-luciferase and gene expression array analyses revealed that gga-miR-19b-3p directly targets the mRNAs of ring finger protein 11 (RNF11) and zinc-finger protein, MYND-type containing 11 (ZMYND11), two negative regulators of nuclear factor kappa B (NF-κB) signaling, in DF-1 cells. RNF11 and ZMYND11 silencing by small interfering RNA (siRNA) induced NF-κB activity and inflammatory cytokine production, and suppressed NDV replication; whereas ectopic expression of these two proteins exhibited an opposite effect. Our study provides evidence that gga-miR-19b-3p activates NF-κB signaling by targeting RNF11 and ZMYND11, and that enhanced inflammatory cytokine production is likely responsible for the suppression of NDV replication.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haixu Xu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingjing Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yonghuan Deng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hao Cheng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianxing Liao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lili Guo
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shanshan Zhu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuru Pei
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Wang X, Jia Y, Ren J, Liu H, Adam FA, Wang X, Yang Z. Insights into the chicken bursa of fabricius response to Newcastle disease virus at 48 and 72 hours post-infection through RNA-seq. Vet Microbiol 2019; 236:108389. [PMID: 31500719 DOI: 10.1016/j.vetmic.2019.108389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Newcastle disease virus (NDV) causes significant economic losses to the poultry industry worldwide. As a lymphoid organ, the bursa of Fabricius (BF) plays a pivotal role in destroying invading pathogens. Virulent NDV strains can cause rapid atrophy of the BF; however, there is limited knowledge regarding the BF innate immune response to NDV infection. In this study, we used the virulent NDV strain F48E9 to infect four-week-old chickens and found atrophy of the BF, with severe damage and high NDV viral loads after NDV infection in dying chickens. To better understand the interactions between the host and NDV, we compared the transcriptional profiles at 48 and 72 h following infection with the virulent NDV strain F48E9 using RNA-seq. We identified a total of 1498 differentially expressed genes (DEGs), which were enriched in a variety of biological processes and pathways according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The enriched pathways were associated with innate immune and inflammatory responses as well as metabolism-related signalling pathways. Excessive inflammatory and innate immune responses induced by the NDV strain may be related to severe BF damage. The global survey of changes in gene expression performed herein provides new insights into complicated molecular mechanisms underlying the interaction between NDV and chickens and will enable the use of new strategies to protect chickens against NDV.
Collapse
Affiliation(s)
- Xiangwei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yanqing Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Juan Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | | | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China.
| |
Collapse
|
17
|
Mu J, Liu X, Yu X, Li J, Fei Y, Ding Z, Yin R. Cellular MicroRNA Expression Profile of Chicken Macrophages Infected with Newcastle Disease Virus Vaccine Strain LaSota. Pathogens 2019; 8:pathogens8030123. [PMID: 31405004 PMCID: PMC6789757 DOI: 10.3390/pathogens8030123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Vaccines with live, low-virulence Newcastle disease virus (NDV) strains are still the most accepted prevention and control strategies for combating Newcastle disease (ND), a major viral disease that hampers the development of the poultry industry worldwide. However, the mechanism underlying vaccine-mediated innate cell immune responses remains unclear. Here, a high-throughput Illumina sequencing approach was employed to determine cellular miRNA expression profiles in chicken macrophages infected with the LaSota virus, a widely used vaccine strain for mass vaccination programs against ND in poultry. Compared to the control group, 112 and 115 differentially expressed (DE) miRNAs were identified at 24 hpi (hours post inoculation) and 48 hpi, respectively. Meanwhile, 174 DE miRNAs were identified between 24 hpi and 48 hpi. Furthermore, 12 upregulated and 6 downregulated DE miRNAs were observed in common at 24 and 48 hpi compared with 0 hpi. In addition, target prediction and functional analysis of these DE miRNAs revealed significant enrichment for several signaling pathways, especially in the immune-related genes and pathways, such as the RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway. Our findings not only lay the foundations for further investigating the roles and regulatory mechanisms of miRNA in vaccine-mediated innate cellular immune responses, but also extend new insights into the interactions between the host and NDV infection.
Collapse
Affiliation(s)
- Jiaqi Mu
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun 130062, China
| | - Xinxin Liu
- College of Food Science and Engineering, Jilin University, Xi'an Road 5333, Changchun 130062, China
| | - Xibing Yu
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun 130062, China
| | - Junjiao Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun 130062, China
| | - Yidong Fei
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun 130062, China
| | - Zhuang Ding
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun 130062, China.
| | - Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun 130062, China.
| |
Collapse
|
18
|
Chen Y, Liu W, Xu H, Liu J, Deng Y, Cheng H, Zhu S, Pei Y, Hu J, Hu Z, Liu X, Wang X, Gu M, Hu S, Liu X. MicroRNA Expression Profiling in Newcastle Disease Virus-Infected DF-1 Cells by Deep Sequencing. Front Microbiol 2019; 10:1659. [PMID: 31396181 PMCID: PMC6663980 DOI: 10.3389/fmicb.2019.01659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Newcastle disease virus (NDV), causative agent of Newcastle disease (ND), is one of the most devastating pathogens for poultry industry worldwide. MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by regulating mRNA translation efficiency or mRNA abundance through binding to mRNA directly. Accumulating evidence has revealed that cellular miRNAs can also affect virus replication by controlling host-virus interaction. To identify miRNA expression profile and explore the roles of miRNA during NDV replication, in this study, small RNA deep sequencing was performed of non-inoculated DF-1 cells (chicken embryo fibroblast cell line) and JS 5/05-infected cells collected at 6 and 12 h post infection (hereafter called mock' NDV-6 h, and NDV-12 h groups respectively). A total of 73 miRNAs of NDV-6 h group and 64miRNAs of NDV-12 h group were significantly differentially expressed (SDE) when compared with those in mock group. Meanwhile, 50 SDE miRNAs, including 48 up- and 2 down-regulated, showed the same expression patterns in NDV-6 h and NDV-12 h groups. qRT-PCR validation of 15 selected miRNAs' expression patterns was consistent with deep sequencing. To investigate the role of these SDE miRNAs in NDV replication, miRNA mimics and inhibitors were transfected into DF-1 cells followed by NDV infection. The results revealed that gga-miR-451 and gga-miR-199-5p promoted NDV replication while gga-miR-19b-3p and gga-miR-29a-3p inhibited NDV replication. Further function research demonstrated gga-miR-451 suppressed NDV-induced inflammatory response via targeting YWHAZ (tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta). Overall, our study presented a global miRNA expression profile in DF-1 cells in response to NDV infection and verified the roles of some SDE miRNAs in NDV replication which will underpin further studies of miRNAs' roles between the host and the virus.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haixu Xu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingjing Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yonghuan Deng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hao Cheng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shanshan Zhu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuru Pei
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Wang X, Jia Y, Wang X, Wang C, Lv C, Li X, Chu Z, Han Q, Xiao S, Zhang S, Yang Z. MiR-375 Has Contrasting Effects on Newcastle Disease Virus Growth Depending on the Target Gene. Int J Biol Sci 2019; 15:44-57. [PMID: 30662346 PMCID: PMC6329920 DOI: 10.7150/ijbs.25106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs regulate post-transcriptional gene expression via either translational repression or mRNA degradation. They have important roles in both viral infection and host anti-infection processes. We discovered that the miR-375 is significantly upregulated in Newcastle disease virus (NDV)-infected chicken embryonic visceral tissues using a small RNA sequencing approach. Further research revealed that the overexpression of miR-375 markedly decreases the replication of the velogenic NDV F48E9 and the lentogenic NDV La Sota by targeting the M gene of NDV in DF-1 cells. Interestingly, miR-375 has another target, ELAVL4, which regulates chicken fibrocyte cell cycle progression and decreases NDV proliferation. In addition, miR-375 can influence bystander cells by its secretion in culture medium. Our results indicated that miR-375 is an inhibitor of NDV, but can also enhance NDV growth by reducing the expression of its target ELAVL4. These results emphasize the complex roles of microRNAs in the regulation of viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| |
Collapse
|
20
|
High level expression of ISG12(1) promotes cell apoptosis via mitochondrial-dependent pathway and so as to hinder Newcastle disease virus replication. Vet Microbiol 2018; 228:147-156. [PMID: 30593361 DOI: 10.1016/j.vetmic.2018.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
Newcastle disease (ND), caused by virulent Newcastle disease virus (NDV), poses a considerable risk for the poultry industry. A comprehensive understanding of the interaction between NDV and its host is therefore critical for control of this disease. Previously, we found that chicken ISG12(1) was among the significantly upregulated interferon-stimulated genes (ISGs) in embryos and the bursa of Fabricius of chickens infected by NDV, based on transcriptome sequencing. However, its antiviral effects and function were poorly understood. In this study, we aimed to determine the effects of chicken ISG12(1) on NDV replication. First, we confirmed that NDV infection stimulated high level expression of chicken ISG12(1) in vivo and in vitro based on RT-qPCR. Next, through overexpression and knockdown experiments, the antiviral activity of ISG12(1) was investigated. As expected, this protein was found to hinder NDV replication. In addition, we showed that ISG12(1) localized to the mitochondria; promoted the redistribution of Bax, a proapoptotic protein causing irreversible loss of mitochondrial function, from the cytoplasm to the mitochondria; and therefore induced cell apoptosis. In conclusion, elucidation of the role of chicken ISG12(1) in combatting NDV infection contributes to our understanding of the responses of poultry to viruses and may facilitate the generation of more efficient vaccines to control ND.
Collapse
|
21
|
Association of Candidate Genes with Response to Heat and Newcastle Disease Virus. Genes (Basel) 2018; 9:genes9110560. [PMID: 30463235 PMCID: PMC6267452 DOI: 10.3390/genes9110560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease is considered the number one disease constraint to poultry production in low and middle-income countries, however poultry that is raised in resource-poor areas often experience multiple environmental challenges. Heat stress has a negative impact on production, and immune response to pathogens can be negatively modulated by heat stress. Candidate genes and regions chosen for this study were based on previously reported associations with response to immune stimulants, pathogens, or heat, including: TLR3, TLR7, MX, MHC-B (major histocompatibility complex, gene complex), IFI27L2, SLC5A1, HSPB1, HSPA2, HSPA8, IFRD1, IL18R1, IL1R1, AP2A2, and TOLLIP. Chickens of a commercial egg-laying line were infected with a lentogenic strain of NDV (Newcastle disease virus); half the birds were maintained at thermoneutral temperature and the other half were exposed to high ambient temperature before the NDV challenge and throughout the remainder of the study. Phenotypic responses to heat, to NDV, or to heat + NDV were measured. Selected SNPs (single nucleotide polymorphisms) within 14 target genes or regions were genotyped; and genotype effects on phenotypic responses to NDV or heat + NDV were tested in each individual treatment group and the combined groups. Seventeen significant haplotype effects, among seven genes and seven phenotypes, were detected for response to NDV or heat or NDV + heat. These findings identify specific genetic variants that are associated with response to heat and/or NDV which may be useful in the genetic improvement of chickens to perform favorably when faced with pathogens and heat stress.
Collapse
|